New stellar seismic probing method: WhoSGIAd

Martin Farnir

Université de Liège Prof. Marc-Antoine Dupret

 22^{nd} of February 2019

Study stars ?

- 🔶 🛛 Heavy elements factory,
 - Stellar ages ightarrow galactic history,

Exoplanetary masses, radius and ages,

Credits: NASA

Credits: NASA

Stellar models need improvement :

- Chemical composition : He in low mass stars, solar reference;
- Mixing processes : extent of mixed regions;
- Angular momentum transport;

• ...

ightarrow Information about internal structure needed

Introduction

Context

Why asteroseismology ?

- But 'classical' methods : mainly superficial information (T_{eff}, [Fe/H],..)
- Asteroseismology probes stellar interiors

Credits: GONG

 $\rightarrow c(r)$, internal rotation, chemical composition profiles,...

Asteroseimology in a Nutshell

- Stellar structure may oscillate around an equilibrium state
- Stellar oscillation frequencies directly linked stellar internal structure
- Many successes : helioseismology, constraints about stellar structure, asteroseismology of red giants,...
- Need of very precise data but also methods

Pulsating Stars

- Solar-like $(P \sim 2 15min),$
- γ Dor ($P \sim 0.5 - 3 days$),
- SPB
 (P ∼ 0.8 − 3days),
- Red giants and subgiants $(P \sim 3-30 days)$,

. . .

Credits: Christensen-Dalsgaard J.

Asteroseimology in a nutshell

Frequencies, ν , characterised by 2 integer n and l.

Space Missions

CoRoT (2006-2014)

R Chaplin WJ, Miglio A. 2013. Annu. Rev. Astron. Astrophys. 51:353–92

Oscillation spectra

Acoustic Glitches

$$\delta \nu = \nu - \nu_{\text{smooth}}$$

- Oscillation spectrum → smooth and glitch parts
- Glitches : due to sharp features in the stellar structure
- Provide local information

Helium Glitch

Model He-M anti-correlation (Lebreton & Goupil 2014)

→ Helium glitch : second helium ionisation region Γ_1 dip \Rightarrow Y_{surf} inferences

Convection Zone Glitches

Mixing processes badly constrained

0.450.40 \rightarrow Convection zone glitch : radiative -▷ 0.35 convective regions transition \Rightarrow Transition No Over 0.30localisation Ad Over Rad Over 0.25 + 0.680.690.700.710.720.73 r/R_*

Glitches Analysis

• First studies: Vorontsov (1988) (direct use of frequencies) and Gough (1990) (second differences);

- Glitches localisation
 Monteiro et al.
 (2000), Mazumdar et al. (2014);
- Helium / metal content vs glitch amplitude : Basu et al. (2004);

• 16 Cygni helium content calibration : Verma et al. (2014).

Need to achieve high precision in the data

- \rightarrow CoRoT (Baglin et al. 2009);
- \rightarrow Kepler (Borucki et al. 2010);
- \rightarrow TESS (Ricker et al. 2014);
- \rightarrow PLATO (Rauer et al. 2014).

But also need of precise and robust seismic analysis methods

 \rightarrow WhoSGIAd (Farnir et al. 2019).

Why improve methods ?

- Often, info used is correlated : individual frequencies, seismic indicators,..
- Smooth and glitch often treated separately
 - $\rightarrow Y_{\text{surf}}$ determined separately;
- Providing finer methods leads to more precise inferences.

GOAL : Method to analyse solar-like pulsation spectra as a whole and provide statistically relevant inferences \Rightarrow uncorrelated indicators to use in stellar modelling.

Starting point

Verma et al. (2014, ApJ 790, 138):

$$f(n,l) = \overbrace{\sum_{k=0}^{4} A_{k,l} n^{k}}^{\text{Smooth}} + \overbrace{\mathcal{A}_{He} \nu e^{-c_{2}\nu^{2}} \sin(4\pi\tau_{He}\nu + \phi_{He})}^{\text{He Glitch}} + \underbrace{\frac{\mathcal{A}_{CZ}}{\nu^{2}} \sin(4\pi\tau_{CZ}\nu + \phi_{CZ})}_{\text{CZ Glitch}}$$
(1)

Limitations :

- Non linear formulation,
- Smooth part regarded as dispensable,
- Correlated indicators,
- Regularisation term needed.

WhoSGIAd - Whole Spectrum and Glitches Adjustment - method

- Analyses oscillation spectrum as a whole
- \Rightarrow proper correlations are derived;

Consider the frequencies vector space:

- ① Build orthonormal basis of functions (Gram-Schmidt);
- ② Project the frequencies on the basis → get independent coefficients;
- ③ Combine the coefficients into indicators as uncorrelated as possible;
- ④ Use the indicators to obtain best fit stellar models.

Construction of orthonormal basis elements

- Subtract from current element its projection on the previous orthonormal elements,
- 2 Normalise it.

$$u_{j_{0}} = p_{j_{0}} - \sum_{j=1}^{j_{0}-1} \langle p_{j_{0}} | q_{j} \rangle q_{j}, \qquad (2)$$
$$q_{j_{0}} = \frac{u_{j_{0}}}{\|u_{j_{0}}\|}. \qquad (3)$$

Principle

Frequency Adjustment

Via projection on the basis:

$$\nu_f(n,l) = \sum_j a_j q_j(n,l), \tag{4}$$

with $a_j = \langle \boldsymbol{\nu} | \mathbf{q}_j \rangle$ independent and q_j the orthonormal basis elements.

$$\nu = \nu_{smooth}(n) + \nu_{glitch}(\widetilde{n})$$

Smooth part :

• Represented by polynomials in *n*,

Glitches :

- Verma et al (2014) $\propto f(\tau_{\mathrm{He,CZ}} \nu)$
- \rightarrow Linearised functions of $\widetilde{n}\Delta\nu$ with $\widetilde{n} = n + l/2$,

$$ightarrow$$
 Fixed $T_{
m He,CZ}~=~ au_{
m He,CZ}\Delta
u$

WhoSGIAd An Illustrative Example

An Illustrative Example : Smooth

At a given degree, projection of the frequencies on the successive basis elements.

- $\rightarrow 0$ order : mean value;
- \rightarrow 1st order : straight line approximation;
- \rightarrow 2nd order : parabola approximation.

Follow the proper ordering to define seismic indicators

An Illustrative Example : Glitch

Simultaneous projection of the frequencies for every spherical degree on the successive basis elements.

- \rightarrow First for the helium;
- \rightarrow Then for the convection zone.

Indicators built as a combination of uncorrelated coefficients $a_j \rightarrow As$ independent as possible & proper correlations are known

- Large separation Δ (mean) and of a fixed degree Δ_l ;
- Large separation differences Δ_{0l} ;
- Small separation ratios \hat{r}_{0l} ;
- Epsilon estimator $\hat{\epsilon}$;
- Glitches amplitudes A_{He}, A_{CZ};

• ...

Slope in n of the frequencies in the asymptotic formulation:

$$\nu(n,l) \simeq (n+l/2+\epsilon) \Delta \nu$$
(5)

A different value for each degree $l: \Delta_l$

- \rightarrow Combined into mean value : Δ ;
- \rightarrow Normalised differences : $\Delta_{0l} = \frac{\Delta_l}{\Delta_0} 1;$

WhoSGIAd

Smooth Indicators

Small Separation ratios

WhoSGIAd

$$\hat{r}_{01} = \frac{\overline{\nu_0} - \overline{\nu_1}}{\Delta_0} + \overline{n_1} - \overline{n_0} + \frac{1}{2}$$

Roxburgh & Vorontsov (2003)

$$r_{01}(n) = \frac{\nu_{n-1,1} - 2\nu_{n,0} + \nu_{n,1}}{2(\nu_{n,1} - \nu_{n-1,1})}$$

16 Cyg A : $\Delta \hat{r}_{01}/\hat{r}_{01} = 0.7\%$ $\Delta r_{01}(21)/r_{01}(21) = 2.9\%$ $(Z/X)_0 = 0.0218$ $\alpha_{\text{MLT}} = 1.82$ $Y_0 = 0.25$ $(Z/X)_0 = 0.018$ $\alpha_{\text{MLT}} = 1.5$ $Y_0 = 0.27$ WhoSGIAd

Smooth Indicators

Small Separation ratios

WhoSGIAd

$$\hat{r}_{02} = \frac{\overline{\nu_0} - \overline{\nu_2}}{\Delta_0} + \overline{n_2} - \overline{n_0} + \frac{2}{2}$$

Roxburgh & Vorontsov (2003) $r_{02}(n) = \frac{\nu_{n,0} - \nu_{n-1,2}}{(\nu_{n,1} - \nu_{n-1,1})}$

16 Cyg A : $\Delta \hat{r}_{02}/\hat{r}_{02} = 0.6\%$ $\Delta r_{02}(21)/r_{02}(21) = 2.1\%$ $(Z/X)_0 = 0.0218$ $\alpha_{\text{MLT}} = 1.82$ $Y_0 = 0.25$ $(Z/X)_0 = 0.018$ $\alpha_{\text{MLT}} = 1.5$ $Y_0 = 0.27$

WhoSGIAd Smooth Indicators

Large Separations Differences

Martin Farnir New stellar seismic probing method:WhoSGIAd

Helium Glitch Amplitude

Defined as helium glitch norm. At fixed $\Delta \nu$ and $(Z/X)_0$, we get:

 Increasing trend with helium content (as observed Basu et al. 2004)

Helium Glitch Amplitude

Defined as helium glitch norm. At fixed $\Delta \nu$ and Y_0 , we get:

 Decreasing trend with metal abundance (as observed Basu et al. 2004)

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \ \Gamma_1 \ \text{toy model} \\ \text{provides an} \\ \text{explanation.}$

High Masses / Surface Helium

At fixed $\Delta \nu$, we get: Linear trend of amplitude with $Y_{\rm surf}$ is not preserved at high masses ($\gtrsim 1.25 M_{\odot}$) and $Y_{\rm surf}$.

- High *M* and *Y*₀ : shallower convective envelope
- → More efficient microscopic diffusion
- $\rightarrow \text{ Lower } Y_{\text{surf}} \text{ and } Z_{\text{surf}}$
- \Rightarrow Higher amplitude

Defined as convection zone glitch norm. At fixed $\Delta \nu$, we get:

WhosGIAd Glitch Indicators Convection Zone Glitch Amplitude

Defined as convection zone glitch norm.

 CZ transition sharpness proxy

Stellar Modelling

16 Cygni Glitch & Model Fitting

Constraints • 1 $\Delta = 104.088 \pm$ $0.005 \mu Hz$ (2) $r_{01} = 0.0362 \pm$ 0.00023 $r_{02} = 0.0575 \pm$ 0.0003**(4**) $A_{\rm He} = 30.3 \pm 1.0$ Fitted parameters 1 $M = 1.06 \pm$ $0.02 M_{\odot}$ (2) $t = 6.8 \pm 0.2 Gyr$ 3 $X_0 = 0.684 \pm$ 0.015**(4**) $(Z/X)_0 = 0.035 \pm$ 0.002

16 Cygni A Best Fit Models

Results Overshoot

Overshoot

KIC7206837

HIP93511

- Derive independent coefficients ⇒ as uncorrelated as possible indicators;
 - \rightarrow Smaller standard deviations;
- Linear formulation
 - \rightarrow Fast computation;
 - \rightarrow No regularisation needed;
 - \rightarrow Compatible with any minimisation scheme;
- Currently only suited for solar-like;
- Currently no acoustic depth determination.

Future Perspectives

- Kepler Legacy;
- Red giants : see Miglio et al. (2010);
- Red subgiants → mixed modes formulation;
- Analysis of g-pulsators : γ Dor and SPB;
- PLATO (Rauer et al. 2014).

Credits: Christensen-Dalsgaard J.

We selected the basis functions:

• Smooth

$$\begin{array}{cccc} \textbf{1} & p_0(n) &= 1 \\ \textbf{2} & p_1(n) &= n \\ \textbf{3} & p_2(n) &= n^2 \end{array}$$

Γ_1 Toy Model

Échelle

2750 2500 22500	• •0 0 • • 0 • •0 0 • •0 0 • •0 0 • •0 0	. 0 . 0 . 0. 0 . 0 . 0 . 0 . 0 . 0 . 0	
2500 (ZHT) 2000 1750 1500	• •• • • • •• • • •• • • •• • • • • • • • • • • •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\nu/\Delta \mod 1$		

16 Cygni B Best Fit Models

Composition and Overshoot

 $Y_0 = 0.25$ $(Z/X)_0 = 0.0218$ $Y_0 = 0.24$ $(Z/X)_0 = 0.017$