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Ongoing PhD: New methods for parametric computations with multiphysics models
on HPC architectures with applications to design of opto-mechanical systems
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Parametric computations

Sampling-based parametric computations typically require numerous calls of potentially
costly models.

Example: Monte Carlo for uncertainty quantification.
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Model

. . .

Model

Quantity of interest

Goal of this work: to reduce the CPU time to evaluate a given set of samples.
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Ensemble propagation

In sampling-based parametric computation, instead of individually evaluating each instance of
the model, Ensemble propagation (EP) consists of simultaneously evaluating a subset of
samples of the model.

Model Model

EP was introduced by [Phipps, 2017], made available in Stokhos a package of Trilinos, and
implemented using a template-based generic-programming approach:

template <typename T, int ensemble_size>
class Ensemble{

T data[ensemble_size];
Ensemble<T,ensemble_size> operator+ (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator- (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator* (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator/ (const Ensemble<T,ensemble_size> &v);
//...

}
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Ensemble propagation

Advantages of the EP:

I Reuse of common variables,
I More opportunities for SIMD (more data parallelism),
I Improved memory usage,
I Reduction of Message Passing Interface (MPI) latency per sample.

Challenges of the EP:

I Increased memory usage,
I Ensemble divergence:

I control flow divergence: if-then-else divergence and loop divergence,
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Parametric linear systems

We want to solve a parametric linear system for a subset of s samples of the parameters
together:

A::` x :` = b:` for all ` = 1, . . . , s.

Representation of a system for s = 4:

=

A X B

How to solve efficiently the parametric linear system with EP?
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Reduced inner product used in conjugate gradient method

First approach [Phipps, 2017]: to gather the sample matrix into a block diagonal matrixA::1

. . .

A::s


x :1

...
x :s

 =

b:1
...

b:s

 ,

and to apply the conjugate gradient method on the block diagonal system.

Mathematically equivalent to defining a reduced inner product:

= + + +

Advantages: No ensemble divergence and possibility to use efficient BLAS implementations,
Challenges: The samples are coupled together, the spectra are gathered, and the condition
number increases.
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Ensemble-typed inner product used in conjugate gradient method

Second approach [D’Elia, 2017]: to avoid the coupling of the samples together using an
ensemble-typed inner product:

=

It was first introduced for grouping purpose.

Advantages: No coupling: each sample converges as fast as if it was propagated alone,
Challenges: Every ensemble divergence has to be managed explicitly.
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Occurrence of ensemble divergence in GMRES

r (0) = b − Ax (0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . ,m do

w = AM−1 v : j

h(1:j)j = VT
:(1:j) w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖
if h(j+1) j 6= 0 then

v : (j+1) = v : (j+1)/h(j+1) j

else
m = j
break

if qT
:(j+1)

e1 ≤ ε then
m = j
break

y = arg minz ‖β e1 −H(1:m+1)(1:m) y‖
x (m) = x (0) + M−1V :(1:m) y

Ensemble divergence in GMRES:

1. an Arnoldi vector can require a
normalization or not: if-then-else
divergence,

2. different samples may require different
numbers of iterations to converge: loop
divergence,

3. called BLAS functions, such as GEMV
for the dense matrix-vector operations,
may not support ensemble-typed inputs,
leading to function call divergence.
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Efficient ensemble GMRES with ensemble-typed inner product

In [Liegeois, in preparation], we describe and implement an efficient ensemble GMRES
without ensemble reduction.

The control flow divergence and the function call divergence have been solved by:

I Implementing a Mask class which is used to apply masked assignment and logical
reduction;

I Implementing an efficient ensemble GEMV for the orthogonalization process.

Those two contributions lead to:

I An equivalent cost per iteration of ensemble GMRES with and without reduction;

I A safe implementation which is able to deal with converged samples.
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Implemented code and its capabilities

I Fully templated C++ code heavily
based on Trilinos which provides a fully
templated solver stack;

I Embedded in a Python interface. This
eases the looping around samples, the
grouping of samples together, etc;

I Hybrid parallelism based on Tpetra
with MPI for distributed memory and
Kokkos with OpenMP for shared
memory;

I Uses Gmsh [Geuzaine, 2009] to import
3D meshes and VTK to write the output
files;

I Has already generated preliminary results
for industrial thermomechanical
contact problems. 10 / 15



Test case 1: mesh tying problem

I Plate with a hole pulled
on two opposite sides;

I Two meshes glued with
the Mortar finite element
method in saddle point
formulation;

I Lamé parameters
represented as a
Gaussian random field;

I Multigrid preconditioner
with saddle point matrix
on each multigrid level;

I Solved on Intel(R)
Xeon(R) Platinum 8160
CPU.

t

t

Realization 1:

Realization 2:
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Test case 1: speed-up of one GMRES iteration
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Test case 1: total speed-up
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Test case 2: first results on the ITER mirror
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Conclusion

Conclusion and contributions:

I Two variants of GMRES can currently be used: with reduced inner product and with
ensemble-typed inner product;

I Cost per iteration of ensemble GMRES is independent of coupling the samples together
with ensemble reduction;

I Ensemble GMRES without reduction is faster due to an improved convergence compared
to ensemble GMRES with reduction.

Future work:

I Finalize the application of the method on engineering problems relevant for ITER in
collaboration with FZ. Jülich;

I Finalize the testing on more than one computational node to leverage the increased
memory usage.
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