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A B S T R A C T

When directly perturbed in healthy subjects, premotor cortical areas generate electrical oscillations in

the beta range (20–40 Hz). In schizophrenia, major depressive disorder and bipolar disorder (BD), these

oscillations are markedly reduced, in terms of amplitude and frequency. However, it still remains unclear

whether these abnormalities can be modulated over time, or if they can be still observed after treatment.

Here, we employed transcranial magnetic stimulation (TMS) combined with EEG to assess the frontal

oscillatory activity in eighteen BD patients before/after antidepressant treatments (sleep deprivation

and light therapy), relative to nine healthy controls. In order to detect dominant frequencies, event

related spectral perturbations (ERSP) were computed for each TMS/EEG session in all participants, using

wavelet decomposition. The natural frequency at which the cortical circuit oscillates was calculated as

the frequency value with the largest power across 300 ms post-stimulus time interval. Severity of

depression markedly decreased after treatment with 12 patients achieving response and nine patients

achieving remission. TMS/EEG resulted in a significant activation of the beta/gamma band response (21–

50 Hz) in healthy controls. In patients, the main frequencies of premotor EEG responses to TMS did not

significantly change before/after treatment and were always significantly lower than those of controls

(11–27 Hz) and comparable in patients achieving remission and in those not responding to treatment.

These results suggest that the reduction of natural frequencies is a trait marker of BD, independent from

the clinical status of the patients. The present findings shed light on the neurobiological underpinning of

severe psychiatric disorders and demonstrate that TMS/EEG represents a unique tool to develop

biomarkers in psychiatry.

� 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Currently, bipolar disorder (BD) is the sixth leading cause of
disability [1,2] and affects nearly 1–2% of the population
worldwide [3]. During illness episodes of BD patients experience
pervasive changes in mood and cognition, and deficits in executive
functions, attention, psychomotor speed, verbal and visual
memory often persist in euthymia [4], suggesting persistent
changes in brain structure and function [5]. Identifying trait
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markers of persistently abnormal brain function is then a priority
to identify new targets for treatment of these dysfunctions [6].

High frequency brain oscillations are rhythmic electrical
phenomena, which are generated spontaneously and in response
to stimuli, and which parallels the natural mechanism for carrying
neural information among brain areas [7] and integrating cortical
modules [8]. They are modified in many neuropsychiatric
conditions, and in cognitive impairment [9]. Accordingly, they
are also markedly reduced in BD. Cross-sectional studies suggest
that alterations in the GABA/glutamatergic systems, and in neural
circuits that regulate cognitive processing, may be reflected
through in altered brain oscillations in BD [10]: even in euthymic
conditions, patients showed reduced gamma oscillations [11,12],
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reduced long distance gamma coherence between frontal and
temporoparietal regions [11], and decreased beta synchronization
in the frontal region [13].

The combination of transcranial magnetic stimulation with
electroencephalogram (TMS/EEG) represents a non-invasive, per-
turbational approach to precisely identify the integrity of thala-
mocortical circuits by directly challenging the brain’s capacity to
produce and sustain oscillatory activity [14–16]. With TMS/EEG, we
previously reported that each cortical region tends to oscillate at a
specific natural frequency [17], and that the main frequencies of
frontal EEG responses to TMS were significantly reduced in patients
with BD, major depressive disorder, and schizophrenia relative to
healthy subjects (11–27 Hz vs 21–50 Hz, respectively) [18].

It remains unclear if these abnormalities change over time, and
no longitudinal study has yet assessed high-frequency oscillations
before and after response to antidepressants. Sleep deprivation
and light therapy (SD + LT) provide a model of antidepressant
treatment which allows to study the biological correlates of
psychopathology at close time points and without the confounding
effects of drugs [19]. Using this model antidepressant, we
previously showed that response associates both, with TMS/EEG
evoked measures of cortical excitability [20], with cortical volumes
and function, and concentrations of neurotrophins [21]. Here, we
aimed at investigating the oscillatory properties of the frontal
cortex by TMS/EEG before and after treatment with combined
chronotherapeutic techniques (SD + LT).

2. Materials and methods

2.1. Participants, treatment and data collection

We studied 18 consecutively admitted inpatients (14 females;
mean � SD age: 42.6 � 9.6; age at onset of illness: 27.9 � 7.4; years at
school: 13.5 � 4.3; previous depressive episodes: 6.1 � 5.3; previous
manic episodes: 3.1 � 2.2) suffering from a major depressive episode,
without psychotic features, affected by BD (DSM-IV criteria, SCID
interview). Inclusion criteria were a baseline Hamilton depression
rating scale (HDRS) score of 18 or higher; absence of other diagnosis
on axis I and of mental retardation on axis II; absence of pregnancy,
history of epilepsy, or major medical and neurologic disorders;
absence of a history of drug or alcohol dependence within the last
6 months; no treatment with long-acting neuroleptic drugs in the last
3 months before admission. Nine healthy participants (6 females, age
38.9 � 10.5) served as controls. After a complete description of the
study, a written informed consent was obtained. All the research
activities were approved by the local ethical committee.

All patients were treated for one week with SD + LT [22]. They
were totally sleep deprived on days 1, 3 and 5, from 7:00 am to
7:00 pm of the subsequent day; and were allowed to recover sleep
on days 2, 4, and 6. All patients were administered a 10,000-lux
white light for 30 minutes, given at 3:00 am during the SD night
and in the morning after recovery sleep, half an hour after
awakening. Five patients were on ongoing lithium treatment
(mean � SD daily dose: 750 � 251 mg), and continued it; thirteen
started it together with the chronotherapeutic procedure (600 mg/
day) to enhance its effect and prevent relapse [22]. No other
psychotropic drug was administered during the study.

Severity of depression was rated at baseline (day 0) and after
treatment (day 7) on the 21-item HDRS.

2.2. TMS/EEG procedure

TMS/EEG was performed before and after treatment (day 0 and
5, at 08:30 am). Stimulation parameters (location, intensity, angle,
coil orientation) were maintained constant and reproducible
through a neuronavigation system (Nexstim, Helsinki, Finland).
Spontaneous EEG was continuously recorded for about 3 min
before each TMS/EEG recording session.

Prior to the TMS/EEG recording sessions, anatomical whole
head images of each patient were obtained with a 3.0-T scanner
(Gyroscan Intera, Philips, Netherlands; T1-weighted MPRAGE
sequence; TR 2500 ms, TE 4.6 ms, yielding 220 transversal slices
with a thickness of 0.8 mm). The acquired volume was then
segmented to obtain a 3D model of the surface of the scalp and of
the cortex, to be uploaded in the brain navigation software.

The experimental setup included TMS with a Focal Bipulse 8-Coil
(Eximia TMS stimulator; Nexstim Ltd., Helsinki, Finland) equipped
with a navigated brain stimulation system (NBS; Nexstim Ltd.) and
a 3D-infrared tracking position sensor unit (Polaris, Northem Digital
Inc., Waterloo, Canada). EEG was recorded with a 60-channel TMS-
compatible EEG amplifier (Nexstim Ltd, Helsinki, Finland) equipped
with sample-and-hold circuits that prevent the recording from the
powerful TMS-related artifacts [23]. EEG cap was repositioned
before each session, controlling for reproducibility of location using
the NBS system. Impedances were kept below 5 kV. EEG signals
were band-pass filtered between 0.1–500 Hz, and sampled at
1.450 Hz with 16-bit resolution. Electro-oculogram was recorded
with two additional electrodes on the forehead to measure ocular
movements and blinks.

This equipment provides in real time the TMS coil position and
subject’s head, within the reference space of individual magnetic
resonance imaging (MRI) by the co-registration between the
fiducials points (nasion, left tragus and right tragus) selected on the
individual MRI with the corresponding digitized scalp landmarks.
The exact location of the stimulation site was adjusted on the
individual MRI in order to prevent accidental muscle twitches that
often affect EEG recordings, and to estimate the electrical field
induced by TMS pulses, which depends on the stimulation
intensity (V/m). The TMS intensity was adjusted according to
the maximum electric field intensity (expressed in V/m) estimated
on the cortical surface, rather than relying on individual motor
threshold or on the percentage of maximum stimulator output.

To ensure significant EEG responses [24] TMS intensity was
always > 90 V/m as estimated by the NBS system, for each patient.
TMS was delivered on the convexity of the middle caudal portion of
the superior frontal gyrus close to the midline (Brodmann’s
areas 6), with the current perpendicular to its main axis. These
brain areas showed the highest changes of metabolic rate and EEG
correlates between wake and sleep [25] and have been associated
with the antidepressant effects of SD [19].

To obtain significant TMS evoked potentials (TEP) with a good
signal-to-noise ratio, about 200–300 stimuli were delivered for
each session at frequency randomly distributed between 1.5–1.8 s
(equivalent to about 0.5–0.6 Hz). This stimulation rate does not
induce significant reorganization/plasticity processes that might
possibly interfere with longitudinal measurements [26]. During
TMS stimulation patients were laying on an ergonomic chair, with
eyes open looking at a fixation point on a screen, and wore inserted
earplugs continuously playing a masking noise that abolished the
auditory potentials elicited by TMS-associated click [27].

2.3. Data analysis

Data analysis was carried out using Matlab (2007b, The
Mathworks Inc., Natick, MA). TMS evoked potentials containing
activity from sources other than neural, such as spontaneous
muscles activity or ocular movements, were automatically
identified and rejected using a semi-automatic algorithm
(EOG > 70 mV or absolute power of EEG channel F8 above
25 Hz, > 0.9 mV2) [24]. Thereafter, single trials and channels
contaminated by residual artifacts were visually inspected and
excluded from further analysis. Selected trials were band-pass
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filtered between 2–80 Hz, down-sampled to 725 Hz, and re-
referenced to the common average reference. Each TMS-evoked
response was obtained by averaging 150–250 artifact free trials.

In order to quantify the responses in the time-frequency
domain [28], from each TMS/EEG session, we measured the event-
related spectral perturbation (ERSP) changes in the power
spectrum using wavelet decomposition (3.5 oscillation cycles)
across single-trials at the channel closest to the stimulation site
(selected channel for single subject: Fz n = 1; FC1 n = 8; FCz n = 8;
FC2 n = 4; C1 n = 1; Cz n = 4; C2 n = 1). The ERSP was normalized by
subtracting the mean baseline power spectrum. Significant ERSP
were evaluated by applying a bootstrap statistical method based
on a surrogate distribution randomly derived from the pre-
stimulus onset (�700 �50 ms). Statistical significance level was
set at P < 0.01 and only significant values were considered in
the analysis. Averaged ERSP values across all trials of a session
were calculated between 8 and 50 Hz (1 Hz bin resolution) over a
20–300 millisecond time window, corresponding to the
main EEG activity evoked by TMS. The natural frequency was
computed as the frequency bin with the largest cumulated ERSP
over time [17].
Fig. 1. Top panel: average EEG responses to TMS (grey traces represent the 60 recordi

premotor area; color-coded: event-related spectral perturbation (ERSP) plots reflect the 

the frequency with the highest activity (natural frequency). Data are shown from a rep

frequency values for healthy control subjects and patients with bipolar disorder before
Data were analyzed with Student’s t-test and Pearson’s
correlation. Moreover, we performed a repeated measures ANOVA
on TMS evoked natural frequencies before/after treatment, with
time and response to treatment as independent factors. Analyses
were performed in the context of the general linear model (GLM)
[29,30]. The significance of the effect of the single independent
factor on each dependent variable was estimated (least squares
method) by parametric estimates of predictor variables and
following standard computational procedures [31].

3. Results

Severity of depression markedly decreased after treatment
(HDRS day 0: 23.2 � 5.8; day 7: 8.5 � 7.5; t = 8.85, P < 0.00001), with
12 patients (66.6%) achieving response (HDRS 50% reduction) and
9 patients (50%) achieving remission (HDRS < 8).

Data obtained with the TMS/EEG procedure are showed in
Fig. 1. Top panel shows the average EEG responses to TMS (grey
traces) for the channel closest to the stimulation site (black trace)
over the premotor area. To detect the natural frequency, we
measured the event-related spectral perturbation (ERSP) for each
ng channels) for the channel closest to the stimulation site (black trace) over the

significant TMS related changes in amplitude and their duration. Dotted lines show

resentative healthy subject and for a BD patient. Bottom panel: individual natural

/after the antidepressant treatments (SD + LT).
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single subject. Specifically, we cumulated the ERSP between
8–50 Hz and 20–300 ms evoked by TMS. The main frequency at
which a system oscillates was selected by the frequency showing
the largest activity across time. Data shown in Fig. 1 are from a
representative subject.

TMS resulted in a significant activation of the beta/gamma band
response in healthy controls (27.0 � 3.0 Hz, range 23–33). In
patients, the main frequencies of frontal EEG responses to TMS did
not significantly change before/after treatment (day 0:
19.44 � 5.41 Hz, range 10–27; day 7: 19.30 � 4.99 Hz, range 13–
27; t = 0.391, P = 0.700), and at both time points were significantly
lower than those of controls (day 0: t = 3.87, P = 0.0006; day 7:
t = 4.22, P = 0.0002). Values were closely similar in patients eventu-
ally achieving remission, or not (remitters: day 0, 20.37 � 5.50 and
day 7, 20.21 � 4.93; non remitters: day 0, 18.51 � 5.46 and day 7,
18.40 � 5.18). Values before/after treatment were highly correlated
(r = 0.9616, P < 0.0001).

A repeated measures ANOVA gave no effects of time and of
response to treatment on EEG measures before/after treatment
(time: F1,16 = 0.14, P = 0.709; response: F1,16 = 0.56, P = 0.467;
interaction: F1,16 = 0.006, P = 0.941). Moreover, natural frequencies
did correlate neither with HDRS scores before/after treatment, nor
with their delta change, nor with clinical and demographic
characteristics of the patients.

4. Discussion

In this study, we assessed natural frequencies of cortical circuits
before and after antidepressant treatment in BD. Notably, neither
changes over time nor any correlation with the severity of
depression were observed. Evoked brain oscillations remained
lower than those of healthy controls, and comparable in patients
achieving remission and in those not responding to treatment. This
suggests that the reduction of natural frequencies is a trait marker
of BD, independent from the current clinical status of the patients.

The present observation that successful antidepressant treat-
ment is unable to normalize thalamocortical circuits in BD is
consistent with previously reported reduced gamma coherence in
euthymic patients with BD [11]. Recently, we showed that the
reduction of natural frequencies is detectable in schizophrenia, BD,
and major depressive disorder [18]. The observation of its
persistence in BD after treatment now suggests that this trait
marker could be linked to persistent trait characteristics of brain
structure and function in BD. Based on existing literature, the most
likely candidates are GABAergic and glutamatergic neurotrans-
mission.

Fast activity of parvalbumin GABA interneurons is needed for
high-frequency oscillations [32,33], with gamma suppression
resulting from their inhibition [34]. GABA inhibitory interneurons
produce and sustain complex large-scale network oscillations in
fast frequency bands (40–100 Hz) [35], also generating inhibitory
potentials in excitatory pyramidal neurons [36]. This GABAergic
activity results in gamma oscillations [37–40], and is reduced in
BD. Post-mortem studies showed a reduced density of GABAergic
neurons in the cortex of patients with BD [35], with a reduction in
the numerical density of parvalbumin- and somatostatin-positive
interneurons [41] and in the prefrontal cortex reduced markers of
the parvalbumin subpopulation [42]. In vivo, MR spectroscopy
confirmed low GABA levels in the prefrontal cortex [43].

In the generation and maintenance of high frequency oscilla-
tions, GABAergic mechanisms are likely to interact with glutama-
tergic mechanisms, involving NMDA and AMPA receptors
[44]. Glutamate levels in brain tissue were increased both in vivo

[45], and post-mortem [46] in patients with BD. Genetic ablation of
NMDA receptors in parvalbumin interneurons resulted in
increased gamma power [47]. The decrease of excitatory input
to fast spiking parvalbumin interneurons, induced by the NMDA
antagonist ketamine [48,49], lead to increased gamma activity
[50–52]. AMPA receptor antagonists inhibit gamma oscillations
[32]. Ketamine has rapid and marked antidepressant effects in BD
[53], and it is not the only therapeutic agent to act on brain
oscillations. Evoked beta responses from lithium-treated BD
patients were higher than those in both drug-free euthymic BD
patients and healthy controls [54], and interestingly, post-mortem

GABA levels were increased after lithium treatment [46].
Altogether, these data support the hypothesis that abnormal

GABAergic and glutamatergic neurotransmission could be critical
to explain the abnormal gamma oscillations observed in our
patients [34,55], and that these abnormalities are persistent and
detected both during the lifespan, and post-mortem. Alternative
interpretations cannot be ruled out; for instance, EEG power in
high frequency bands has been positively correlated with arterial
spin labelling MRI measures of resting cerebral perfusion in
healthy subjects [56].

Fast oscillatory dynamics are needed for large-scale integration
and synchronous communication between brain regions, are
thought to parallel the emergence of coherent behavior and
cognition [57], and are implicated in many brain functions
including the processing of sensory stimuli [36], language
comprehension [58], cognitive skills [59], cognitive processing
in recognition memory [60]. It is tempting to hypothesize that their
persistent abnormality in BD could mark the persistent deficits in
higher cognitive functions and brain network connectivity
associated with the disorder [4,5,61]. Further research is needed
to clarify this issue.

Strengths of the present study include a focused research
question, state-of-the-art TMS/EEG methods, and straightforward
effects. However, our experimental setting did not allow to directly
assess the role of deeper structures, such as hippocampus, which
contribute to gamma oscillations [62]. We obtained an excellent
power to study group differences, but could not consider other
biological markers, gene variants, and their interaction with
clinical variables. Patients were non drug-naı̈ve. Recruitment was
in a single ethnic group, thus raising the possibility of population
stratifications limiting the generalizability of the findings.
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