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Inferring semantic maps

• ‘A semantic map is a geometrical representation 
of  functions (…) that are linked by connecting 
lines and thus constitute a network’ 
(Haspelmath 2003)

• A semantic map is a method for visually 
representing cross-linguistic regularity in 
semantic structure based on patterns of  
co-expression
(Georgakopoulos & Polis 2018)

FIGURE 1. A semantic map of  typical dative functions / 
the boundaries of  English to (based on Haspelmath 2003: 213)
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Inferring semantic maps

• ‘A semantic map is a geometrical representation 
of  functions (…) that are linked by connecting 
lines and thus constitute a network’ 
(Haspelmath 2003)

FIGURE 1. A semantic map of  typical dative functions / 
the boundaries of  English to (based on Haspelmath 2003: 213)

Connectivity hypothesis

Economy principle

• A semantic map is a method for visually 
representing cross-linguistic regularity in 
semantic structure based on patterns of  
co-expression
(Georgakopoulos & Polis 2018)
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Inferring semantic maps

“ideally (…) it should be possible to generate 
semantic maps automatically on the basis of  a 

given set of  data”
(Narrog & Ito 2007: 280)
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Inferring semantic maps

Limitation of the (classical) semantic map method: practically, it is
impossible to handle large-scale crosslinguistic datasets manually

“not mathematically well-defined or computationally 
tractable, making it impossible to use with large and highly 

variable crosslinguistic datasets” 
(Croft & Poole 2008: 1)
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Inferring semantic maps

o Dimensionality reduction
• Points = meanings (or contexts)
• Proximity = similarity between 

meanings (or contexts)

FIGURE 2. MDS analysis of  Haspelmath’s (1997) data 
on indefinite pronouns
(Croft & Poole 2008: 15)
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Inferring semantic maps

o Dimensionality reduction
• Points = meanings (or contexts)
• Proximity = similarity between 

meanings (or contexts)

FIGURE 2. MDS analysis of  Haspelmath’s (1997) data 
on indefinite pronouns
(Croft & Poole 2008: 15)

1. Specific known
Somebody called you, guess who

2. Specific unknown: 
Somebody called you, but I don’t know who
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Graphs vs feature projections

Graph vs t-SNE projection of the same dataset
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Regier, Khetarpal, and Majid showed that the semantic map inference 
problem is “formally identical to another problem that superficially 
appears unrelated: inferring a social network from outbreaks of  disease 
in a population” (Regier et al. 2013: 91)
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Inferring semantic maps



• What’s the idea?
• Consider a group of  social agents (represented by the nodes of  a potential 

graph)
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• What’s the idea?
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• What’s the idea?
• One can postulate that all the agents met, so that all the nodes of  the graph are 

connected (10 edges between the 5 nodes)
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• What’s the idea?
• This is neither a very likely, nor a very economic explanation
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• What’s the idea?
• The goal would be to find a more economical solution and to have all the 

social agents connected with as few edges as possible, but still accounting for 
all the observations
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• Nodes are meanings
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Inferring semantic maps

Meaning 1

Meaning 2

Meaning 5

Meaning 4

Meaning 3

Meaning 1 2 3 4 5
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• Regier et al. (2013) observed that the approximations produced by this algorithm 
(Angluin et al. 2010) are of  high quality 
• Tested on the crosslinguistic data of  Haspelmath (1997) and Levinson et al. (2003)
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Inferring semantic maps

Figure. Haspelmath’s (1997: 4) original semantic map of  the indefinite pronouns 
functions
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Inferring semantic maps

INPUT
(lexical matrix)
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Inferring semantic maps

INPUT
(lexical matrix)

ALGORITHM
(python script)

RESULT
(semantic map)
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Tool: pros and cons

RESULT
(semantic map)
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Tool: pros and cons

RESULT
(semantic map)

FIGURE 4a. A simple semantic 
map of  person marking

(Cysouw 2007: 231)

FIGURE 4b. A weighted 
semantic map of  person marking

(Cysouw 2007: 233)



• Generate the map with a modified version of  the algorithm of  
Regier et al. (2013)
• PRINCIPLE: for each edge that is being added between two meanings 

of  the map, we know the number of  constraints that it satisfy 
(max_score in the #main loop), which can be used directly as 
weight for the edge.

G.add_edge(*max_edge, weight=max_score)

Le Diasema 41

Tool: pros and cons

Towards weighted semantic maps
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Tool: pros and cons

Towards weighted semantic maps

Automatically plotted semantic maps:
non-weighted vs. weighted 

(data from Haspelmath 1997)

The graph is visualized in 
Gephi® with the Force Atlas 
algorithm
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Tool: pros and cons

Towards weighted semantic maps

Automatically plotted semantic maps: 
non-weighted vs. weighted 

(data from Haspelmath 1997)

The graph is visualized in 
Gephi® with the Force Atlas 
algorithm and modularity 
analysis (Lambiotte et al. 2009)
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Tool: pros and cons

Unsolvable inferences
Meaning 1 2 3

Polysemic item A √ √ √

Polysemic item B √ √ √
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Unsolvable inferences

Meaning 1 Meaning 2 Meaning 3

Meaning 1 2 3

Polysemic item A √ √ √

Polysemic item B √ √ √

Meaning 2 Meaning 3 Meaning 1

Meaning 3 Meaning 1 Meaning 2
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Meaning 1 Meaning 2 Meaning 3

Meaning 1
Wood

2
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3
Forest

Polysemic item A √ √ √

Polysemic item B √ √ √

Meaning 2 Meaning 3 Meaning 1

Meaning 3
Forest

Meaning 1
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Meaning 2
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Ø Qualitative semantic analysis
Ø More typological data 
⇒ more constraints
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Tool: pros and cons

Unsolvable inferences

smell hear

11

listen

3

feel

3 3

see

taste

?

?

?

??
? ?

Ø More typological data 
⇒ more constraints



55

Tool: pros and cons

Unsolvable inferences

Georgakopoulos, Grossman, Nikolaev & Polis (under review), Universal 
and macro-areal patterns in the lexicon. A case-study in the perception-cognition 
domain, in: LT.
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Datasets: what do we need?
Size

Cf. Joshua Conrad Jackson, Joseph Watts, Teague Henry, Johann-Mattis List, Robert Forkel, Simon Greenhill, 
Russell Gray, Kristen Lindquist, Variability and Universality in Human Emotion Across 1156 Languages, 

Emotions (properties) in CLICS2 (colexifications in 1220 languages)
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Datasets: what do we need?
Size

Emotions (properties) in CLICS2 (colexifications in 1220 languages)

AMAZING
ANGRY
ASHAMED
ASTONISHED
BAD
BEAUTIFUL
BORING
BRAVE
CLEVER
CONTEMPTIBLE
CORRECT (RIGHT)
CRUEL
CUNNING
DEAR
DILIGENT
DREADFUL
EVIL
EXACT
FAITHFUL
GENTLE
GLOOMY
GOOD

GREEDY
HAPPY
HONEST
IMPORTANT
INSOLENT
KEEN
KIND OR POLITE
LOVELY
MERRY
PASSIONATE
PROUD
RUDE
SAD
SHY
SORROWFUL
SURPRISED
TRUE
UGLY
UNPLEASANT
VULGAR
WRONG

Concepticon (https://concepticon.clld.org)

43
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PROUD
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SAD
SHY
SORROWFUL
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UGLY
UNPLEASANT
VULGAR
WRONG

Concepticon (https://concepticon.clld.org)

ANGRY
ASHAMED
BAD
BEAUTIFUL
BRAVE
CLEVER
CORRECT (RIGHT)
CUNNING
DEAR
DILIGENT
EVIL
FAITHFUL
GENTLE
GOOD
GREEDY
HAPPY
HONEST
MERRY
PROUD
SAD
SHY
SURPRISED

TRUE
UGLY
WRONG

43 25 (attested)
Clics2 (https://clics.clld.org)

Datasets: what do we need?
Size
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AMAZING
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KEEN
KIND OR POLITE
LOVELY
MERRY
PASSIONATE
PROUD
RUDE
SAD
SHY
SORROWFUL
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TRUE
UGLY
UNPLEASANT
VULGAR
WRONG

Concepticon (https://concepticon.clld.org)

ANGRY
ASHAMED
BAD
BEAUTIFUL
BRAVE
CLEVER
CORRECT (RIGHT)
CUNNING
DEAR
DILIGENT
EVIL
FAITHFUL
GENTLE
GOOD
GREEDY
HAPPY
HONEST
MERRY
PROUD
SAD
SHY
SURPRISED

TRUE
UGLY
WRONG

43 25 (attested)

ANGRY
BAD
BEAUTIFUL
BRAVE
CLEVER
CORRECT (RIGHT)
DEAR
DILIGENT
EVIL
FAITHFUL
GENTLE
GOOD
HAPPY
MERRY
PROUD
SAD
SURPRISED
TRUE
UGLY
WRONG

Clics2 (https://clics.clld.org)
20 (colexified)

Clics2 (https://clics.clld.org)

Datasets: what do we need?
Size
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

ANGRY
BAD
BEAUTIFUL
BRAVE
CLEVER
CORRECT (RIGHT)
DEAR
DILIGENT
EVIL
FAITHFUL
GENTLE
GOOD
HAPPY
MERRY
PROUD
SAD
SURPRISED
TRUE
UGLY
WRONG

20 (colexified)
Clics2 (https://clics.clld.org)

8415, 96%

366, 4%

Lexifications vs. colexifications

Lexifications

Colexifications

Datasets: what do we need?
Size
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

ANGRY
BAD
BEAUTIFUL
BRAVE
CLEVER
CORRECT (RIGHT)
DEAR
DILIGENT
EVIL
FAITHFUL
GENTLE
GOOD
HAPPY
MERRY
PROUD
SAD
SURPRISED
TRUE
UGLY
WRONG

20 (colexified)
Clics2 (https://clics.clld.org)

8415, 96%

366, 4%

Lexifications vs. colexifications

Lexifications

Colexifications

20 meanings

366 constraints

31 edges

Datasets: what do we need?
Size
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

/sʊu͡ɔhtɑs/ in Lule Sami (Uralic)
[traurig] and [lusag]
(northeuralex.org)

?Neutral valence and high arousal?

Datasets: what do we need?
Size
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

Datasets: what do we need?
Size

/sʊu͡ɔhtɑs/ in Lule Sami (Uralic)
[traurig] and [lusag]
(northeuralex.org)

?Neutral valence and high arousal?
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

Carapana (Tucanoan ; Amazonia)

Datasets: what do we need?
Size

⇒ Not an actual colexification
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Emotions (properties) in CLICS2 (colexifications in 1220 languages)

Semantic map based on colexification patterns attested in more than 1 language variety

Datasets: what do we need?
Size
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Allative markers (based on Rice & Kabata 2007)

Datasets: what do we need?
Structure
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Allative markers (based on Rice & Kabata 2007)

Datasets: what do we need?
Structure

Ø 34 meanings
Ø 33 edges
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Allative markers (based on Rice & Kabata 2007)
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Allative markers (based on Rice & Kabata 2007)

Datasets: what do we need?
Structure

Data should be
structured

around several
meanings
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Formal Concept Lattices (hierarchical graphs)

Method: can we open the black-box?

2017
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Method: can we open the black-box?

Figure 3. FCA analysis of  
Haspelmath’s (1997) data

FCA solves the problem of 
form/meaning mapping, since it 
shows:
ü How forms map onto 

meanings
ü Which concepts are lexicalized 

and which are not
ü Implication sets can be 

computed automatically
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Method: can we open the black-box?

Figure 3. FCA analysis of  
Haspelmath’s (1997) data

FCA solves the problem of  
form/meaning mapping, since it 
shows:
ü How forms map onto 

meanings
ü Which concepts are lexicalized 

and which are not
ü Implication sets can be 

computed automatically

u But, less ‘reader-friendly’
(especially with many 
meanings = attributes)
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Semantic maps

Figure 3. FCA analysis of 
Haspelmath’s (1997) data

FCA solves the problem of  
form/meaning mapping, since it 
shows:
ü How forms map onto 

meanings
ü Which concepts are lexicalized 

and which are not
ü Implication sets can be 

computed automatically

u But, less ‘reader-friendly’
(especially with many 
meanings = attributes)

FCA analysis of  time-related lexemes (588 objects = words; 221 attributes = meanings)
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Semantic maps

FCA solves the problem of  
form/meaning mapping, since it 
shows:
ü How forms map onto 

meanings
ü Which concepts are lexicalized 

and which are not
ü Implication sets can be 

computed automatically

u But, less ‘reader-friendly’
(especially with many 
meanings = attributes)

u Complementarity between the 
two approaches

FCA analysis of time-related lexemes (588 objects = words; 221 attributes = meanings)

FCA analysis of  
Haspelmath’s (1997) data



Conclusions: 
co-expression vs. semantic similarity
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Conclusions

Ø Co-expression ⇎ semantic similarity (e.g., Malchukov 2010)
o No relation

o Homonyms
o Symmetrical relations

o Auto-antonyms (Klégr 2013)
o Hierarchical relations

o Auto-hyponyms
o Auto-meronyms
o Etc.



88

Conclusions

Georgakopoulos & Polis (under review), Dynamic semantic maps of  content words. The diachrony of  time-related lexemes, in: JHL.
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Conclusions

Thanks!
s.polis@uliege.be

athanasios.georgakopoulos@uliege.be
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