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Abstract

The ability to hold information in working memory (WM) is fundamental for cognition. Contrary 

to the longstanding view that WM depends on sustained, elevated activity, we present evidence 

suggesting that information can be held in WM via “activity-silent” synaptic mechanisms. Using 

machine learning to decode brain activity patterns, we show that the active representation of an 

item in WM drops to baseline when attention shifts away. A targeted pulse of transcranial 

magnetic stimulation produces a brief reemergence of the item in concurrently measured brain 

activity. This reactivation effect only occurs and influences memory performance when the item is 

potentially relevant later in the trial, suggesting that the representation is dynamic and modifiable 

via cognitive control. The results support a Synaptic Theory of Working Memory.

The ability to mentally retain information in an accessible state, to manipulate it, and to use 

it to guide behavior is a critical building block for cognition. It has long been assumed that 

the neural basis for this working memory (WM) ability is elevated and persistent neuronal 

firing(1). This assumption has been called into question by recent proposals that information 

can be held in WM via synaptic mechanisms that do not require sustained, elevated brain 

activity(2–4).
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Building on theoretical frameworks that information can be held in WM in one of several 

states of activation(5, 6), we recorded neural activity while participants performed a multi-

step task in which two items were presented as memoranda for each trial. A cue indicated 

which item would be tested by the impending recognition memory probe, followed by the 

probe, then by a second cue, and then a second probe (Fig. 1). There was equal probability 

that following the first cue, but not the second, that the uncued item might be needed for an 

ensuing memory judgment. This procedure moves the uncued item into a different state than 

the cued item, which, by definition, is in the focus of attention(7). Cognitive theories refer to 

the intermediate state of this unattended memory item (UMI) as “activated long-term 

memory” (LTM)(5, 6).

For Experiment 1, multivariate pattern analysis (MVPA) showed evidence for an active 

representation of the UMI that dropped to baseline levels (Fig. 2) (7–9). This suggests that 

information in WM (but outside of focal attention) can be maintained in a latent state, via 

mechanisms other than sustained, elevated activity. Although a similar drop-to-baseline 

pattern is observed when subjects are instructed to drop information from WM(10, 11), here 

the UMI remains in WM because, when so instructed by the second cue, subjects accurately 

reactivate it and use it to evaluate the final probe (Fig. 2B).

In three additional experiments we tested the hypothesis that, if a UMI is encoded in a 

distributed pattern of synaptic weights, and held in a state that is more accessible than trial-

irrelevant information, the readout from a nonspecific burst of activity filtered through this 

network might reveal this latent representation(2) (Fig. S1). This would be consistent with 

the idea that networks in posterior cortex can be dynamically configured as matched filters 

to encode behaviorally relevant information(3, 4, 12, 13).

For Experiments 2 and 3, participants performed the Phase 2 WM task (Fig. 1) while we 

recorded electroencephalography (EEG) and applied single-pulse transcranial magnetic 

stimulation (TMS) 2–3 sec after the first cue. For Experiment 2 we targeted brain regions 

identified from the Phase 1 MRI task as preferentially supporting MVPA decoding for one 

category, but not the other two. MVPA of the spectrally transformed EEG data from only the 

Phase 2 task detected reliable evidence for an active representation of both memory items 

across the initial portion of the trial, until the onset of the first cue, at which point decoding 

accuracy remained elevated for the attended memory item (AMI), but dropped to the 

baseline for the UMI(14).

After a single pulse of TMS, there was a brief recovery of MVPA decoding of the UMI—a 

“reactivation effect”—before it returned to baseline and remained there while the cued item 

was tested (p=.01; Bayes Factor (BF)=3.64 against-the-null) (Fig. 3A). TMS affected neither 

broadband decoding of the AMI, nor recognition memory judgments (Fig. S4). When we 

analyzed bandpass-filtered data, the TMS reactivation effect was isolated to signal from the 

beta band (Fig. S5), and was associated with a transient period of above-chance decoding 

performance for both the UMI and the AMI. The TMS reactivation effect was specific for 

information that was in WM on that trial, because above-chance MVPA performance, as 

assessed with the area-under-the-curve (AUC) analysis, necessarily means that TMS did not 

activate a representation of the category that was irrelevant on that trial.
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In Experiment 2 we administered blocks of trials with TMS targeting one of the category-

selective regions, but varied, on a trial-by-trial basis, which category was the AMI and which 

was the UMI. Each block included trials for which the UMI belonged to the targeted 

region’s preferred category, and trials for which it did not. A TMS reactivation effect was 

observed (Fig. 3B) whether or not TMS targeted the UMI’s category-preferred region, 

although the effect was larger and more prolonged when it did (BF for Targeted and Non-

Targeted sites were 4.02 and 1.72, respectively). This suggests that WM is supported by 

heightened connectivity between cortical networks that represent all trial-relevant 

information (AMI and UMI) relative to trial-irrelevant information(15, 16).

Retrocues that inform subjects that they can drop an item from memory result in a rapid loss 

of multivariate evidence for the no-longer-relevant item(11, 17). Nonetheless, proactive 

interference from stimuli presented on previous trials indicates that the brain retains a 

residual trace of such recent, but no-longer-relevant, information(18). An important test of 

state-based models of WM is whether there is a functional distinction between UMIs 

(putatively held in a state of activated LTM) and dropped information (no longer in WM). In 

Experiment 3, with a different group of participants we also administered TMS after the 

second cue, after which the uncued item would no longer be relevant on the trial, and at 

which point it should have the same status as an irrelevant item. If the TMS reactivation 

effect is a consequence of an item being maintained in a privileged state, it should only be 

observed when that item is still potentially relevant for the trial. We also jittered the onset of 

TMS between 2–3 seconds after the cue(14), and standardized TMS by targeting the same 

region across subjects and for every trial--an MVPA-defined region in the right precuneus 

known to be critical for the top-down control of visual attention(19) (Fig. 4A).

For the first half of the trial, the results from Experiment 3 replicated those from Experiment 

2 (Fig. 4B), with a robust TMS reactivation effect for the UMI (BF=9.8 against-the-null). 

For the delay period following the second cue, however, there was no evidence for 

significant decoding of the uncued item following the TMS pulse (BF=3.4 in-favor-of-the-

null). These results suggest that UMIs are maintained in a different state than are items that 

have been dropped from WM, and that the mechanisms that maintain latent representations 

in WM are dynamic and modifiable via cognitive control(20).

Because our design has entailed decoding at the category level, it does not rule out the 

possibility that the TMS reactivation effect reflects a general reinstatement of category 

context(21), rather than the temporary activation of the UMI itself. The idea that the 

representation of the UMI, itself, drives this effect would be strengthened by a 

demonstration that TMS can influence recognition memory decisions on this task. If the 

TMS reactivation effect reflects a temporary reinstatement of the UMI back into the focus of 

attention, participants should have more difficulty rejecting the UMI as a lure when probing 

their memory of the AMI.

In Experiment 4, we presented recognition memory probes that matched the AMI on 50% of 

trials, and of the 50% of probes that were invalid, 30% were drawn from the same category 

as the AMI, and a critical 20% matched the UMI(14). Subjects were instructed to reject 

memory probes that did not match the AMI. Critically, only for the first probe was there an 
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increased proportion of false alarms to the UMI for TMS relative to no-TMS trials (Fig. 3C, 

p=.01, BF=3.48) (14).

Our results have important implications for the understanding of WM at many levels. They 

provide neural evidence for at least two levels of WM that are distinct from the default state 

of LTM representations(5, 6). They are inconsistent with models positing just one level of 

WM storage(22, 23). They also suggest that instead of “activated LTM”, a more apt label for 

the second level of WM is prioritized LTM. Information can be held in WM in latent 

“activity-silent” traces(11, 20). What might be the physiological bases of such 

representations? Computational models of WM have proposed that short-term synaptic 

plasticity could be the basis for the transient formation of weight-based networks that can 

represent information over short time-periods(2, 24).

The present results provide empirical evidence for the existence of a short-term plasticity 

mechanism that is likely to be fundamental to a wide range of cognitive functions involving 

attentional selection (25), and may provide the building blocks for long-term potentiation 

mechanisms that support LTM(26). Therefore, the present results introduce a potential 

avenue for reactivating and strengthening representations that underlie many classes of high-

level cognition.
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Fig. 1. General procedure
In Phase 1, functional magnetic resonance imaging (fMRI) data were acquired while 

participants performed a one-item delayed-recognition task for words, faces, or directions of 

motion (A), and used for multivariate pattern analysis (MVPA). Classifiers trained on the 

delay-period (B) were used for subsequent analyses. For Experiment 1, these classifiers were 

used to decode fMRI activity from Phase 2 (Fig. 2). For Experiments 2 and 3, they were 

used in a whole-brain searchlight, conjunction-analysis to generate subject-specific maps of 

category-sensitive areas (C); non-overlapping areas were used for transcranial magnetic 

stimulation (TMS) targeting in Phase 2 (D). In Phase 2, single pulses of TMS (E) were 

delivered during the post-cue delay periods.
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Fig. 2. Experiment 1 fMRI decoding (Train Phase 1, Test Phase 2): Classifier evidence as a 
function of an item’s status, collapsed across stimulus category
After stimulus presentation (red and blue circles), delay-period classifier evidence for both 

items was elevated relative to the empirical baseline of evidence for the category that was 

not presented on that trial (“absent”, gray). Upon presentation of the first cue (red triangle), 

evidence for the cued category (red) remained elevated, but for the uncued category (blue) 

dropped to baseline. After the first probe (red square), on half the trials the second cue 

designated that the same item would be tested by the second probe (A), and evidence for the 

two categories remained the same relative to baseline. When the second cue designated the 
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previously uncued item (B) evidence for the two categories reversed for the remainder of the 

trial. (Color-coded markers at the top of each plot indicate p<.01; line width reflects SEM.)
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Fig. 3. Experiment 2 EEG decoding (Train and Test on Phase 2 data): Classifier accuracy (area 
under curve, AUC) as a function of an item’s status at the time of the first cue, collapsed across 
stimulus category
AUC reflects classifier sensitivity to discriminating between evidence for the AMI or UMI 

relative to the absent category. (A) Classification timeseries of the AMI and UMI upon 

stimulus presentation (red and blue circles), the first cue (red triangle), TMS, and first probe 

(red rectangle), averaged over N=18 sessions, 2,952 trials (decoding ends where the AMI 

and UMI switched on 50% of the trials). (B) Decoding UMIs as a function of whether TMS 
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targeted that item’s Phase 1-defined region or a different category’s region. (Color-coded 

markers at the top of each plot indicate p<.05, line width reflects SEM).

Rose et al. Page 11

Science. Author manuscript; available in PMC 2017 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(A) shows the MVPA-defined TMS target for Experiments 3 and 4 (right precuneus). (B) 

Classification timeseries from Experiment 3 showing TMS reactivation of the UMI 

following the first cue, when the UMI was still relevant (left panel), but not following the 

second cue, when the UMI was no longer relevant on the trial (right panel) averaged over 

1,152 trials. (C) Experiment 4 recognition memory for AMI match probes, AMI nonmatch 

probes, and UMI (nonmatch) probes (bars=SEM).
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