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A B S T R A C T

Phenology is an important ecological indicator for understanding the feedback of plants to climate changes, but
observation of plant phenology is not a trivial task, particularly for the large-scale areas of interest. Urban plant
phenology monitoring is such a typical case, since massive residents do not necessarily mean enough eligible
phenology observers. To handle this traditional challenge, this study attempted those surveillance cameras (SCs)
widespread almost in any city all over the world. The schematic plan is to install an automatic software module,
which has the function of plant phenology monitoring, as a plug-in into any central unit that wire-controls RGB
SCs. The kernel of the module is a general-purposed algorithm capable of deriving the starting and ending dates
of the key phenological events of different plants that stand in the field of view of each telecontrolled SC. The
kernels of the algorithm comprise deriving phenological indices from the digital number (DN) records by a SC
from all of its RGB channels and, then, modeling of plant dynamics based on the proposed novel phase-limited
multi-Gaussian model for curve-fitting of phenological phases. In the case of determining the key phenological
dates regarding flowering and foliation in this study, tests suggested that the proposed scheme and phenological
indices and the programmed software plug-in all worked well. Overall, the feasibility of using the widespread
SCs for urban plant phenology monitoring was validated, and the scheme can be further extended to composing
phenology observation networks at local or global scales. The solution is of implications for more understanding
the interannual rhythms of terrestrial ecosystems as well as the inherent mechanisms of vegetation-climate
interactions.

1. Introduction

Phenology serves as a crucial natural ecological bridge for learning
the inherent links between plant life cycles and environmental changes
such as climate changes (Koerner and Basler, 2010). As a vital branch of
environment, particularly for humans, urban areas are an essential
category of land surfaces concerned in the field of plant phenology. In
fact, urban plant phenology has long been highlighted (Neil and Wu,
2006), as its researches facilitate better understanding of the eco-effects
of both urbanization and urban heat island on plant phenological

behaving (Neil and Wu, 2006; Lu et al., 2006; Neil et al., 2010; Jochner
et al., 2012, 2013; Comber and Brunsdon, 2015). Furthermore, the
knowledge of urban plant phenology allows for predicting future plant
phenology, since cities with their amplified temperatures may serve as a
proxy of future scenes (Jochner and Menzel, 2015). Hence, developing
efficient techniques for urban plant phenology monitoring is becoming
increasingly important.

The predominant means for plant phenology monitoring, even up to
now, rely on human observation of plants at multiple stages in the
phenological period (Bradley and Clarke, 2011; Jochner and Menzel,
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2015). Based on the in-field-observed plant phenological recordings for
decades and even centuries, people have investigated not only the
phenological problems such as reconstructions of interannual changes
in past spring seasons (Rutishauser et al., 2007) and shifts in spring
vegetation green-up dates across temperate biomes across China (Wu
and Liu, 2013) but also the phenology-relevant issues such as net eco-
system exchange (Churkina et al., 2005), global warming (Abu-Asab
et al., 2001), temperature of the medieval period in spring (Aono and
Saito, 2010), and climate change (Lu et al., 2006; Wolkovich et al.,
2012; Dai et al., 2013). Although this traditional strategy has proved to
work well on recording the exact dates of the key phenological events of
plants during their growing seasons, its extensive usages are impeded
by its shortages of both intensive labor and insufficient geographic
cover. Moreover, the traditional plant phenological records often
cannot support reconstructing the continuous processes of historical
plant dynamics. In urban environments, considerable residents do not
necessarily mean enough eligible plant phenology observers. Even if
enough plant phenology observers can be found, merely relying on
human observations to cover thousands of cites all over the world often
means an unaffordable cost.

To handle the shortcomings of field-based survey methods, space-
borne remote sensing (RS) has been widely used as a sound solution for
monitoring the growths and senescence of vegetation canopies at local,
regional, and global scales. The most representative cases were based
on the Moderate Resolution Imaging Spectroradiometer (MODIS) RS
products, which were widely applied for investigation of the spatio-
temporal dynamics of various land surface phenologies (LSPs) (Zhang
et al., 2003, 2004; Ahl et al., 2006; Ganguly et al., 2010). However, the
applications of the satellite RS-based plant phenology monitoring plans
were often restricted, in subject to the lack of adequate ground-truth
data for validation of the derived results (Studer et al., 2007). Fur-
thermore, it is hard for this kind of approaches, e.g., the BFAST package
(Verbesselt et al., 2010) and TIMESAT package (Ekhlund and Jönsson,
2015), to obtain accurate, abundant, and valuable transition dates of
vegetation activities due to their inadequate spatial resolutions and low
re-visit frequencies (Zhang et al., 2004; Ahl et al., 2006; Ganguly et al.,
2010; Studer et al., 2007). This kind of issues tend to become more
serious in urban scenarios, because cities are typically filled with high
buildings and scattered plants that are difficult to identify using pub-
licly available space-borne RS data.

Another kind of methods for plant phenology monitoring is to di-
rectly measure different biochemical fluxes of plants based on the eddy-
covariance (EC) technology (Baldocchi et al., 2005). A number of EC-
based methods have been developed to characterize spring transitions
from CO2 sources to sinks for different deciduous forests (Baldocchi
et al., 2005), ecosystem phenology involving spring photosynthesis in a
cool temperate bog (Lafleur et al., 2005) and carbon uptake phenology
for temperate and boreal deciduous forests (Gonsamo et al., 2012) as
well as to calculate key LSP metrics (such as the start, end, and length of
a growth season, the end of green-up, the start of brown-down, the
temporal length of canopy closure, the start, end, and length of the
peak, and the peak of one growth season) (Gonsamo et al., 2013). This
kind of solutions can reveal the inherent mechanism of plant pheno-
logical variations, but the corresponding frame-based EC systems, even
for their simplified versions, are expensive. As a result, the adoption of
EC-based techniques is limited in urban plant phenology monitoring. In
addition to biochemical attributes, biophysical properties such as plant
structures (Calders et al., 2015) and canopy penetration (Lin and West,
2016) were also tried for plant phenology monitoring, based on static
terrestrial laser scanning (TLS) (Calders et al., 2015) and mobile laser
scanning (MLS) (Lin and West, 2016), respectively. However, the po-
tential plans based on laser scanning are unaffordable for monitoring of
plant phenology, whose re-visits require high temporal frequency.

Following the call-for “install video cameras to FLUXNET sites”
made by Baldocchi et al. (2005), there occurred an explosive growth of
using the easily-available cameras for plant phenology monitoring over

the years (e.g., Richardson et al., 2007; Crimmins and Crimmins, 2008;
Ahrends et al., 2009; Graham et al., 2009; Ide and Oguma, 2010;
Sonnentag et al., 2011; Hufkens et al., 2012; Nijland et al., 2014;
Alberton et al., 2017; Vrieling et al., 2018). The cameras used in such
studies ranged from digital webcam cameras (Richardson et al., 2007)
to infrared sensitive consumer-grade digital cameras (Nijland et al.,
2014). The phenology monitoring modes ranged from location-fixed
cameras (Crimmins and Crimmins, 2008; Ide and Oguma, 2010;
Vrieling et al., 2018) to running car-based cameras (Graham et al.,
2009) and from camera-EC technical combination (Ahrends et al.,
2009; Sonnentag et al., 2011) to ground-satellite data fusion (Hufkens
et al., 2012; Vrieling et al., 2018). The objectives of camera-based
phenology monitoring involve from forest comparisons (Zhao et al.,
2012) to canopy photosynthesis predictions (Toomey et al., 2015). The
proposed phenological indices include 2G_RBi (the difference of the
divergence of both red from green and blue from green, using absolute
channel brightness) (Richardson et al., 2007), GCC90C (greenness
chromatic coordinate) (Vrieling et al., 2018), etc. The uncertainties
possibly existing in the processes of digital camera-based detections of
tree defoliation phenology have also been exploited (Nagai et al.,
2015). All of these endeavors indicated that camera-based plant phe-
nology monitoring techniques can record the interannual variations of
plant dynamics via continuously imaging, with both adequate temporal
frequencies and high spatial resolutions. As such, camera-based phe-
nology monitoring can bridge the gaps between satellite-collected
phenological variables and field observation data. However, it is diffi-
cult to justify the installation and maintenance of cameras at multiple
locations for phenology monitoring purposes in urban areas, and high
municipal cost is the primary factor restricting the above-reviewed
camera-based plans from being extended to accomplish the task of
urban plant phenology monitoring.

Aiming at this technical gap, the present study attempted to expand
the functions of the widespread surveillance cameras (SCs) in cities all
over the world to urban plant phenology monitoring. In fact, using
surveillance or security cameras for plant phenology observations has
been reported in a few previous studies. For example, Petach et al.
(2014) have validated an infrared-enabled security camera for plant
phenology monitoring. However, the focus of the research was still on
how to play the roles of such single cameras, rather than on how to
improve the total performance of the SC networks, and thereby, such an
application does not have fundamental differences with the endeavors
based on the principle of repeating digital photography (Richardson
et al., 2007; Crimmins and Crimmins, 2008; Ahrends et al., 2009;
Graham et al., 2009; Ide and Oguma, 2010; Sonnentag et al., 2011;
Hufkens et al., 2012; Zhao et al., 2012; Nijland et al., 2014; Nagai et al.,
2015; Toomey et al., 2015; Alberton et al., 2017; Vrieling et al., 2018).
Furthermore, plants in urban environments at local scales mostly are of
high diversities. Hence, the general-purposed approaches proposed in
the previous researches, e.g., tracking spring green-up in a deciduous
broadleaf forest (Richardson et al., 2007), cannot effectively handle the
targets lying in the fields of view of the SCs. In other words, plant-level
rather than stand-level solutions for urban plant phenology monitoring
are required. To handle these problems, the present study proposed a
more systematic solution plan.

2. Methods

2.1. Study site and data collection

The chosen study site is located in the campus of Peking University,
Beijing, China (39°54′20″N, 116°25′29″E), characterized by a typical
kind of warm and semi-humid continental monsoon climate. The
campus covers 339 ha, with an average altitude of 56.9 m. The phe-
nological data for this case study were collected using a surveillance
camera (DS-2AF1-784DS, Hikvision, China), which was installed (fa-
cing northwest) at a height of 4 m above the ground. The optical sensor
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of the camera was a 1/3″ progressive scan complementary metal oxide
semiconductor (CMOS), enclosed in a commercial waterproof housing.
The mode of camera operation was set in an “automatic mode” for both
exposure and white balance adjustment, similar to the mode used by
Zhao et al. (2012). Although the camera was fixed, inevitable moves
caused by external environmental influences such as winds and rains
might cause changes in its field of views. To handle this issue, serial
image registration (Lou et al., 2008) was conducted. Specifically, the SC
image series were initially registered based on the approaches of Fea-
ture-Based Matching (FBM) and Area-Based Matching (ABM) and, then,
fine registered using the epipolar geometric theory based algorithm that
is based on Support Vector Machine (SVD) decomposition and weighted
normalized Fundamental matrix (F-matrix) calculation (Lou et al.,
2008). Next, to minimize the impacts possibly caused by different solar
angles (e.g., Calders et al., 2015), the images recorded at about 7: 00
a.m. every day were selected for the phenological studies. The nor-
malization of the Digital Number (DN) values was implemented based
on the easily detectable and relatively consistent objects like im-
pervious road surfaces. The observation lasted from March 27 to May
14, 2015, and the images were automatically saved in the format of
Joint Photographic Experts Group (JPEG, 1920 × 1080 pixels resolu-
tion with three channels of 24-bit red-green-blue (RGB) color in-
formation).

The foreground of the camera was predominantly covered by or-
namental plants, which are an important kind of plants of wide interest
in phenological studies (e.g., Zhang et al., 2014). The plants selected for
this case study include a black locust (Robinia pseudoacacia), a cherry
plum (Prunus cerasifera) and a midget crabapple (Malus micromalus),
with the distances to the camera being about 22 m, 25 m and 40 m,
respectively. The flowers of R. pseudoacacia and M. micromalus appear
after their foliations begin (leaf-first), whereas the pink flowers of P.
cerasifera tend to fall earlier than its purple leaves growing (flower-
first). In addition, their greening processes are often disturbed by the
prosperities of their background plants such as meadows. The scenarios
mentioned above are the representative cases of spring ornamental
plant phenologies, and this complexity also poses the challenges
(Richardson et al., 2007) of detecting and determining the phenologies
from the series of SC image records.

2.2. Schematic plan

The proposed schematic plan starts from analyzing the mechanism
of SC operation. SCs are generally operated in such a way that multiple
SCs are wire- or wireless-controlled by a Central Control Unit (CCU)
(sometimes even just being a Personal Computer (PC)), and their data
are wire- or wireless-transferred to a related CCU. Some of these con-
trols are implemented through network connectivity such as internet. In
light of this hardware-organization framework, the proposed schematic
plan is to simply install an automatic software module with the function
of plant phenology monitoring as a plug-in in those already-established
RGB SC-related CCUs.

The software module comprises a series of functional units, invol-
ving image preprocessing on camera white balance identification and
image registration, object segmentation, phenological index calcula-
tion, phenological modeling and phenophase output. The kernel of the
software module is a general-purpose algorithm for determining the
starting and ending dates of the key phenological events of different-
species plants that stand in the field of view (FOV) of each wire-con-
trolled SC. The bases of the algorithm mainly comprise derivation of
plant phenological indices from the SC RGB channel DN values and
then curve-fitting of the phenological phases for modeling of plant
dynamics.

Unlike the single plant phenological event processing implemented
in most studies using camera-based plant phenology tracking (e.g.,
Richardson et al., 2007; Crimmins and Crimmins, 2008; Ide and
Oguma, 2010; Nijland et al., 2014; Vrieling et al., 2018), characterizing

the phenological processes of diverse plants considered in this study
becomes more complex. In such a case, the traditional algorithmic
schemes such as sigmoid-shaped logistic function fitting (Richardson
et al., 2007) become insufficient to capture the entire phenological
phenomena. For this issue, the proposed schematic solution plan is to
simultaneously detect and identify different phenological processes for
different plant species lying in the same SC foreground within the same
phase. This strategy is particularly necessary when post-processing the
image records from a large number of SCs. That suggests that the suc-
cessful findings of our work can be applied extensively wherever there
are SCs. It should be acknowledged that phenological characterization
is inherently complicated when multiple species and driving patterns
are involved (Vrieling et al., 2018); thus, we tested the feasibility of the
proposed solution using only representative scenarios.

2.3. Algorithm development

2.3.1. Phenological indices
Due to environmental disturbances such as sunlight variation, fog

and rain, the original RGB features of the collected digital image series
proved to be inappropriate to accurately reflect the real situations of
canopy changes (Richardson et al., 2007). In addition, the popular
temporal analyses of the DN series of each color channel might derive
wrong phenological conclusions (Alberton et al., 2017). Two phenolo-
gical indices that are able to avoid the above-mentioned influences
were proposed. The first phenological index is Excessive Greenness
Index (GEI), which has been widely used in previous works (e.g.,
Richardson et al., 2007; Nagai et al., 2015). GEI can enhance the signal
from green plant material via making a distinction between green
plants and background (Richardson et al., 2007; Nagai et al., 2015;
Ahrends et al., 2008). Here, we used the sensitivity of GEI to green-band
signal to track the emergence and decline of flowers. The second phe-
nological index is Relative Channel Index (RCI), which is defined as the
ratio between the DN recorded by each channel and the sum of the DNs
for the R, G and B channels (denoted as RCIR, RCIG and RCIB, respec-
tively). The indices similar to the RCIs have been applied by Richardson
et al. (2007) and Ahrends et al. (2008) to detect spring plant phenology.

The two phenological indices are defined as

= + = +GEI G R G B G R B( ) 2 ( ) (1)

= + +RCI X R G B/( )X (2)

where R, G and B present the DN values for the R, G and B channels, and
X relates to the DN values for any R, G or B channel. The “relative”
scheme in the forms of either “subtraction” or “division” can handle the
ill scenario of interdiurnal inconsistency in channel DNs due to sunlight
variations evidenced as follows. The interdiurnal differences of sunlight
strengths are simultaneously sensed by different channels, and the
“subtraction” or “division” operations are equal to removing such in-
terdiurnal changes in a synchronous way. Then, the interdiurnal
changes reflected by the “relative” results are exactly caused by plant
dynamics, with different DN reflections by different SC color channels
(Richardson et al., 2007).

2.3.2. Phenological model
The proposed phenological model needs to be able to implement the

task of simultaneously detecting and identifying different phenological
processes for different plant species lying in the same SC foreground
within the same phase. As such, the proposed phenological model needs
to be able to simultaneously derive multifold formulas of the proposed
phenological indices to best characterize the different phenological
processes within the observation phase, e.g. foliation, blossom, blossom
and then withering away, defoliation and meadow greening (back-
ground change), possibly occurring within the SC foreground. For such
complex scenarios, the traditional solution based on the bi-logistic
models (Richardson et al., 2007; Ahrends et al., 2008) or many other
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kinds of species-specific phenological models (Chuine et al., 1998;
Henneken et al., 2013; Zhang and Zhang, 2015; Xie et al., 2018) cannot
work well. That is, the bi-logistic models appropriate for monitoring of
leaf dynamics cannot be used for simultaneously monitoring of the
flowering processes, because detection of the flowering phases is more
complicated than only observing leaf color changes, e.g. the scenario
that the pixels relating to plant flowers are easily blocked by the
neighboring leaves and background. To address these issues, we pro-
posed a novel multi-Gaussian model that is defined as

=
=

xg( ) a e
i

n

i

x

1

b
c

i
i

2

(3)

where x represents the day of year (DOY, January 1 is deemed as DOY
1), g(x) is the model that can best characterize the different phenolo-
gical processes within a limited phase (e.g., two months here), and a, b
and c are the fitted coefficients. The values of a, b and c for different
prominent levels (i) of phenological phenomena are determined by
pursuing the minimum result in fitting unconstrained multi-variable
functions against the temporal series of the calculated phenological
indices. This is implemented based on the least-square fitting method
(Ahrends et al., 2008). Given that the model is derived within a limited
phase, the method for plant phenological modeling proposed in this
study can be denoted as the phase-limited multi-Gaussian phenological
model.

Based on the fitted multi-Gaussian model, the key phenological
dates such as the beginning or ending of blossoms can be determined
using the traditional thresholding method (Ahrends et al., 2008). For
example, for each Gaussian curve that corresponds to the blossom
process, the DOY when the phenological index reaches a certain per-
centage of its maximum amplitude is defined as the start of the flow-
ering period (SFP), and the end of the flowering period (EFP) is de-
termined when the phenological index reduces to the same threshold
value (Ahrends et al., 2008; Nagai et al., 2015). The same procedure
can be used to determine the start of the foliating period and the end of
the foliating period.

2.4. Performance assessment

In order to precisely assess the performance of the phenological
indices and the phenological models proposed in this study, the SC
serial data collected for the case study were processed. Since the field of
view of the SC changed inadvertently, image registration was firstly
executed using the ENVI (ENvironment for Visualizing Images)
Software for the purpose of implementing the consecutive analysis of
the digital images. Then, we manually drew three fixed regions of in-
terest (ROIs) to represent the crowns of the P. cerasifera (ROI A), M.
micromalus (ROI B) and R. pseudoacacia (ROI C). The drawing of the
ROIs followed the rule of maintaining a compromise between opti-
mizing the performance of crown representations and avoiding the in-
terferences from environments as much as possible. At last, the data for
performance assessment were obtained. The course of SC recording of
the P. cerasifera and M. micromalus lasted from March 27 to April 28,
2015, while the course for the R. pseudoacacia was from April 23 to May
14, 2015.

Then, performance assessment was finished as follows. The SFPs
and EFPs of the three prominent plants of different species lying in the
foreground of the SC were derived and compared to their reference
values. The ground-truth values were acquired via visual observation of
SC image series, which has been widely used as a general knowledge-
based verification tool for camera-based phenological identification
(Ahl et al., 2006; Lin and West, 2016). Three independent observers
used a common protocol to define the following dates for each plant: 1)
When the three crowns started to present flowers; 2) When the majority
of flowers withered away. The transitional dates of the phenological
developments were determined to be their SFPs and EFPs. The SFPs and

EFPs derived from the assumed phenological model and visual inter-
pretation were compared to show the performance of the used pheno-
logical indices and the proposed phenological model.

3. Results

3.1. The processed data

The SC images collected at 7:00 a.m. were isolated for the test.
Then, the series of the SC images were firstly registered, since the
foreground of the SC might show minor orientation shifts due to target
searching or wind blowing. Next, the ROIs for characterizing the
crowns of P. cerasifera (ROI A), M. micromalus (ROI B) and R. pseu-
doacacia (ROI C) were drawn, as indicated in Fig. 1. The following
analyses were carried out based on the resulting ROI series individually
for the three sample plants.

Fig. 1. Illustrations of the SC images after registration and the three ROIs drawn
for segmenting the sample plants (the Chinese characters stamped in the SC
images at their bottom-right corners mean the location of the SC and those
stamped characters at the top-left corners mean the time of recording the
images).
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A comparison with the field observations proved that the registered
image series can be used by people to identify plant phenological
processes. Although back- or repeated-checking was often needed, most
observers of these images could tell the following stories. The ROI of the
P. cerasifera (ROI A) in its full-blossom phase was dominated by its pink
flowers. The ROI of the M. micromalus (ROI B) in its foliating phase was
mixed with some pink flowers of another P. cerasifera (Fig. 1a). Then,
the leaves of the M. micromalus became larger and greener so that the
pink flowers behind it were obstructed. Next, the ROI of the M. mi-
cromalus appeared obviously with a number of its white flowers but was
still filled with its green leaves. Synchronously, the pink flowers of the
P. cerasifera withered gradually, and the ROI of the P. cerasifera was
increasingly occupied by its purple leaves and brown branches
(Fig. 1b). Subsequently, the ROI of the P. cerasifera (ROI A) was gra-
dually obstructed by the flourishing crown of the R. pseudoacacia that is
closer to the SC. This triggered the effect of overlapping between the
ROI C (R. pseudoacacia) and the ROI A (P. cerasifera). As regards R.
pseudoacacia (Fig. 1c), the beginning of its foliation was earlier than the
start of its flowering, and this phenomenon rendered leaves to play a
major role in the ROI C. It was also realized that the blossom process of
the P. cerasifera occurred within a short time, the phase for ROI C
phenological analysis needed to be shortened in order to minimize the
disturbances possibly caused by the P. cerasifera (in the R. pseudoaca-
cia‘s background in the FOV of the SC) with a different phenological
behaving mode. This could explain the necessity of introducing the
strategy of characterizing different phenological processes within a
limited phase.

3.2. The derived phenological indices

Based on the extracted ROI series, the proposed phenological in-
dices were derived (illustrated in Fig. 2). It can be recognized that for
the same plants, the two phenological indices (GEI and RCI) performed
with different patterns, regarding their features of no matter mean,
maximum, minimum or value range. It can also be noticed that some of
the resulting patterns, somehow, can possibly reflect the phenological
processes. For example, it seems that the serial boxplots of RCIG for the
P. cerasifera can characterize its blossom phase (Fig. 2b). Specifically,
the RCIG firstly presented an apparent trend of value increasing along
with the development of flowering; then, after reaching the peak, the
RCIG declined day by day and eventually went to a stable status after
about the DOY 102. The latter part relates to the phase that its pink
flowers went withering and its purple leaves were growing.

3.3. The derived phenological models

The phenological models for the P. cerasifera, M. micromalus and R.
pseudoacacia were derived in the phases of DOY 88 to DOY 99, DOY 99
to DOY 111 and DOY114 to DOY125, respectively (Fig. 3). The three
primary Gaussian curves of the resulting multi-Gaussian models are
shown in Fig. 3a, c and 3e, and the Gaussian curves relating to the
blossom phases for the P. cerasifera, M. micromalus and R. pseudoacacia
are shown in Fig. 3b, d and 3f, respectively. Further, based on the
identified Gaussian curves relating to the blossom processes, the SFPs
and EFPs were determined in terms of the optimal thresholds. Table 1
presents the scheme of pursuing the optimal threshold values. That is,
the SFPs and EFPs derived by setting uniform thresholds for different

Fig. 2. Boxplots of the phenological indices, in terms of GEI ((a), (c) and (e)) and RCIG ((b), (d) and (f)) for illustrations, for the 3 sample plants ((a) and (b) for the P.
cerasifera, (c) and (d) for the M. micromalus, and (e) and (f) for the R. pseudoacacia).
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plants were compared to those acquired by human observations of the
SC image series, and the minimal divergences related to the optimal
thresholds. For the three sample plants, the threshold relating to 50%
for all of the maxima of the Gaussian curves was determined (see
Table 1 and Fig. 3). When this scheme is assumed by other users, it is
noted that the determination of the thresholds needs to be conducted
based on a portion of the plants within the FOV of the SC for training
and the remaining for test.

3.4. Performance

The performance of the proposed phenological indices and pheno-
logical models is shown in Table 2. Compared to the manually-observed
phenological dates, the estimations showed quite less divergence. For
the three sample plants, the maximum error is three days. This also
indicated that the proposed schematic plan for phenological analysis is
available not only for different plants but also for their different phe-
nological processes. The results have basically validated the proposed
solution.

Fig. 3. The derived multi-Gaussian models for the three sample plants, P. cerasifera, M. micromalus and R. pseudoacacia, (a, c and e) as well as the determinations of
their SFP and EFP dates (b, d and f), respectively. A blue cross represents the mean value of the optimal phenological index for each group of 3 × 3 pixels. The
synthetic model (a sum of the peaks of its component models) is shown as the red lines and the individual component models are shown as the green lines. The dashed
lines in (b, d and f) indicate the SFP and EFP dates.

Table 1
Threshold determination by seeking the best agreements of both SFP and EFP
for all of the plants for the test. Obs: the dates determined by human ob-
servation of the SC image series; SFP: the start of the flowering period; EFP: the
end of the flowering period. All dates are in the form of DOY (day of year).

P. cerasifera M. micromalus R. pseudoacacia R2 RMSE

SFP EFP SFP EFP SFP EFP

Obs 88 99 99 111 114 125
10% 83 100 93 113 108 125 0.9436 4.007
20% 84 99 95 113 110 124 0.9687 3.035
30% 85 98 97 113 111 123 0.9803 2.200
40% 86 97 98 113 111 122 0.9811 1.927
50% 87 96 99 112 112 122 0.9861 1.380
60% 87 96 100 111 113 121 0.9848 1.538
70% 88 95 101 111 113 120 0.9731 1.737
80% 89 94 102 109 114 120 0.9593 2.134
90% 90 93 103 108 115 119 0.9289 3.129

Table 2
Derivation of the key phenological dates for the 3 sample plants and the per-
formance acquired by comparing the estimated dates (Est) with the manually-
observed dates from the images (Obs), i.e., in terms of their difference (Diff). All
dates are in the form of DOY (day of year). SFP: the start of the flowering
period; EFP: the end of the flowering period. FPL: the flowering period length.

P. cerasifera M. micromalus R. pseudoacacia

SFP EFP FPL SFP EFP FPL SFP EFP FPL

Obs 88 99 11 99 111 12 114 125 11
Est 87 96 9 99 112 13 112 122 10
Diff −1 −3 −2 0 1 1 −2 −3 −1
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4. Discussions

4.1. Influence factors

The first factor possibly impacting the performance of a SC in urban
plant phenology monitoring is originating from environmental dis-
turbance that can deteriorate the derivation of the prescribed pheno-
logical indices. For instance, fog and ill atmospheric conditions may
create noise in phenological indices (Richardson et al., 2007; Bradley
and Clarke, 2011; Nagai et al., 2015). Ide and Oguma (2010) found that
it is necessary to apply data filtering to reduce the influence of varying
weather conditions. In this study, the SC was set to be able to auto-
matically keep white balance, but the influence caused by different fog
and sun illumination still existed in the processed SC image series and,
subsequently, in the resulting key phenological dates. The mature
techniques of image enhancement as discussed in (Bradley and Clarke,
2011) can be merged into the plug-in in a follow-up study. It is also
worth exploring other plans, e.g., dark pixel subtraction, illumination
normalization according to the extraterrestrial irradiance of the color
bands divided by the cosine of the sun zenith, and statistics-based view
angle correction by taking the solar position into account, for dealing
with the possible influence factors.

The second influence factor is the instability of its FOV. In addition
to wind and rain, human operation is another inevitable cause of SC
FOV changes. After all, SC cameras are installed with the main purpose
of security surveillance. For better observing the locations of interest,
SC operators often need to shift the FOV, sometimes even out of the
often-observed ones, and occasionally even forget to adapt them back.
These actions may lead to a series of uncontinuous image recordings
and even two totally-different sub-series of image recordings. Such data
certainly result in higher errors in the estimation of key phenological
dates. The phase-limited phenological modeling solution plan proposed
in the present study can handle this problem to some extent but still
cannot overcome it completely.

The analyses conducted in this study manifested that crown over-
lapping in the SC foreground is another factor possibly deteriorating the
phenological derivations. In some cases, this factor may lead to more
serious errors in phenological information extraction than due to FOV
changes. This outcome is more certain in the case of a single series of
image recordings with an ensemble of two or more plant species lying
in the SC's FOV create complex canopy structures (Calders et al., 2015),
compared to assessing two separated image recordings of different
targets. The plants behind the targeted plants even possibly play a
primary role in the FOV, and the initial physiological stages of the SC-
focused plants may be overlapped. This scenario may be a potential
shortcoming of the proposed multi-Gaussian phenological model.

Species heterogeneity is also an important influence factor in ex-
panding the functions of SCs to nature rhythm understanding. In ad-
dition to the aforementioned effect of crown overlapping, weak cap-
ability of SCs in species representation can be caused by species
heterogeneity for different regions of interest. Generally, the small FOV
of urban SCs allows imaging only a few plants, and thus certain species
might be under-sampled, resulting in unreliable/inconclusive pheno-
logical information derivation. That is, an individual plant surrounded
by the plants of different species often suffers some physiological or
competitive disturbances, and consequently, their phenological per-
formance may be out of their normal ranges. It is worth mentioning that
the derived phenological dates may be misleading, and thereby, it
might be necessary to build confidence interval as a range of potential
dates.

4.2. Further plans

For the purpose of developing a kind of fully-functional automatic
software plug-in for urban SC-based plant phenology monitoring, more
work need to be done in the next studies. The first plan is to introduce

the methods developed for plant detection and segmentation in various
point-of-view images, particularly for those collected in the oblique or
horizontally imaging modes. In such special scenarios, the algorithm of
unmanned aerial vehicle oblique image-based individual tree recogni-
tion proposed in (Lin et al., 2015) can be applied for the purpose of
detecting individual plants in the FOV of the relatively highly-mounted
SCs. The procedures of automatic estimation of tree diameters (Yi and
Moon, 2015) can be applied to plant isolation in the images of ap-
proximately-horizontal SC FOV. High-performance plant segmentation
in SC images can logically improve the characterization of plant mor-
phology and, hence, a more accurate derivation of plant phenological
information.

The second measure is to derive and combine multiple plant phe-
nological indices, each performing its best at its nominal scale. The
combination of the spectral shape indices posed for satellite image-
based plant phenological analyses (Palacios-Orueta et al., 2012), the
GEI calculated for Webcam-based floral phenological observations
(Richardson et al., 2007), and the Visible Atmospherically Resistant
Index (VARI) that can compensate for additional blue light due to dawn
or overcast sky (Gitelson et al., 2002) can be attempted in following
study. The most powerful phenological indices or the weights for
counting each of such prescribed phenological indices in phenological
modeling can be detected, e.g., by using the method of comparing the
divergence of different phenological index values. By this way, the issue
that merely observing a limited number of phenological indices being
insufficient for examining key phenological processes can be avoided to
some extent.

The third plan is to assume multiple phenological models in an in-
tegrative way to overcome the common problem of incorrect estimation
of key phenological dates. In fact, different phenological models may
work well for different kinds of phenological processes in the different
urban and natural environments. The most common case is the double-
sigmoid phenological model as used in (Zavalloni et al., 2006) and the
UniChill phenological model assumed in (Chuine, 2000). Combining
such different phenological models and even newly developing more
powerful models of consistently reflecting urban and natural phenolo-
gical characteristics can be useful for both a holistic characterization
and a multi-level analysis of phenological process, and the phenology-
related results can be obtained in a more comprehensive way, ulti-
mately turning into global phenology monitoring networks.

In addition to the above-mentioned technical plans, some other
improvements can also be introduced to add the efficiency of the in-
stalled software plug-ins. For instance, although the proposed algorithm
was designed for the general-purpose usages from the beginning, the
targeted plants within the FOV of each SC need to be pre-determined.
This can be operated during the installing and adapting of the software
plug-in in each CCU. This will permit the technicians and operators of
these plug-ins to simultaneously examine the FOVs of the SCs, identify
the species of the SC-focused plants, and adapt the set-ups of the SCs by
following their kernel properties; after these pre-treatments, more ap-
propriate functional modes can be set to better monitor the phenolo-
gical processes. The functionality of such software modules can also be
periodically checked via internet and modified as necessary. With such
measures integrated, the developed module may serve as a reliable and
efficient medium of expanding the functions of urban surveillance
cameras to understanding of ecosystems services such as, Arctic vege-
tation phenology (Anderson et al., 2016), urbanization effect on plant
flowering phenology (Neil and Wu, 2006), and urban heat island in-
fluence on land surface phenology (Krehbiel et al., 2016).

5. Conclusion

Although urban SCs often face more complex scenes typically with
more plant species than the already validated phenology-purposed
webcams, they proved to work for urban plant phenology monitoring in
the present study. In the case of three plants with their foliation and
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flowering mixed together, the tests showed that the proposed phase-
restricted multi-Gaussian phenological models can handle the issue of
signal mixture for different phenological processes of different plant
species. That is, the applicability of the widespread RGB-typed SCs for
urban plant phenology monitoring has been basically validated. The
significance of this study and its findings is that, the solution can be
extended to composing plant phenology observation networks at dif-
ferent scales, from city to region, continent and even the globe, for
better understanding of the natural rhythms of terrestrial ecosystems
and the inherent mechanisms of vegetation-climate interactions.
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