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Abstract
Ameaningful set of stimuli, such as a sequence of frames from a movie, triggers a set of dif-

ferent experiences. By contrast, a meaningless set of stimuli, such as a sequence of ‘TV

noise’ frames, triggers always the same experience—of seeing ‘TV noise’—even though

the stimuli themselves are as different from each other as the movie frames. We reasoned

that the differentiation of cortical responses underlying the subject’s experiences, as mea-

sured by Lempel-Ziv complexity (incompressibility) of functional MRI images, should reflect

the overall meaningfulness of a set of stimuli for the subject, rather than differences among

the stimuli. We tested this hypothesis by quantifying the differentiation of brain activity pat-

terns in response to a movie sequence, to the same movie scrambled in time, and to ‘TV

noise’, where the pixels from each movie frame were scrambled in space. While overall cor-

tical activation was strong and widespread in all conditions, the differentiation (Lempel-Ziv

complexity) of brain activation patterns was correlated with the meaningfulness of the stimu-

lus set, being highest in the movie condition, intermediate in the scrambled movie condition,

and minimal for ‘TV noise’. Stimulus set meaningfulness was also associated with higher in-

formation integration among cortical regions. These results suggest that the differentiation

of neural responses can be used to assess the meaningfulness of a given set of stimuli for a

given subject, without the need to identify the features and categories that are relevant to

the subject, nor the precise location of selective neural responses.
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Introduction
When one watches a movie on a TV screen, as the movie frames flow by, one sees a succession
of different scenes, each containing a different assortment of meaningful objects and events. It
is fair to assume that the different scenes one experiences (phenomenological differentiation)
are due to different patterns of activity in relevant parts of the brain (neurophysiological differ-
entiation), including regions that respond to faces, places, story lines, and so on. Ultimately, of
course, such different patterns of activity are related to differences among the physical stimuli
to which the brain is exposed (stimulus set differentiation)—in this case, the movie frames.

If instead one watches for a while a TV out of tune, as the black and white pixels flicker in
front of the eyes, one sees all the time the same flickering image of ‘TV noise.’ As with the
movie, each ‘TV noise’ frame is made up of a different configuration of black and white pixels
(stimulus set differentiation), each of which will trigger different patterns of activity in the reti-
na and possibly elsewhere in the visual system. However, it is fair to assume that the parts of
the brain that are relevant for what one sees consciously will respond in the same way to differ-
ent noise patterns (lack of neurophysiological differentiation), since what one sees and its
meaning stay the same (TV noise, lack of phenomenological differentiation).

By comparing the differentiation of brain responses triggered by a movie with those trig-
gered by its pixel-scrambled version, one might therefore obtain a neurophysiological index of
how much more subjectively meaningful the movie is, compared to the TV noise, even though
the objective differences in the set of stimuli are comparable [1]. Importantly, measuring the
increase in neurophysiological differentiation to a movie compared to ‘TV noise’ in an individ-
ual subject does not require knowing which brain region responds to which movie features,
nor does it require that different subjects respond in similar ways to the same features—it only
requires that they respond in a more differentiated manner to a set of meaningful stimuli than
to a less meaningful one.

Material and Methods

Subjects and Ethics Statement
Six healthy participants (N = 6; 4 females; age range, 28–48 years) from the University of
Wisconsin–Madison community participated in the study. All subjects provided informed
consent following the procedures approved by the Health Sciences Institutional Review Board
of the University of Wisconsin–Madison. Subjects had normal or corrected-to-normal vision,
no contraindications for MRI, and no reported neurological or psychiatric history.

Stimuli
Stimuli were compiled from a classic silent film [Charlie Chaplin’s City Lights (1931)] [2]. We
used a silent film in order to avoid potential complications associated with temporal scram-
bling of sound [2]. The clips were of 256 seconds (~4 min) duration and resampled using Win-
dows Movie Maker at a rate of 30 Hz. For the scrambled movie condition, the 4 min film
sequence was subdivided into segments and scrambled in time at a 4 sec time scale. The origi-
nal film was first divided into 4 seconds segments then randomly resampled using a Matlab
custom script. For the ‘TV noise’ condition, movies were spatially scrambled by randomly re-
assigning each individual image pixels location in space using a Matlab custom script. This pro-
cedure was meant to preserve the first-order statistics of the stimuli. The temporal sequence
and sampling rate of the ‘TV noise’ frames was also kept the same as in the original movie.

A general issue in experiments comparing scrambled to unscrambled images is that higher
order image statistics are usually not fully matched even when using conservative procedures
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such as Fourier scrambling [3]. Ideally, multiple low-level scrambling procedures could be em-
ployed and compared, but this was not feasible in this initial study employing 30 repeated trials
per condition. Therefore, in the present experiment we employed random spatial scrambling
as the lowest-level fully structureless baseline [1] against which to compare to movie and
scrambled movie data. ‘TV noise’ represents the lowest-level baseline because ‘TV noise’ does
in fact look always the same. This is not true for Fourier and other scrambling procedures that
preserve low-level correlations: Fourier scrambled frames look clearly different, although they
do not trigger any discernible high-level category such as contours or objects. On the other
hand, ‘TV noise’ can certainly reach far enough into the brain to trigger the appropriate experi-
ence (of ‘TV noise’), while presumably producing differentiated patterns of activity at least in
the retina. Only ‘TV noise’, then, truly removes all spatial and temporal correlations to which
the brain is attuned and, having no structure, it has no differentiated meanings for the brain to
pick up—whether low- or high-level.

The block design itself was made of 10 presentations of 20 sec. of the original movie, 20 sec.
of a 4 sec. time-scrambled version of this 20 sec. movie sequence, and 20 sec. of the ‘TV noise’
corresponding to the 20 sec. movie, in counterbalanced order. Each 20 sec. of stimulus presen-
tation was preceded and followed by 10 sec. of black screen.

Experimental paradigm
While in the fMRI scanner, subjects viewed thirty presentations of 4 min segments of movie,
scrambled movie, and ‘TV noise’ in counterbalanced order. Subjects watched the movie twice
before starting the experiment to become familiar with its content. The experiment took place
in 2 separate days (except for one subject, where it was spread over 3 afternoons). Each subject
also underwent the block design session and a 4 min resting state scanning session. During the
whole experiment, subjects were instructed to focus on the visual stimuli and avoid mind wan-
dering. Online vigilance monitoring was performed using eye tracking and simultaneous
electroencephalographic recordings using a 32-electrode Brain Amp magnetic resonance com-
patible EEG setup. These data are not reported in the present article, but were used to ensure
that subjects had remained vigilant and focused throughout the experiment.

fMRI data acquisition
Functional MRI time series were acquired using a 3 Tesla GE MR scanner. Multislice T2�-
weighted fMRI images (TR 1100 ms, TE 14 ms, 29 slices, with a slice thickness 4 mm and an
inter-slice gap of 1 mm) and a structural T1-weighted sequence were acquired in each subject.
A single block design consisted in 828 scans. Thirty times 235 scans were acquired for repeated
stimulus presentations of movie, scrambled movie and ‘TV noise’ conditions (for a total of
ninety times 4 min sessions i.e. seven hours of scanning per subject). A high-resolution T1
image was also acquired in each volunteer at the end of the whole experiment for coregistration
to the functional data. During data acquisition, subjects wore earplugs and headphones and
were in a comfortable supine position.

Block design analysis
Fig 1, Top Panel, displays the experimental paradigm used for block design analysis. In this
paradigm, 20 sec sequences of movie, scrambled movie, or ‘TV noise’ were presented in alter-
nation with a black screen baseline. The block design analysis was expected to show significant
increases in the mean activity of many voxels for each of the three stimulus sequences com-
pared to the black screen baseline.
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Fig 1. Experimental paradigm. Left panel: Schematic representation of a human brain with 3 representative voxels whose fMRI BOLD activity will be
measured in a block design analysis and in a differentiation analysis. The red voxel is known to respond to faces, the orange voxel to places, and the green
voxel has unknown selectivity. The colored traces in the right side panels represent the expected BOLD signal of these representative voxels during the fMRI
experiments. Right, Top Panel: in the block design paradigm, 20 seconds sequences of movie, scrambled movie, or ‘TV noise’ are presented in alternation
with a black screen baseline. The block design analysis is expected to reveal significant increases in the mean activity of the three pictured voxels for each of
the three stimulus sequences compared to the black screen baseline. Bottom Panel: in the differentiation analysis paradigm, a 4 min sequence of movie,
scrambled movie or ‘TV noise’ is presented to the subjects, each sequence repeated 30 times across different scanning sessions (only 3 of these repetitions
are depicted, corresponding to 3 BOLD activity traces per voxel). In all three conditions, we expect an overall activation with respect to the black screen
baseline similar to that in the block design paradigm. However, unlike the block design analysis, the differentiation analysis focuses on systematic time-
locked increases or decreases in activity with respect to: i) each voxel’s the black screen baseline (dashed black line); ii) each voxel’s mean activity during
the 4 min sequence. Movie sequence: for each voxel, we expect systematic time-locked increases and decreases of activity across the session
(neurophysiological differentiation over time); moreover, we expect different voxels to show different patterns of systematic activations/deactivations in
response to different movie frames (neurophysiological differentiation over space). Altogether, high neurophysiological differentiation in space and time
(many different spatio-temporal patterns) is expected to go along high phenomenological differentiation (many different experiences). Scrambled movie
sequence: we expect intermediate levels of neurophysiological differentiation, corresponding to intermediate levels of phenomenological differentiation. TV
noise sequence: we expect no or minimal systematic time-locked incease or decreases in activity. Low neurophysiological differentiation (a single,
unchanging pattern of activation/deactivation) corresponds to low phenomenological differentiation (a single, unchanging experience of ‘TV noise’).
Spontaneous fluctuations in BOLD activity from scan to scan are also expected in the ‘TV noise’ session, but they will not be time locked to specific ‘TV noise’
frames, which cortical regions treat as equivalent. For copyright reasons, all movie pictures were replaced in Figures by numbered blank frames representing
their order of appearance in the movie.

doi:10.1371/journal.pone.0125337.g001
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For this analysis, fMRI data were analyzed using Statistical Parametric Mapping (SPM,
www.fil.ion.ucl.ac.uk/spm). Spatial preprocessing of functional scans included realignment,
normalization to an MNI template, and smoothing using an 8 mm FWHMGaussian kernel.
After preprocessing, the onsets of movie, scramble movie and noise presentation were modeled
using a box-car design and convolved with a canonical hemodynamic response function. In
each subject, we then performed a T-test searching for differences in activation between the
movie, scrambled movie and ‘TV noise’ sequences as compared to the black screen baseline.
Individual results were thresholded at whole-brain FWE p<0.05 (see representative subject in
Fig 2). Each subject’s unthresholded T contrast images for the movie, scrambled movie and
‘TV noise’ were also entered in a second level random effects group analysis, using a full facto-
rial design with non-sphericity correction. Group results were computed T contrasts and thre-
sholded at whole-brain FWE p<0.05 (Table 1).

fMRI differentiation analysis
Fig 1, Bottom Panel, displays the experimental paradigm used for the differentiation analysis. In
this paradigm, a 4 min sequence of movie, scrambled movie or ‘TV noise’ is presented to the
subjects, each sequence repeated 30 times across different scanning sessions. In all three condi-
tions, we expected an initial activation similar to that observed in the block design paradigm
against the black screen baseline. However, unlike the block design analysis, the differentiation
analysis focuses on systematic time-locked increases or decreases in activity compared to each
voxel’s mean activity during the 4 min sequence. This is done in two ways: i) by statistically com-
paring BOLD activity values at each time point with the BOLD activity for a black screen base-
line; ii) by statistically comparing BOLD activity values at each time point with the BOLD
activity mean for the overall session. For the movie sequence, we expected that high phenomeno-
logical differentiation (many different experiences) would go along with high neurophysiological
differentiation over time and space: each voxel would show significant activations/deactivations
time-locked to specific movie frames (neurophysiological differentiation over time), and differ-
ent voxels would do so for different frames (neurophysiological differentiation over space). For
the scrambled movie sequence, we expected intermediate levels of neurophysiological differenti-
ation, corresponding to intermediate levels of phenomenological differentiation. For the TV

Fig 2. Block design results for movie, scrambledmovie and ‘TV noise’ sequences. Figure displays overall brain activation for movie, scrambled movie
and ‘TV noise’ sequences as measured in the block design paradigm. Results shown in a representative subject for T contrasts comparing movie, scrambled
movie and ‘TV noise’ to a black screen baseline, thresholded at whole brain FWE corrected p<0.05.

doi:10.1371/journal.pone.0125337.g002
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Table 1. Block design overall activation versus a black screen baseline.

Side Area BA X Y Z Z value P value

Movie

907 significant voxels

R MOG 37 46 -72 0 6.47 <0.001

MOG 19 42 -80 0 5.83 <0.001

L MTG 39 -44 -70 8 5.77 <0.001

MOG 19 -46 -80 12 5.75 <0.001

MOG 37 -50 -74 2 5.63 <0.001

L MOG 18 -34 -90 8 5.60 0.001

Cuneus 18 -12 -102 4 5.33 0.002

Cuneus 18 -18 -102 6 5.32 0.002

L Precentral Gyrus 6 -58 2 30 5.19 0.004

R Lingual gyrus 17 14 -94 -10 5.13 0.005

L Fusiform gyrus 20 -42 -38 -20 5.08 0.007

R Fusiform Gyrus 37 36 -52 -14 5.03 0.009

R Fusiform Gyrus 19 28 -70 -10 4.98 0.010

L Insula 13 -38 -2 -10 4.80 0.022

R Postcentral Gyrus 2 34 -32 40 4.73 0.028

R Postcentral Gyrus 2 40 -30 44 4.72 0.030

R Cuneus 18 18 -100 8 4.58 0.050

Scrambled movie

947 significant voxels

R MOG 37 46 -72 0 6.59 <0.001

MOG 19 42 -80 0 5.78 <0.001

MOG 18 36 -90 0 5.77 <0.001

L MTG 39 -44 -70 8 5.87 <0.001

MOG 19 -46 -80 12 5.87 <0.001

MOG 37 -50 -74 2 5.76 <0.001

L MOG 19 -30 -94 4 5.56 0.001

Cuneus 18 -12 -102 4 5.41 0.002

Cuneus 17 -10 -100 -4 5.36 0.002

R Lingual Gyrus 17 12 -94 -10 5.41 0.002

R Fusiform Gyrus 37 36 -52 -14 4.91 0.014

R Fusiform Gyrus 19 28 -70 -10 4.86 0.017

R Cuneus 18 18 -100 8 4.70 0.032

L MOG 18 -28 -82 -12 4.65 0.040

L Fusiform Gyrus 37 -42 -40 -20 4.61 0.045

L MOG 18 -24 -86 -14 4.60 0.047

'TV Noise'

104 significant voxels

R Cuneus 18 -18 -102 -8 5.69 <0.001

L Cuneus 18 -10 -102 -4 5.49 0.001

R Lingual gyrus 17 14 -94 -10 5.36 0.002

R Cuneus 18 24 -98 -2 5.34 0.002

L Lingual Gyrus 17 -6 -90 -10 4.62 0.043

Movie vs 'TV Noise

327 significant voxels

R MOG 37 46 -72 0 5.58 0.001

(Continued)
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noise sequence, we expected minimal systematic time-locked activations/deactivations, with low
neurophysiological differentiation (a single, unchanging pattern of activation/deactivation)
going along with low phenomenological differentiation (unchanging experience of ‘TV noise’).
Spontaneous fluctuations in BOLD activity from scan to scan were expected, but they would not
be time locked to specific TV noise frames, which cortical regions should treat as equivalent.

For the differentiation analyses, fMRI data were analyzed with SPM and FMRIB Software
Library (www.fmrib.ox.ac.uk/fsl) softwares and with additional scripts (MB, SS) written in
Matlab (MathWorks Natick, MA). The first 4 volumes of each 4 min scanning session were
first removed from the data set (allowing for T1 signal equilibration). Preprocessing of func-
tional scans was performed as above using SPM for spatial realignment, normalization to Mon-
treal National Institute template and 8 mm full width at half maximum (FWHM) smoothing.
For all sessions, we then used FSL to remove linear trends by high pass filtering the data above
a 60 sec. cutoff, and each voxel was then centered on its own session mean. Since we observed
some non-specific T2� signal instability in the first 31 scans of each 4 min. scanning session, we
excluded these volumes from our analysis [2].

We then measured Lempel-Ziv complexity on the spatiotemporal pattern of significant
activations/deactivations. In a first analysis, we computed Lempel Ziv complexity for activations/

Table 1. (Continued)

Side Area BA X Y Z Z value P value

MOG 19 42 -80 0 5.46 0.001

L MOG 18 -34 -90 8 5.42 0.002

L Fusiform Gyrus 19 -40 -70 -14 5.26 0.003

MTG 37 -46 -66 6 5.14 0.005

MOG 37 -50 -74 0 5.10 0.006

L MOG 19 -46 -80 12 5.23 0.004

L Precuneus 31 -24 -76 26 4.88 0.016

L Fusiform Gyrus 20 -42 -34 -22 4.86 0.017

Fusiform Gyrus 37 -40 -42 -22 4.79 0.023

R Fusiform Gyrus 37 36 -52 -14 4.74 0.027

R Cingulate Gyrus 31 8 -50 42 4.68 0.035

R Precuneus 7 22 -68 32 4.64 0.041

Scrambled movie vs 'TV Noise'

322 significant voxels

R MOG 37 46 -72 0 5.68 <0.001

MOG 19 42 -80 0 5.39 0.002

L Fusiform Gyrus 19 -40 -70 -14 5.32 0.002

MOG 19 -46 -80 12 5.31 0.003

MOG 37 -50 -74 0 5.18 0.005

L MOG 18 -34 -90 8 5.32 0.002

L Precuneus 31 -24 -74 28 4.94 0.012

R Fusiform Gyrus 37 36 -52 -14 4.63 0.043

Movie vs Scrambled movie

0 significant voxel

Block design overall activation group results for movie, scrambled movie and 'TV noise' as compared to a black screen baseline. All results are

thresholded at whole-brain family wise error corrected p<0.05. L: left. R: right. MOG: middle occipital gyrus. MTG: Middle temporal gyrus. P values are

thresholded at p<0.05 corrected for multiple comparisons using whole-brain family-wise error rate.

doi:10.1371/journal.pone.0125337.t001
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deactivations compared to a black screen baseline (similar to the baseline used in the block de-
sign). These black screen values were taken from the final volume at the end each ten sec black
screen presentation used as a baseline in the block design, which were themselves centered on
the within-subject mean value of the block design session.

In order to identify differential activation patterns in response to different movie frames, we
used SPM to perform F-tests between each given volume number across sessions and always
the same black screen baseline. Statistical maps were obtained before Lempel-Ziv computation,
as in [4], in order to only consider the deterministic part of the signal (systematic stimulus-
induced changes in brain signals). Each F-test was thresholded at whole brain FWE corrected
p<0.05 (as displayed in Fig 3 for a representative subject). Whole session results were then
summarized in a binary spatio-temporal matrix of activations/deactivations, with each row
corresponding to one voxel, and each column to an fMRI volume number in time. Lempel-Ziv
complexity was computed on these spatio-temporal binary activation/deactivation matrices for
movie, scrambled movie, and ‘TV noise’ (Fig 3 top, Table 2). Lempel-Ziv computation used a
hierarchical clustering approach and each individual value was then normalized by the within-
subject maximum before group mean and standard error of the mean were plotted for all con-
ditions (Fig 4). Further analyses were performed to identify separately differential activations
(positive deviations from the black screen baseline) and deactivations (negative deviations
from the black screen) for each volume number across sessions. Positive and negative T-test
contrasts were computed for each volume number and thresholded at FWE error corrected
p<0.05. Lempel-Ziv complexity was then computed on binarized spatio-temporal activation or
deactivation matrices for the movie, scrambled movie, and ‘TV noise’ conditions (Table 2).

We then proceeded to a second, complementary differentiation analysis by performing, for
each volume, an F-test of deviations from the session mean across the thirty sessions. In this
analysis, significant non-zero values correspond to consistent positive or negative deviations in
BOLD signal amplitude as compared to the session mean. As above statistical maps were ob-
tained before Lempel-Ziv computation as in [4], in order to only consider the deterministic
part of the signal. Again each F-test was thresholded at whole brain FWE corrected p<0.05 (as
displayed in Fig 5) in order to perform a conservative correction for spatial multiple compari-
sons. Whole session results were then summarized in a binary spatio-temporal matrix of acti-
vations/deactivations. As in the first analysis, Lempel-Ziv complexity was computed on these
spatio-temporal binary activation/deactivation matrices for movie, scrambled movie, and ‘TV
noise’ (Fig 5 top, Table 3) using a hierarchical clustering approach. Each individual value was
then normalized by the maximum before group mean and standard errors were computed for
all conditions (Fig 6). Additional analyses were also performed to identify separately differen-
tial activations (positive deviations) and deactivations (negative deviations) as compared to the
session mean for each volume number across sessions. Positive and negative T-test contrasts
were computed for each volume number and as above thresholded at FWE error corrected
p<0.05. Finally Lempel-Ziv complexity was computed separately on the binarized spatio-
temporal activation or deactivation matrices for the movie, scrambled movie, and ‘TV noise’
conditions (see Table 3).

Lempel-Ziv complexity as a measure of differentiation
For the differentiation analyses, we calculated Lempel-Ziv complexity, a measure of the com-
pressibility of a data set, for the spatiotemporal pattern of significant activations/deactivations
with respect to a black screen baseline or to the session mean for the three conditions. Lempel-
Ziv complexity was employed as a simple way to estimate the number of different activation/
deactivation patterns.
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Note that other measures, such as the total number of significantly activated/deactivated
voxels, or the source entropy of the data, could also have been used to distinguish between the
activation/deactivation patterns produced by our three conditions. In general, however, these
other measures are not well suited to assess differentiation. For example, the number of activat-
ed voxels as well as source entropy, being only sensitive to first-order statistics, would be high
for the voxel activation/deactivation patterns induced by a sequence alternating just two
discriminable stimuli (say, a particular picture and black screen, repeated many times). By con-
trast, Lempel-Ziv complexity would immediately reveal the low differentiation (high compress-
ibility) of the brain activation/deactivation patterns.

Fig 3. Lempel-Ziv complexity of brain activity correlates with stimulus set meaningfulness—comparison to a black screen baseline.Results shown
for a representative subject (same subject as for Fig 2). For each condition, rectangles in the left column show exemplar pixels at the center of the screen of
each frame, illustrating that all stimulus set present a high level of physical differentiation over time. In contrast, brain activity patterns over time are highly
differentiated in the movie condition, intermediately differentiated in the scrambled movie condition, and very similar to one another in the ‘TV noise’
condition. Brain maps are here expressed in terms of significant changes in activity as compared to a black screen baseline (F-test, thresholded at whole
brain FWE corrected p<0.05 for each frame). Top panel displays binarized spatio-temporal activation/deactivation matrices obtained for the 3 conditions after
statistical thresholding was applied: a value of 1 was assigned to above threshold voxels for each scan, and a value of zero to voxels below threshold. For
display purposes, binarized activation matrices are displayed only for the voxels that show at least once a significant activation in the movie (data dimension
reduction from 94000 to ~7000 voxels). Lempel-Ziv complexity was computed at the whole brain activation matrix encompassing 94000 voxels in
each condition.

doi:10.1371/journal.pone.0125337.g003
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Table 2. fMRI activation/deactivation Lempel-Ziv complexity results for the differentiation analysis comparing each volume BOLD signal to a
black screen baseline.

LZ Complexity Movie Scrambled movie ' TV noise' Movie Scrambled movie ' TV noise'

Overall activity

Subject 1 16368 15034 7176 1 0.918 0.438

Subject 2 11558 10400 8956 1 0.900 0.775

Subject 3 1399 987 768 1 0.706 0.549

Subject 4 6561 5145 3736 1 0.784 0.569

Subject 5 7492 7729 6444 0.969 1 0.834

Subject 6 9514 5779 3750 1 0.607 0.394

Mean +/- sem 0.995 ± 0.005 0.819 ± 0.060 0.593 ± 0.072

Activations

Subject 1 12513 11173 5269 1 0.893 0.421

Subject 2 1656 936 210 1 0.565 0.127

Subject 3 1026 537 340 1 0.523 0.331

Subject 4 2729 3547 3287 0.769 1 0.927

Subject 5 2005 1870 1150 1 0.933 0.574

Subject 6 3885 2859 1961 1 0.736 0.505

Mean +/- sem 0.961 ± 0.038 0.775 ± 0.033 0.481 ± 0.109

Deactivations

Subject 1 2780 1485 8 1 0.534 0.003

Subject 2 545 314 100 1 0.576 0.183

Subject 3 97 109 24 0.90 1 0.220

Subject 4 340 249 42 1 0.732 0.124

Subject 5 554 604 80 0.917 1 0.132

Subject 6 141 56 11 1 0.397 0.078

Mean +/- sem 0.969 ± 0.019 0.706 ± 0.103 0.123 ± 0.031

Individual values for activation/deactivation complexity in the movie, scrambled movie and 'TV noise' conditions when BOLD activity at each time point is

compared to BOLD activity values for a blank screen baseline. Table shows the original values, then normalized complexity values scaled by the

maximum of each subject, with group mean and standard error of the mean for overall activations/deactivations (F tests) and for the activations and

deactivations (T tests) considered separately. sem: standard error of the mean.

doi:10.1371/journal.pone.0125337.t002

Fig 4. Lempel-Ziv complexity group values—comparison to a black screen baseline. Left panel: overall activations/deactivations (F test) group values.
Middle panel: Lempel-Ziv complexity values for activations only (positive T test) Right panel: Lempel-Ziv complexity values for deactivations only (negative T
test). For display purposes, each subject’s Lempel-Ziv complexity was normalized by its individual maximum value across all conditions. Bar graphs show
group mean and standard error of the mean in each condition.

doi:10.1371/journal.pone.0125337.g004
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Note also that, in our previous work employing TMS-EEG to evaluate the differentiation of
cortical EEG responses to transcranial magnetic stimulation [4], Lempel-Ziv complexity was
normalized by source entropy. In that study, normalization was applied to control for varia-
tions in stimulation parameters (stimulation site and intensity) and in the behavioral state of
the subjects (alert wakefulness, mild and deep anesthesia, sleep, and disorders of conscious-
ness), so that, for the same amount of bran activation, we could estimate relative changes in
complexity as reflecting the level of consciousness. In the present work, by contrast, the average
intensity of the stimuli was similar across the three sequences, and the subjects’ level of con-
sciousness was the same throughout the experiment. Moreover, our goal was to assess how
many different patterns were triggered by the three stimulus sequences in absolute terms,

Fig 5. Lempel-Ziv complexity of brain activity correlates with stimulus set meaningfulness—comparison to the sequence mean. Figure displays
differentiated brain activity patterns for movie, scrambled movie, and ‘TV noise’ stimulus sequences for the representative subject also used in Figs 2–3.
Brain activity patterns over time are highly differentiated in the movie condition, intermediate in the scrambled movie condition, and very low in the ‘TV noise’
condition. Brain maps are here expressed in terms of significant changes in activity as compared to the within-session mean (F-test) thresholded at whole
brain FWE corrected p<0.05 for each frame. Top panel displays binarized spatio-temporal activation/deactivation matrices obtained for the 3 conditions after
statistical thresholding was applied—where a value of 1 was assigned to above threshold voxels for each scan, and a value of zero to voxels below
threshold. For display purposes, binarized activation matrices are displayed only for the voxels that show at least once a significant activation in the movie
(data dimension reduction from 94000 to ~900 voxels). Lempel-Ziv complexity was computed at the whole brain activation matrix encompassing 94000
voxels in each condition.

doi:10.1371/journal.pone.0125337.g005
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rather than in relative terms. Specifically, we expected to observe many different patterns for
the movie, hence high Lempel-Ziv complexity, a few less for the scrambled movie, and just one
pattern throughout for the noise, hence low Lempel-Ziv complexity. For these reasons, we
measured Lempel-Ziv complexity deliberately without normalization by source entropy.

Finally, to rule out that the hypothesized result—highest neurophysiological differentiation
for the movie, intermediate for the scrambled movie, and lowest for ‘TV noise’—could be ac-
counted for simply by higher stimulus differentiation—we computed Lempel-Ziv complexity
for the sequence of stimuli (images) in the three conditions. For computational expediency, we
chose a subset of the pixels at the center of each image (one tenth of the full screen image size).
Due to scrambling, we expected stimulus differentiation to behave opposite to neurophysiolog-
ical differentiation, with the highest value for ‘TV noise’ and the lowest value for the movie.

Integrated informationΦ*
Integrated information is the amount of information generated by the whole above and beyond
the information generated by its parts. A practical measure of integrated information, F�, can

Table 3. fMRI activation/deactivation Lempel-Ziv complexity results—comparison to the sessionmean.

LZ Complexity Movie Scrambled movie 'TV noise' Movie Scrambled movie 'TV noise'

Activations or deactivations

Subject 1 1549 921 10 1 0.595 0.006

Subject 2 458 186 31 1 0.406 0.068

Subject 3 164 61 10 1 0.372 0.061

Subject 4 541 252 19 1 0.466 0.035

Subject 5 444 326 42 1 0.734 0.095

Subject 6 179 49 7 1 0.274 0.039

Mean +/- sem 1 ± 0 0.474 ± 0.068 0.051 ± 0.013

Activations

Subject 1 5497 2829 19 1 0.476 0.003

Subject 2 1291 289 0 1 0.224 0

Subject 3 428 64 0 1 0.150 0

Subject 4 1462 270 6 1 0.185 0.004

Subject 5 1176 224 9 1 0.190 0.008

Subject 6 485 43 0 1 0.089 0

Mean +/- sem 1 ± 0 0.219 ± 0.055 0.002 ± 0.001

Deactivations

Subject 1 2780 1485 8 1 0.534 0.003

Subject 2 545 314 100 1 0.576 0.183

Subject 3 97 109 24 0.90 1 0.220

Subject 4 340 249 42 1 0.732 0.14

Subject 5 554 604 80 0.917 1 0.132

Subject 6 141 56 11 1 0.397 0.078

Mean +/- sem 0.969 ± 0.019 0.706 ± 0.103 0.123 ± 0.031

Individual values for activation/deactivation Lempel Ziv complexity as compared to the session in the movie, scrambled movie and 'TV noise' conditions.

Table shows the original values, then normalized complexity values scaled by the maximum of each subject, with group mean and standard error of the

mean (used in Fig 6) for overall activations/deactivations (F tests) and for the activations and deactivations (T tests) considered separately. sem: standard

error of the mean.

doi:10.1371/journal.pone.0125337.t003
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be defined as the difference between the mutual information of the whole system, I, and that of
its parts, I� [5,6],

F � ¼ IðXt;Xt�tÞ � I � ðXt;Xt�tÞ

The first term, I(Xt;Xt-τ), quantifies how much information about the past state of a system can
be decoded by knowing the present state (mismatch decoding). The second term, I�(Xt;Xt-τ),
quantifies how much information about the past state can be decoded by knowing the present
state, under the assumption that parts of the system are independent [7]. To do so, the past
state of each part is decoded by using only its own present state, while ignoring the other parts
of the system. If the parts are truly independent, I and I� are equal and integrated information,
F�, is 0. If the parts interact with each other, there should be a difference between I and I�, and
F� will be non zero. F� thus reflects how much information the system generates above and
beyond its parts, i.e. its integrated information.

To calculate F�, fMRI time-courses of each voxel were averaged over 30 repetitions for
movie, scrambled movie and ‘TV noise’. This was done in order to extract primarily the deter-
ministic (stimulus-evoked) part of the time course of the responses, while discarding fMRI
spontaneous activity fluctuations. Then, the mean time-courses of regions of interest (ROI)
were calculated. We used two different sets of functionally relevant ROIs to confirm the robust-
ness of our results. Each ROI was defined as a 5mm radius sphere around published coordi-
nates. ‘ROI set 1’ included 123 ROIs which were defined based on fMRI resting state functional
connectivity map [8]. ‘ROI set 2’ contained 160 ROIs that did not overlap with ROI set 1,
which were identified by a meta-analysis of fMRI task-activation studies [9].

Quantifying causal interactions between regions across different time steps using fMRI is
best performed while modeling regional differences in hemodynamic response function (HRF)
[10,11]. For this reason, we conducted a region-specific HRF deconvolution of our fMRI data
before calculation of F� (using the approach described in [11], http://software.incf.org/
software/blind-hrf-retrieval-and-deconvolution-for-resting-state-bold). This approach allows
to deconvolve the data while taking into account regional differences in HRF shape, latency

Fig 6. Group results for Lempel-ziv complexity analyses—comparison to the sequencemean. Lempel-
Ziv complexity values for movie, scrambled movie, and 'TV noise'. Left panel: overall activations/
deactivations (F test) group values. Middle panel: complexity values for activations only (positive T test) Right
panel: complexity values for deactivations only (negative T test). For display purposes, each subject’s
Lempel-Ziv complexity was normalized by its individual maximum value across all conditions. Bar graphs
show group mean and standard error of the mean in each condition.

doi:10.1371/journal.pone.0125337.g006
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and FWHM and was designed in order to improve computation of effective connectivity on
continuous signals using fMRI data [11].

To evaluate how much a system is integrated, one must find its informational ‘‘weakest
link”, i.e. the minimum information partition [MIP] [12], the partition of a system which
makes the least of a difference. However, searching for the MIP exhaustively in large datasets is
computationally infeasible. Furthermore, due to the small number of time points available in
fMRI data, F� can only be computed on a limited number of ROIs. Given these limitations, we
estimated F� by considering 1000 symmetric bipartitions of a set of 80 ROIs randomly selected
from ROI set 1 or ROI set 2. For each bipartition, we calculated the amount of information
generated by the set of 80 ROIs above and beyond its parts and that generated by the two sets
of the 40 ROIs independently. The bipartition that made the least of a difference form the
whole provided an approximate value of F�. We considered bipartitions only as they provide a
lower bound on the expected value of integrated information [12]. We repeated this procedure
for 1000 combinations of 80 ROIs from each ROI set in each condition, and computed the av-
erage F� values in each subject for each condition. Finally, we conducted group-level T tests in
order to evaluate if average values of F� increased with changes in the meaningfulness of sti-
muli across conditions. Results were thresholded at false-discovery rate (FDR) corrected
p<0.05 for each condition. This entire analysis was repeated five times through independent
sampling of bipartitions to assess whether the results were robust.

Neural Complexity
Neural Complexity CN(X) quantifies the average mutual information among bipartitions of a
neural system [13]:

CNðXÞ ¼
XN=2

k ¼ 1

< HðXk
j Þ þ HðX � Xk

j Þ � HðXÞ >

where X is the neural system with n elementary components, Xk
j is a j-th subset consisting of k

components, and X � Xk
j is its complement in the system. H Xk

j

� �
; H X � Xk

j

� �
andH Xð Þ are

the entropies of Xk
j ; X � Xk

j and X considered independently.<・> represents averaging for

all subsets of size k. As done for F�, we calculated Neural Complexity on the deterministic
(stimulus-evoked) part of fMRI time courses, i.e. the averaged time-courses over 30 repetitions
for movie, scrambled movie and ‘TV noise’ conditions, both for ROI set 1 and ROI set 2. HRF
deconvolution did not have to be performed to calculate Neural Complexity, since this measure
is applied to instantaneous interactions between regions, with no delay in time (Neural Com-
plexity results were nevertheless similar after deconvolution). Although theoretically Neural
Complexity requires considering all bipartitions of the system, this computation is not practi-
cally feasible in fMRI data due to a combinatorial explosion. As we did for F�, we thus ran-
domly selected bipartitions between two sets of 40 ROIs from ROI set 1 or ROI set 2 and
calculated the mutual information between them. This procedure was repeated 10000 times to
cover all ROIs of each ROI set. The 10000 values were averaged to obtain a single Neural Com-
plexity estimate for each subject in each condition. Finally, we conducted group-level paired T
tests in order to evaluate if Neural Complexity increased with the meaningfulness of the set of
stimuli across conditions. Mean and standard error of the mean for these measures are dis-
played in Fig 5 for the movie, scrambled movie, and ‘TV noise’ conditions. Results were thre-
sholded at false-discovery rate (FDR) corrected p<0.05 for each condition. Again, this entire
analysis was repeated five times through independent sampling of bipartitions to assess
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whether the results were robust. Nevertheless, it should be emphasized that, even if F� and
neural complexity values may be robust under repeated analysis, they remain extremely
undersampled approximations.

Results

Lempel-Ziv complexity of the stimulus sequence
As expected, Lempel Ziv values computed over a representative fraction of the image pixels of
the stimulus sequences (a central square) were lower for the movie sequence (1356), intermedi-
ate for the scrambled movie (1773), and highest for the ‘TV noise’ (2976).

Block design analysis
The six subjects underwent a block design alternating a 20 seconds sequence of the movie
(Chaplin’s ‘City Lights’), a 4-seconds time scrambled version of this movie sequence, and cor-
responding ‘TV noise’ sequences (see Fig 1, Upper Panel). In each subject, the movie, scram-
bled movie and ‘TV noise’ sequences all recruited a number of different brain areas (the results
from an exemplar subject are shown in Fig 2). As shown in Table 1 (random effects group anal-
ysis), both movie and scrambled movie recruited more areas than TV noise, but did not differ
from each other.

fMRI activation Lempel-Ziv complexity
We then assessed the relationship between the differentiation of brain responses and the mean-
ingfulness of the stimulus set. The same subjects watched a 4 minute sequence of the movie; a 4
minute sequence of the time-scrambled movie; a 4 minute sequence of the corresponding ‘TV
noise’. Each sequence of movie, scrambled movie, and ‘TV noise’ was repeated 30 times in
counterbalanced order (see Methods and Fig 1, Bottom Panel). After fMRI preprocessing, we
centered each voxel on its own mean. A first differentiation analysis identified differentiated
activation/deactivation as compared to a black screen baseline and a second analysis assessed
BOLD increases or decreases as compared to the session mean (see Methods).

Fig 3 presents the results of a first kind of differentiation analysis, which assessed systematic
activations/deactivations with respect to a common black screen baseline for the same repre-
sentative subject shown in Fig 2. Clearly, the movie sequence produced many different
activation/deactivation patterns that varied over time and space (high neurophysiological dif-
ferentiation). By contrast, the TV noise sequence produced a pattern of activations/deactiva-
tions that was similar throughout the 4 min (low differentiation). The scrambled movie
produced patterns that were less differentiated than the movie and much more differentiated
thatn TV noise.

We summarized the significant differential activation/deactivation patterns for each subject
(F test) into a binarized spatio-temporal matrix (voxels x scans, where each voxel value is 1 if
significant at family wise error (FWE) corrected p<0.05, and 0 if not significant for any given
scan) for the three sets of stimuli (movie, scrambled movie and TV noise). Finally, we evaluated
the Lempel-Ziv complexity of these binarized matrices. We repeated the process separately for
activations (positive T test) and deactivations (negative T test) with respect to the black screen
baseline. Fig 4 and Table 2 show the group results for this analysis. Highest group values of
Lempel-Ziv complexity were found for the movie condition, intermediate values for the scram-
bled movie and lowest values for the ‘TV noise’ condition. Note that Lempel-Ziv complexity
values for TV noise are much lower than for the other conditions, but they are not at zero. This
is likely due to signal fluctuations, related to spontaneous activity and/or physiological noise.
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A second kind differentiation analysis assessed systematic BOLD signal increases/decreases
across sessions with respect to the mean of the sequence within each session. Fig 5 shows the
results of this approach in the same subject shown in Figs 2 and 3. As in the first differentiation
analysis, the movie sequence elicited over time a number of differentiated patterns of time-
locked activation/deactivation widely distributed over the cortical surface. The scrambled
movie sequence elicited time-locked activation/deactivation patterns that were less widespread.
Finally, ‘TV noise’ induced virtually no significant differentiation of activation/deactivation
patterns over the mean of each sequence.

We again summarized the significant differential activation/deactivation patterns for each
subject (F test) into a binarized spatio-temporal matrix for the three sets of stimuli (movie,
scrambled movie and TV noise) and computed the Lempel-Ziv complexity of these binarized
matrices. We also computed Lempel-Ziv complexity separately for activations (positive T test)
and deactivations (negative T test) as compared to session mean. Fig 5 (top) shows the results
for this approach for overall activations/deactivations in our exemplar subject. Table 3 displays
Lempel-Ziv complexity values for individual subjects. Fig 6 shows group means and standard
errors. The results demonstrate that Lempel-Ziv complexity values of overall activations/
deactivations, as well as activations and deactivations separately reflected the overall meaning-
fulness of the stimulus set, being highest for the original movie, intermediate for the scrambled
movie, and low for TV noise.

Integrated informationΦ*
Neurophysiological activity patterns associated with conscious experiences should not only be
differentiated, but also integrated, corresponding to a high capacity for information integration
[4,14,15]. We estimated integrated information from fMRI data using a measure based on mis-
match decoding, F� [5,6]. F� is the difference between the information a system has about its
past when taken as a whole and the information its parts have about themselves taken separate-
ly, considering the partition of the system that makes the least difference (minimum informa-
tion partition, MIP). In other words, F� quantifies integrated information as the information
the system has above and beyond its parts [14]. We chose two representative sets of 80 voxels
(based on functional connectivity data (region of interest (ROI) set 1) and meta-analyses of ac-
tivation (ROI set 2) respectively, see Methods) and performed two independent analyses. To
calculate F�, we took the time series of mean BOLD values for each voxel averaged over the 30
repetitions for movie, scrambled movie, and TV noise. Total system information was defined
as the mutual information between the state (BOLD signal values) of a set of ROI at each time
step, and its state at an earlier time step. We repeated the analysis for intervals ranging from 1
to 10 seconds. The information for the parts independently was calculated in the same way. In-
tegrated information F� was then defined as the difference between the total system informa-
tion and the information for the minimum information partition (the partition, out of 1000
bipartitions sampled, which led to the least loss of information compared to the system as a
whole [5,6]. We used bipartition to calculate F�, because bipartition of the 80 ROIs provides a
lower bound on the expected value of integrated information than any other partitions [12].
The results show that F� was highest for the movie, intermediate for the scrambled movie, and
low for TV noise, for all time-lags up to 10 seconds (corrected P< 0.05, group data shown in
Fig 7A for a time lag of 4 seconds, see also Table 4; for display purposes, results are normalized
to the maximum F� value within each subject). Data for our exemplar subject at all time-lags
are shown in Fig 7B. We obtained consistent results both for ROI set 1 and 2, which did not in-
clude any overlapping ROIs. Finally, to assess the robustness of the results, we repeated the en-
tire analysis five times on independently chosen sets of bipartitions. In all cases, the results
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were confirmed: F� values for the movie condition were statistically higher than for scrambled,
and both movie and scrambled were statistically higher than noise (corrected P< 0.05).

Neural Complexity
Finally, we asked whether Neural Complexity, another measure of information integration
within a network [13], was also correlated with stimulus set meaningfulness, using the same
datasets as for the calculation of F�. While F� considers the mutual information between

Fig 7. Group results for Integrated informationΦ* analyses. Integrated informationΦ* results for the movie, scrambled movie, and ‘TV noise’ conditions.
Colors of bars represent conditions (dark gray: movie, medium gray: scrambled movie, light gray: TV noise). Upper left panel: the group-mean ofΦ*
calculated by using time lag of 4 second and ROI set 1. Error bar represents standard error of the mean for each measure in each condition. Asterisks
indicate significant differences of the group means (p<0.05, corrected). Upper right panel: the group-mean ofΦ* calculated by using time lag of 4 second and
ROI set 2. Lower panel:Φ* calculated in our representative subject with ROI set 1, showing robust results across different time lags (1–10 seconds). In this
panel, error bar indicates standard deviation of the mean for 1000 sets of 80 ROIs (see Methods).

doi:10.1371/journal.pone.0125337.g007
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current and past states of the whole system and its parts, Neural Complexity measures the aver-
age mutual information between the current states of one part of the system and the rest. As
shown in Fig 8 and Table 5, the group mean for Neural Complexity was again high for the
movie, intermediate for the scrambled movie, and low for ‘TV noise’ (for display purposes,

Table 4. Integrated informationΦ* results.

Φ* Movie Scrambled movie ' TV noise' Movie Scrambled movie ' TV noise'

ROI set 1

Subject 1 96.1 92.5 89.5 1.000 0.963 0.932

Subject 2 90.1 88.4 86.0 1.000 0.981 0.955

Subject 3 92.8 90.8 87.5 1.000 0.979 0.943

Subject 4 83.9 81.8 81.4 1.000 0.975 0.970

Subject 5 84.4 83.8 85.2 0.991 0.984 1.000

Subject 6 86.6 84.8 82.6 1.000 0.979 0.954

Mean +/- sem 0.999± 0.977± 0.959±

0.002 0.003 0.010

ROI set 2

Subject 1 94.8 91.4 91.1 1.000 0.964 0.961

Subject 2 93.1 92.0 88.9 1.000 0.989 0.955

Subject 3 92.8 89.8 87.5 1.000 0.968 0.943

Subject 4 86.5 83.5 84.1 1.000 0.964 0.972

Subject 5 84.7 83.8 83.7 1.000 0.989 0.988

Subject 6 86.1 83.8 80.4 1.000 0.974 0.934

Mean +/- sem 1.000 0.975± 0.959±

0.005 0.008

Individual values and group statistics for Φ* in movie, scrambled movie and ‘TV noise’ (used in Fig 7). Table shows original values, then normalized

values scaled by the maximum of each subject, as well as their mean and standard error of the mean. sem: standard error of the mean.

doi:10.1371/journal.pone.0125337.t004

Fig 8. Group results for Neural Complexity analyses. Neural Complexity results for the movie, scrambled
movie, and ‘TV noise’ conditions. Colors of bars represent conditions (dark gray: movie, medium gray:
scrambled movie, light gray: TV noise). Left panel: group means and standard deviation of the mean for
Neural Complexity calculated on ROI set 1. Right panel: group means and standard deviation of the mean for
Neural Complexity calculated on ROI set 2. Asterisks indicate significant differences of the group means
(p<0.05, corrected).

doi:10.1371/journal.pone.0125337.g008
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results were again normalized to the maximum Neural Complexity value within each subject).
Thus, the overall meaningfulness of the stimulus set was reflected in measures of information
integration among cortical regions, such as F� and Neural Complexity, indicating that differ-
entiated responses to the movie were also integrated. As above, to assess the robustness of the
results, we repeated the entire analysis five times on independently chosen sets of bipartitions.
In all cases, the results were confirmed: neural complexity values for the movie condition were
statistically higher than for scrambled, and both movie and scrambled were statistically higher
than noise (corrected P< 0.05).

Discussion
This study tested the hypothesis that the differentiation of cortical responses to a set of diverse
stimuli reflects the meaningfulness of the stimulus set for the subject. Objectively, the three
stimulus sets—movie, scrambled movie, and ‘TV noise’—consisted in each case of many differ-
ent frames. In fact, the differentiation of the stimulus set, as measured by Lempel-Ziv complex-
ity, was lowest for the movie and highest for TV noise, as one would expect due to stimulus
scrambling. From the subject’s perspective, however, while the movie sequence consisted of a
set of different scenes (phenomenological differentiation), the ‘TV noise’ sequence consisted of
just a single experience, that of seeing ‘TV noise’ (lack of phenomenological differentiation).
Thus the movie sequence was rich in diverse meanings, the ‘TV noise’ had just one meaning,
and the scrambled movie was in between. Our findings demonstrate that the differentiation of
cortical activity patterns was indeed highest for a sequence of frames from a movie, intermedi-
ate for a temporally scrambled sequence of the same movie, and minimal for a ‘TV noise’ se-
quence obtained by spatially scrambling the pixels from each movie frame—the opposite
ranking compared to stimulus differentiation. Our results support the hypothesis that

Table 5. Neural Complexity results.

Neural Complexity Movie Scrambled movie ' TV noise' Movie Scrambled movie ' TV noise'

ROI set 1

Subject 1 35.4 33.9 31.8 1.000 0.957 0.897

Subject 2 36.7 34.0 31.8 1.000 0.928 0.866

Subject 3 34.5 34.9 32.3 0.989 1.000 0.927

Subject 4 31.9 31.0 30.4 1.000 0.972 0.954

Subject 5 29.9 29.4 27.7 1.000 0.983 0.927

Subject 6 34.2 30.4 28.7 1.000 0.890 0.839

Mean +/- sem 0.998± 0.955± 0.902±

0.002 0.016 0.018

ROI set 2

Subject 1 34.7 32.6 29.8 1.000 0.940 0.860

Subject 2 35.8 32.9 30.5 1.000 0.919 0.853

Subject 3 33.8 33.7 31.4 1.000 0.999 0.929

Subject 4 32.3 30.4 29.3 1.000 0.942 0.908

Subject 5 28.0 28.7 26.3 0.974 1.000 0.916

Subject 6 32.6 29.2 27.3 1.000 0.897 0.838

Mean +/- sem 0.996± 0.950± 0.884±

0.004 0.017 0.016

Individual values for network complexity in the movie, scrambled movie and 'TV noise'. Table shows original values, then normalized complexity scaled by

the maximum of each subject, and their mean and standard error of the mean (used in Fig 8). sem: standard error of the mean

doi:10.1371/journal.pone.0125337.t005
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neurophysiological differentiation reflects phenomenological differentiation and the overall
meaningfulness of a set of stimuli.

All three sets of stimuli induced reproducible activation of multiple brain regions compared
to a black screen baseline (block design analysis, Fig 2). Nevertheless, the differentiation of
brain activations, measured using Lempel-Ziv complexity, was highest for movie, intermediate
for scrambled, and minimal for ‘TV noise’ (Figs 3–6). Lempel-Ziv complexity assesses the com-
pressibility of data—here, fMRI cortical activation patterns. We employed this measure to eval-
uate the absolute diversity of activation/deactivation patterns because, unlike some other
measures such as overall activation or source entropy, it is sensitive to more than first-order
statistics (see Methods). In general, a high Lempel-Ziv value (as obtained for the set of movie
frames) indicates that different stimuli in the set induced different activation/deactivation pat-
terns, which are hard to compress. At the other extreme, the set of ‘TV noise’ stimuli, while just
as different from each other as movie frames, induced a cortical activation/deactivation pattern
that did not change significantly from one frame to the next, and was thus easy to compress. It
should be noted that changes in low level image statistics (spatial smoothness etc.) due to spa-
tial scrambling in the ‘TV noise’ condition may contribute to some of the observed differences
(see Methods). From a theoretical perspective, however, any change in neurophysiological dif-
ferentiation due to the scrambling of regularities—including low level ones—reflect stimulus
meaningfulness [16]. At any rate, the effects of changes in low level spatial statistics appear to
be confined to early visual areas [17], which contribute only a fraction of the voxels evaluated
in our analysis. Also, the increased neurophysiological differentiation in the movie compared
to the time-scrambled movie cannot be accounted for by changes in spatial statistics.

Much evidence indicates that a characteristic set of regions—the default mode network—is
deactivated in several different task conditions [18]. Here we also observed a higher differentia-
tion of cortical responses to the movie compared to ‘TV noise’ not just for activations but also
for deactivations. This implies that different meaningful stimuli turn off different sets of brain
areas. By contrast, a set of stimuli having the same meaning (‘TV noise’) turns off the same set
of areas. Therefore, in addition to the task-related deactivation of a default brain network,
there can be spatially differentiated, stimulus-specific deactivations that relate to stimulus
meaning.

The higher Lempel-Ziv complexity of movie over ‘TV noise’ was paralleled by a higher
value of integrated information F� among cortical regions (Fig 7, [5,6]). F� is a measure of
how much better the current state of a system as a whole predicts its future state compared to
what independent parts of the system could do, for the partition that cuts the system through
its weakest link (minimum information partition, MIP). For F� to be high, a system must have
a large repertoire of different states (information) and any part of a system must interact effec-
tively with the rest of the system (integration). Thus, like Lempel-Ziv complexity, F� reflects
the degree of differentiation of brain responses, while at the same time establishing that such
responses are integrated. This finding suggests that the higher differentiation observed in the
movie condition is due to the coherent rather than to the independent involvement of distrib-
uted brain areas. Another analysis consistent with this interpretation was the higher average
mutual information between a part of the cortex and the rest in the movie compared to scram-
bled movie and ‘TV noise’ (Neural Complexity, Fig 8). As shown in theoretical work and com-
puter simulations [19], increases in mutual information between cortical regions when the
brain is exposed to meaningful stimuli are proportional to changes in the average mutual infor-
mation between the stimulus set and subsets of cortical regions. This is true even though, by
the data processing theorem, the overall mutual information between the stimulus set and the
brain is fixed, and is comparable in the three experimental conditions [20]. Thus, an increase
in average mutual information across partitions of the cortex in the movie condition indicates
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that the information in the stimulus set must be distributed more efficiently to different brain
regions, where each region deals with selective aspects of the same stimuli [19]. This fits with
the intuitive idea that different meaningful stimuli should be informative in different ways for
different brain regions [21].

We recently employed Lempel-Ziv complexity to evaluate the differentiation of cortical re-
sponses after transcranial magnetic stimulation (TMS) activation of individual brain regions
[4]. Compared to measures of functional connectivity, Lempel-Ziv complexity has the advan-
tage of combining in a single measure the spread of activity and the differentiation of brain re-
sponses to perturbations [4], both of which are necessary for information integration [22]. The
results showed that Lempel-Ziv complexity is high when subjects are conscious and low when
consciousness is lost. This was true for individual subjects and across different conditions such
as loss of consciousness with sleep, general anesthetics, and brain damage. In the TMS work, a
direct cortical perturbation, which in itself evokes no conscious content, was employed to
gauge the level of consciousness, as reflected in the brain’s capacity for integration and differen-
tiation [4]. In the current study, the differentiation of brain responses was evaluated in con-
scious subjects in response to different sensory stimuli, each of which evoked a conscious
content, to assess the meaningfulness of a set of stimuli for the subject.

The assessment of the differentiation of cortical responses to stimuli departs from standard
fMRI localization approaches, since it does not ask which particular brain areas are activated
by particular features or categories contained in different stimuli. Also, unlike decoding ap-
proaches, our analysis does not ask whether it is possible to infer particular features or catego-
ries in the stimuli from brain activity. Nevertheless, for this study we chose stimuli such
that the differences in phenomenological differentiation/meaningfulness were obvious
(movie> scrambled movie> TV noise) and similar across different subjects. Moreover, some
of the meaningful categories present in the movie and absent in ‘TV noise’ were also obvious
(e.g. faces and houses). Also, based on previous work, we could already expect that different
movie frames would activate different cortical regions at different times, such as the fusiform
face area (FFA) for frames with faces and the parahippocampal place area (PPA) for frames
with houses, whereas ‘TV noise’ frames would not activate these areas differentially. Finally,
based on the pioneering work by Hasson et al. [2,23,24], we expected that high level areas char-
acterized by long temporal receptive fields would be differentially activated between all condi-
tions. These expectations could have been confirmed through a traditional localization or
decoding approach, but our purpose here was different: to exploit such differential responses to
validate the notion that the differentiation of neurophysiological responses can be measured
and that it reflects phenomenological differentiation, hence meaningfulness. In this respect, it
is instructive to compare the movie and the scrambled movie condition. In the block design,
there was no significant difference in regional activation/deactivation between the two
(Table 1). Moreover, it is difficult to say exactly what categories of meaning were missing in
the scrambled sequence and where each of them would map on the cortex. However, neuro-
physiological differentiation clearly distinguished between the two sets according to their
meaningfulness.

More generally, assessing the differentiation of brain responses should be helpful when it is
unclear a priori which stimuli might be ecologically relevant and how they may be categorized
by the brain, for example in infants or animals. It can also be useful when brain responses are
highly variable across individuals or idiosyncratic, as when the meaning of stimuli is strictly
personal. As an example, it could be used to detect whether a subject understands a stimulus
set, say sentences in a foreign language, whether or not he acknowledges it. Furthermore, this
approach should be especially powerful to track changes in differentiation over time within a
single subject to assess learning and the acquisition of expertise. Comparing the differentiation
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of the neurophysiological responses of different subjects to the same stimuli should instead in-
dicate which stimulus set may be more meaningful to which subject, and potentially reveal per-
ceptual and cognitive domains of greater or lesser aptitude. Finally, this approach might be
helpful when brain injuries lead to alterations in cortical organization. In such cases, while lo-
calization of responses or decoding what the subjects may be perceiving may be difficult, it
may be possible to establish whether some sets of stimuli are more or less meaningful than oth-
ers, guiding communication and rehabilitation.

As in this study, the fully scrambled version (‘TV noise’) of a representative stimulus set
(movie) provides a baseline of least meaningfulness. From a theoretical perspective [16], a typi-
cal movie can be taken as a representative sample of the causal structure of the environment to
which an organism has adapted. ‘TV noise’ can be though of as a stimulus set for which, given
the same first-order statistics, all traces of the causal structure of the environment have been re-
moved. A single stimulus (movie frame) will typically trigger a single experience specified by
the large number of concepts available to a conscious human. These concepts can be positive (a
face), negative (no house), low level (an edge), high level (a tramp), first order (a hat), high
order (a black hat on the head of the tramp on the left), and so on. Over time, different frames
of a movie will trigger on and off different first order concepts (a house, no face, and so on)
and associated high order concepts. Altogether, the distance between the set of concepts trig-
gered by a stimulus set representative of the causal structure of an environment (here, the
movie), and the set of concepts triggered by its fully scrambled version (here, ‘TV noise’), quan-
tifies to what extent the brain ‘matches’ the causal structure of that environment. This distance,
calledmatching, should be weighted by the overall value of integrated information F to reflect
themeaningfulness of the stimulus set for a single (integrated) consciousness. The actualmean-
ing of a particular experience is instead given by the set of concepts (conceptual structure) that
are specified within the subject’s brain at any given time.[16].

In conclusion, these results suggest that the differentiation of neural responses can reflect the
meaningfulness of a given set of stimuli for a given subject, without prior assumptions about fea-
tures and categories in the stimuli and how and where they may be represented in the brain.
Forthcoming experiments using both fMRI and high-density EEG will assess neurophysiological
differentiation using a larger spectrum of stimulus sets, including sets that may have different
levels of meaningfulness for different subjects. Future studies will also take advantage of single
trial presentation of stimuli rather than repeated ones, and employ state space analyses (similar
to the representational analysis used in fMRI decoding [25]) to quantify differentiation in a mul-
tivariate manner. If this approach proves successful, it will become feasible to employ specifically
designed sets of stimuli to explore what features of the environment may be most meaningful
for a given subject, and compare the maximum amount of differentiation and therefore mean-
ingfulness that different subjects can extract from different sets of stimuli. Finally, similar exper-
imental paradigms could be used to investigate in which set of brain areas neurophysiological
and phenomenological differentiation covary most closely, providing a way to locate the neural
substrates of consciousness and subjective meaning without having to rely on explicit report.
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