X-RAY COMPUTED TOMOGRAPHY: AN OUTSTANDING VISUALISATION TOOL FOR DRYING RESEARCH Feedback on the last 20 years at ULiège

CHEMICAL ENGINEERING PEPs – Products, Environment, and Processes A. Léonard, L. Fraikin, E. Plougonven, D. Toye A.Leonard@uliege.be

The context

Two key aspects

- Use of tomography
 - History of the lab: first european industrial macro-CT

for chemical engineering applications (Toye et al.)

• Drying studies \rightarrow needs of characterization tools

CT scan = computed tomography

Based on X-ray attenuation

Beer-Lambert law

After integration

I = local beam intensity
e = material tickness (homogeneous)
μ = linear attenuation coefficient (cm⁻¹)

- Attenuation varies with the material
 - atomic number Z
 - atomic mass A
 - density ρ
- Attenuation varies with incident beam energy
 - photoelectric absorption
 - Compton effect
- Correlations

- Two distinct steps
 - Collection of projection data

- Two distinct steps
 - Image reconstruction using linear back projection
 - Image = map of attenuation coefficients μ

Parallel beam 2D detector Synchrotron tomography

Interest for drying?

- CRP or CFP ?
 - Confusion between drying rate and drying flux
 - Needs to follow exchange area for shrinking materials

Interest for drying?

- No sample preparation but requires interruption for the measurement
- Clear constrast between pore and solid phases
- Possible calibration between density and μ
- Follow-up of sample texture
 - External exchange area \rightarrow drying kinetics
 - Cracks/internal porosity \rightarrow drying quality
 - Internal moisture profiles \rightarrow model validation
 - Fixed bed characterization → kinetics, porosity, permeability, ...

Facilities at ULiège

Commercial systems

1074 Desktop microtomograph (Bruker)

Commercial systems

1172A Skyscan Microtomograph

Purchase year: 2006

- Source: 100 kV 250 mA Cone beam
- Detector: 4000 x 2300 pixels

12-bit CCD Camera

- Pixel size: from 34 to \approx 2-3 µm
- Max sample size: Ø: 35 mm (68 mm with camera offset)

h: 35 mm (70 mm with camera offset)

Home made system

High energy 'macro' tomograph (pixel size: 0,4 mm)

x 10⁻³

3 convective dryers

Dual cell dryer (superheated steam or air)

Some examples of results

In the context of sludge drying

Shrinkage and cracking (PhD, 2003)

In the context of sludge drying

Impact of sludge conditioning/dewatering
PhD Y.B. Pambou (2016)

In the context of sludge drying

Impact of back mixing for soft sludges

PEPS CHEMICAL ENGINEERING

In the context of xerogel drying

THM validation

Comsol simulation vs. Experimental moisture profiles

Distance from center to external border (mm)

In the context of clay/limestone drying

- Shrinkage and cracking follow-up
 - Lagamine modeling with Geomechanics team

In the context of food drying

- Lots of collaboration with agro-food teams
 - **Tomatoes (R. Khama, Algeria)**
 - Bananas (S. Devahastin, Thailand)
 - Potatoes (S. Sandoval, Mexico)
 - Macadamia nuts (G. Srzednicki, Australia)

Increasing use

Other groups using X-CT

- Rapid look at the program of Eurodrying ...
 - Capozzi et al. \rightarrow CFD based on CT for lyophilized products
- 23 papers in 2018 with 'drying' and 'tomography' in title or keywords
 - Group of Tsotsas in Magdeburg (Germany)
 - Group of Carmeliet in Leuven (Belgium)
 - Group of Tao in Shanghai (China)
 - • •

Conclusions

Take-home message

- X-ray CT = 3D non destructive imaging tools
- Lots of potential applications in drying
 - But requires knowledge in image analysis
 - But requires drying interruption
 - Future: dryers inside CT system ...
- We are open for new ideas and collaborations...

Questions ?

