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Abstract

WASP is a programmable router platform that allows endshtsstore ephemeral state in routers along the path of IP flows
and to execute packet-attached bytecode that processesati. We exploit lessons from past active network reseamdhour
knowledge of network processors to design a minimal ingtgprthat favours language restrictions over run-time kfietVASP
provides safety with limited performance penalty througbdictable execution time and bounded usage of memory amerie
resources. WASP is expressive enough to enable severaampis including statistics collection and service disry. It can
also detect common trunk of two Internet paths and exchagd measurements about these paths.

We propose a robust implementation on the I1XP2400 netwar&gssor, and evaluate its performance through short bear&hm
programs against native functions hard-coded in the rolég achieve latencies belowué, i.e. less than the reference IPv4
forwarding latency, and throughputs approaching 800 kepsgre, which competes with, and sometimes even outpesfarative
programs. We further exploit our results to give hints ortHar improving resource usage and guidelines on manageofient
ephemeral stores in high-speed networks.
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1. Introduction During the last decade the active network research aesviti

have fundamentally revised the paradigms on which we build

d an tod?y’sf Intﬁrnet, muItimediaBappIicat.ioIPs f;]avr;;?ecomecomputer networks to offer more flexibility, such as the iapil
a daily reality for the average user. Be it socially-shaneeos, to perform application-specific forwarding decisions lthea

crawling about massive amount of annotated pictures, Videﬂetwork status (congestion, queue levels, available bty
calls or online ggming where you can vocally teasg your Opiatc.). In a typical active router, each packet carries ontide
ponent, the fact is that Internet is going away from its _n}ost_l fies a piece of code that defines either the complete forwgrdin
text-based structure and now focuses on other delay-sensit /.o jre or some custom code to be applied in pre-defined
forms of media. In the mea”“’.“e the_progression Of, V,Virelesgooksof ar,1 otherwise static forwarding procedure. In WASP
access networlfs oﬁgrs a growing variety of connectlylt}d & (World-friendly Active packets for ephemeral State Preees
potentially multi-homing possibilities. Since most sees on ing), we explore a way to extend router functionality in ortte
Internet are already replicated at multiple locations, @pliea- rovide support for network measurements and properties di
tion is likely to get even more potential paths to connect to ‘{overy. Unlike the vast majority of previously proposedet
replica. Each path W".l havg its own propertigs, gnd could beplatforms, WASP does not attempt to provide a fully expressi
preferred or npt for a given kind of transfer, which increstie programmable network, but rather restricts the progrargmin
need for sensing the state of thg network. . . model to achieve efficient and safe processing.

The currently dep_loyed _arc_hltecture, however, ?r?‘V'd,ES L Given those restrictions, WASP offers a flexible servicé tha
tle suppo_rt for such mv_estl_ganons of the network's “heglt can be used in conjunction with orthogonal services such as
and the simple task of figuring out the common trunk bewVeer?nulticast or multi-path forwarding, rather than a catclsalu-

a host and two of its partners involves several probing g8Cke o * o jnstance, WASP cannot, deflect traffic around a con-
to unveil a part of the _netyvork topology. The current trend _isgested link, but it e,nables us to scalably publish the olagienv
to overcome those limitations of the network by more sophis; congestion along a path so that other flows consideringa po

t'C"."t.ed mteraclt(lons _be_tweender;]d-s_ystekr)ns, coll_abor_aungc- sible switch to that path would know in advance whether their
quiring network statistics and sharing observations ineae performance could be improved.

peer fashion. While it is a perfectly valid approach underynan
aspects, it certainly leads to additional burden on the ostw Related Work
as each application performs redundant active measurentent

compensate for the lack of support from the network. Most of the research activities to run active code on network

processors so far have focused on building custom services b

- corresponding author chaining pre-installed and operator-approved moduleg,[3].
Email addressesar t i n@ un. mont ef i or e. ul g. ac. be (S. In [4], th_e authors present a prototype of the EphemerakStat
Martin) Processing (ESP) router on IXP1200 network processorgewhe
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end-systems may only use a restricted numbeopsErations Similarly, the ESS offers only best-effort privacy, andsit i
that are performed on the router state store. Our work iglglea up to the end-systems to agree on the 64-bit key(s) they séll u
a derivative of this work where we replace pre-defined operaso that no adversary could eavesdrop it. Even without ticé
tions by a bytecode interpreter. key(s), one could still generate random keys in a bruteeforc
Comparatively an implementation of SNAP [5] on the IBM way to try and corrupt existing state. However, since thiesta
PowerNP [6] has explored the feasibility of a just-in-tinmere  is kept only for 10 seconds, an attacker that manages to sénd 1
piler for SNAP bytecode. While the results speak in favourmillion WASP packets per second (i.e. saturating a 1Gbgs lin
of compilation (rather than interpretation), this only d®lfor  with his attack) would only alter existing state with probip
programs using loops or if the code generated for one packéswer than2—4°.
can be reused for subsequent packets. We argue that, given Furthermore the ESS can ease several monitoring tasks such
the limited size of the instruction store in network prooess as evaluating the jitter of a given packet flow. The local time
(and especially in the Intel IXP family), compilation shdidle  observed when packe®, crosses the router is written in the
a way to optimise most frequent packets rather than the lefauephemeral store. The next packgtcan compare this with the
behaviour. observed local time; and build average, maximum and mini-
We also need to mention StreamCode [7], which also promum values over a few packets. A special packet then collects
posed programmability through a dedicated processor orAFPGthose values in each router. Other statistics such as tht dep
suited to packet forwarding routines, using 'co-processior  of output buffers, transmission errors or access to the orétw
data copy and routing table lookup. A significant designchoi packet header will of course enable more applications.
in StreamCode is that the code in packets is in charge of allo- Proper operation of virtually any ESS-based protocol selie
cating buffers and decides the next hop for each packet. Thisn the assumption that the network can be trusted to deliver
level of control over the router and network resources iegli packets only to their intended recipients. In some access or
that StreamCode should not originate from the end-systemts, local networks this may require link-level encryption betm
would rather be used by a smart border gateway to enforce sphests and access routers to avoid blatant information btinge
cific QoS behaviours [8]. and impersonation.

Document Structure 2.2. World-Friendliness
The paper is organised as follows: Section 2 presents the Our aim with WASP is to find the right balance between ex-

principles that have guided the design of the WASP platformPressiveness, efficiency and safety in processing of apigic
Section 3 discusses the platform itself, including thedratf ~ SPecific code in the network. We use the term “world-friefidly
between expressiveness and safety of operations. We impléQ refer to this triple objective of (1)ser-friendliness WASP
mented a prototype of our WASP interpreter on the IXP240cshould prqvide enough flexibility and a clear model of the of-
network processor and present a performance evaluatimsaga féred service where the end-system keeps control on the ser-
the ESP filter prototype in section 4. We finally propose scalice their packet should receive; @uter-friendliness WASP

ability improvements and guidelines for deployment on high makes sure that router resources are correctly used, and tha
grade routers in section 5. (possibly malicious) bytecode have predictable executine

and cannot exhaust router memory; and ri@)work-friendli-
) o ness WASP sticks to the network transparency model of IP,
2. Design Principles disabling any “surprising” behaviour such as cloning oflpac
2.1. Ephemeral Store on a Router ets or altlerln.g source/destination fields. The transpartiogol
and application data are also out of reach and the only part of

The Ephemeral State Store (ESS) is a corner stone in th@e packet WASP can alter is its own “scratchpad” to record
design of WASP, which has been inherited from former ESPstate observed in the network.

(Ephemeral State Processing [9]) filter. It is(feey, value)

repository associated with a network interface where packe 2.3, The Case for Cooperation

can drop and inspect state. Because all entries in the ES5 hav  Eyen if we perfectly fulfil the world-friendliness objects,

the same size (64-bit key and value) and are allocated foed fix gny addition of functionality to the network is only of inest

time periodr (namely 10 seconds), it is possible to engineer thggy 54 network operator if it can bring some added-value to his
state store so that it can always satisfy a request for a r@w sl pysiness. WASP mainly allows to trade-off processing power
even at peak rate. and temporary storage against bandwidth, in the same way a

In [4] the authors illustrate thjs principle on an IXP1200 transparent Web proxy does, which — depending on an operator
network processor. With at most® packets per second, each _ may reduce operational expenses or not.

allowed to create 2 ESS entries that last for 10 seconds, 846M  yp|ike transparent proxies however, WASP requires coop-
ephemeral store never gets full. Access to the ephemeral stogration from end-systems, where applications will atta&tS®

can thus be made available to any end-system, without prig§rograms and extract results, but it offers a richer settefat-
authentication or specific accounting, just like IP forwagds  ions. It is possible for instance to efficiently locate thparty

offered to every machine connected to the network. services along a path, control one’s flow rate or locate peer s
tems that own a replica of a wanted piece of data.
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micro-engine®r MES) for fast-path functions and a StrongArm
for control and management. We can also note the presence of
_Figure 1: IXP2400 network processor structure diagram, t&teo with tim- memory units of different technologies, each with its own ac
ings reported by [14] cess characteristics (such as commodity DRAM with high ac-
cess latency but efficient burst transfers) and size linf-
Locating available members of a peer-to-peer applicatiograms on the micro-engines are directly exposed to thosk har
(e.g. grid computing, file sharing, maintaining virtual cdie =~ ware details, and optimising the placement of data strastur
nates) in a decentralised fashion for instance, typicadyuires  on the right kind of memory is usually required to achievedjoo
scanning large parts of the Internet (e.g. using randomty ge performance.
erated addresses [10]) before a contact node can be found. We A determining aspect of NPU programming is the pursuit
have shown previously [11] that having 10% of a communityof wire speedprocessing. In other words we want to ensure
connected through routers offering ephemeral storageisgin  that our network device is capable of fully utilising the it
to find a contact node with only a small number of probeslinks when it receives enough traffic on its input links, even
Moreover peers that are attached through a WASP router willvhen all packets have minimal size [1]. If a router fails toemne
almost immediately discover peers running in the same I&P, p this requirement, an attacker can easily deny routing teroth
tentially reducing long-distance traffic. flows with a traffic volume that the router should handle with-
We also previously illustrated the use of WASP and epheout problems. In order to keep the output link busy even when
meral store to allow an operator deploying an applicatioges  the processing time exceeds the transmission time of a ralnim
fic service (such as a proxy/depot, a media transcoder or-a sypacket, NPUs typically feature massively parallel araitees
tem for merging results of grid computations) to make the serthat allows for pipelining of sub-tasks and parallel exeoubn
vice visible to end-systems establishing a connectionugjino  different packets. On the IXP2xxx, each micro-engine has 8 i
the network [12]. dependent hardware contexts and an arbiter that allow @noth
We believe that in the context of an increasingly flatteningcontext to be executed on the ME while the previous context is
Internet [13], where major content providers are pushimgrth waiting for a memory or I/O access to complete.
WAN closer to the connectivity providers, a generic mechiami
for enabling _such interactions cguld be poth technicalgbie 3 The WASP Platform
and economically sound, especially as it allows one to decou

ple hardware upgrades from application-level innovatiand The WASP router combines an unmodified forwarding core,
improvements. It may also be useful for an operator that hagyrrounded by WASP filters, each associated with a network
special interest e.g. in grid computing and wants to differe jnterface. A packet crossing the router is thus first proeess
tiate his offer with additional services, but has no direeyw py the WASP filter associated with the receiving interfabent

to remotely configure customers’ software (e.g. a natioeal I handled by the forwarding core (which will e.g. lookup the

search & education network). forwarding table and dispatch packet to the proper outpa)ca
and finally processed by the WASP filter associated with the
2.4. 1XP Network Processors output interface, as shown on Fig. 2.

Network processors (NPUs) are programmable chips de- This overall design is inherited from the Ephemeral Store
signed to replace the dedicated circuits that used to emep |  Processing (ESP) router [9] and has strongly helped in iegch
cards in routing equipments. The term covers a large diyersi network-friendliness. As the core of the router still opesdike
of designs, but on most of them, we can highlight the presencg regular router forwarding engine, the only notable déffere,
of acontrol core(typically an embedded RISC processor), andas far as forwarding is concerned, is that filters introdunee t
a series ofdata-processing core® perform custom functions possibility for a packet to be dropped pro-actively (jusifas
on every packet. The chip usually also features co-processoqueue was full) or anticipatively be returned to its soujast(
that assist the other units in specific tasks such as chesksunys if the TTL limit was reached).
data transfers, lookups, encryption, etc. Each WASP filter consists of a dedicated ephemeral state

In this paper we will focus on the Intel IXP2400 depicted store (ESS) and a virtual processor (VPU) executing WASP
on Fig. 1, which features eight micro-programmed cores (the
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programs embedded in packets passing through the filter. Duvariables will indicate e.g. the IP address of the node, @&nod

ing its execution, a WASP program only has access to its owlocal timestamp, rough state of the output queues of an-inter

scratchpadSp (packet-carried variables) and a set of ESS enface (to allow packet “sensing” congestions). They cousbal

tries (B4, Es, . ..) identified by thekeyscarried with the packet. indicate whether a given link is wireless, its error rate padk

The sole effect of the WASP (or ESP) filter is to transform éhes bandwidth. We tried to keep such information minimal, as net

entries intoS,, E1, EY, . .. and to decide on the packet’s fate. work operators are typically reluctant to disclose any infa-

All other state on the router (e.g. FIB, MIB, queues) and i th tion about the internals of their network. As a rule of thumd w

packet (forwarding headers and payload) remain unchanged. suggest that information is eligible for environment vhhés
WASP departs from the ESP design by expressing the funmnly if it is already possible for end-systems to infer thedbi-

tion that performs this transformatiam the packet itseJ/fviaa  mation through active measurements.

bytecode program that will be interpreted on a virtual psace Finally we extended the semantics of the ESS itself. While

sor associated with the ESS. Comparatively, in the origi®?  entries in ESP always have public visibility, WASP also sup-

packets just contained operands and an opcode selectirgf oneports protectedentries that can be modified only by the net-

the pre-compiled transformation function — some of which re work operators and optiongrotocol-privateentries that are

quiring over 20 lines of pseudo-code for their description. accessible only to packets using a specific program. As we
We also decided to drop ESP’s “central” store, which couldshown previously [11, 12] this enables applications ojegat

theoretically process every packet crossing the rout@msore  on more sensitive data such as locations where traffic cauld b

a scalable architecture where extra functionalities atelyso redirected.

provided on line cards. We compensate this limitation tgtou

“admin packets” that may originate only from management sta3.2. Building for Safety

tions of a given network domain and that are given the ability The challenge of safety in active networks is essentially
to commit a write inall the state stores of a node. twofold: execute third-party code without putting the @t

Compared to most interpreters featured in active routees, t a¢ risk (e.g. ensure there will be CPU and memory to sustain
VPU found in WASP is extremely simple and lightweight. We gypmitted packets) and allow applications to control tHeiw
refined memory access opcodes and ALU workflow to allowyithout raising threats on the network (e.g. avoid those pro
both compact encoding of programs and efficient exectition grams to flood hosts/links). Though we exploited the results
while keeping the interpreter compact enough to fit in a sinyng guidelines of previous active network research (e ])[1
gle microengine of an IXP processor. Unlike most virtual ma-most of the safety issues were fortunately simplified by VPU
chines, the VPU has no heap to manage, only performs ONfesign, removing the need for run-time checks.
cycle arithmetic operations on integers (e.g. no float, no di Network resourcesisage is at worst similar to the regular
sions) and its whole state is reset every time a new packet igse in IP networks, thanks to the filter-based organisagon:
processed. ther the filter drops the packet, or it lets the legacy coredlean

] - it. If we ensure that et ur n operations can happen only once

3.1. Improving Utility for each packet, WASP trivially never introduces loops ia th

The original ESP router allowed interesting interactioias v network, nor does it flood (or help flood) hosts and links. We
the ephemeral state store, mainly illustrated in the cdmtere-  should stress however that if we attempt to extend the func-
liable multicast transmission [15]. Yet, the programmingdal  tionalities of WASP, we need to ensure that we do not break
remained tedious to use and master. For a given problem whetkis property. While we initially planned to allow WASP pro-
the designer has the feeling Ephemeral State Store could lggams to alter the destination of their packets in a restliotay
helpful, it is at best unclear how to combine available fiord  [17], it turned out that this could not be implemented sately
(in a sequence of packets) to achieve that goal. In many othédess forwarding infrastructure guarantees that packémate
situations we just experience the frustration that theatpmrs  from their respective source address.
defined are too specialised to be of any use. Similarly the simplicity of the VPU and its minimal set

In contrast a bytecode-based encoding of the functions abf opcodes allow us to guarantee that processing time of any
lows the application designer to express the exact oper&dio packetP is O(|P|), where|P| is the length of the WASP pro-
be performed by each WASP packet. We also provided newram attached t@ in bytes. This is possible thanks to the fact
“micro-operations” through the bytecode interpreter thate  that we forbidbackward jumpss in SNAP [5], allowing only
not found in any previous ESP function, such as the ability fo if-elseblocks, but no (wild) loops. By also forbidding complex
a packet to return to its source. arithmetic instructions, we ensure that all microbytean be

To further extend the utility of WASP compared to ESP, processed in a similar time, which prevents attacks usirapan
we allow the bytecode to access per-interface and basieroutnormally high amount of “heavy” opcodes (suchdas/). If we
setup information (depicted on Fig. 2 as “environment vari-enforce a restriction on the number of ESS references agmogr
ables” memory bank) and network-layer packet header. Suctan issue, the code length (not its content) is thus sufti¢gen

predict execution time.

IMainly through optimising for sequential access to packetides

2with the notable exception of ESS access instructions



The most challenging checks to ensure safety of an active |16 mwaueves] == ==~~~ ~ | Np || Micro “I
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router come from memory protection and the need to avoid
router state corruption or information disclosure. Thia ispe-
cific issue that should not be confused with access control to E,}RX s

Gb Eth

/Gb Eth
B

application-maintained state. In most active networks, it

tual machine processing application-specific code hassacce

to sensitive router state such as forwarding tables or packeigure 3: Internal structure of our WASP/ESP packet filter. MES do

gueues. This access can either be direct (e.g. the data 8isi WASP/ESP processing and we have one “spare” ME.

VM'’s address space) or indirect (the VM relays objects betwe

trusted address spaces), and designers mostly rely orglstron

typed languages to avoid abuses through wild pointers.

In contrast the VPU has an extremely small address space
(256 bytes), which only contains data that WASP bytecodk is a
lowed to access. Packet-bound variable are not allowedt@ gr
beyond the room initially allocated by the sender, and nodeRate Control Given that routers export a hint on the depth of

of the two paths where traffic towardisand B may inter-
fere, or directly return the address Bf(the last common
router) where deployment of a duplication/merging func-
tion could be interesting.

resident data are only accessed through the key/valudaoter output queues, we can program packets that drop them-
of the ESS. The absence of any type-checking in the VPU is selves if the router appears congested, making room for
possible because the VPU ignores any type except integets, a “more important” data in the same flGWWASP also of-
because we leave the organisation of ESS entries and scratch  fers the flexibility to detect losses between any successive
pad entirely up to the application. Unlike scripting langes WASP routers and to prepare state so that such losses are
designed to be used as glue between sensible services, we do reported back to the source by e.g. acknowledgements.
not need more typing in the case of WASP. The positive impact of such decisions on the quality of

Rather than issuingeferences WASP programs look for a video stream has been demonstrated in many former
randomly generated 64-bkeys and access control is defined works on active networks [19].

on a per-entry basis: either the whole entry is publicly lavai ] ) )

able (and anyone knowing its key can alter any bit of it) or it Service Advertissment WASP packets coming from manage-
is an operator-installed, read-only entry. This gives esetktra ment stations in an autonomous system drop the IP ad-
advantage that packet-bound variables can be accessetlyire dress of a service provider using a well-knopmtected
without the need for any unmarshalling operation — which may key (e.g. a hash of the service name), so that a modified

account for e.g. up to 42% of the processing time for simple version of the path-scanning program can report to the
packets in Java-based active networks [18]. end-system where the wanted service can be found [12].

At each router where the advertisement is stored, the
3.3. Example of Use TTL of the advertisement packet can be used to keep only

We insist on the fact that the WASP programming model the closest provider fronf.

allows the network to mix WASP-capable and legacy routers.  \ost of these programs can of course be extended or mod-
Applica_tions using WASP will thus have to take this into con-ified to better match application needs. Scanning, for imcsta
sideration and degrade gracefully when we have less “cabper s not limited to IP addresses of routers, but can be extetaled
ing” routers. This could mean less information availablé®  any piece of information available in the ESS or in the enviro
end-systems, sub-optimal placement of helper proxies, etc  ment variables memory bank.

. . S More sophisticated versions of the common trunk identifi-
Scanning path The most obvious WASP application is a trace- cation could use a bitmask in the ESS in order to quickly get

route-like packet that records information about routersa snapshot of a full sink tree. Another possible extensida is

Irtecrlj)if:ssét ';'eo;’;te\genr’ewz(l:i; regrulri; tra\fvezggtig:log;iwmake use of a shared secret key so that members of a commu-
q . P b P . Xity can mark path on the Internet that are under measurement
store 30 hops in a single packet. It is also possible t

. O(e.g. bandwidth-wise in a peer-to-peer distribution nekjto
program the WASP byte code so that only a portion of the "~ - , i
path is recorded, or that the packet returns after collgetin avoid oscillations due to simultaneous probing of a pathnay t

airs of nodes.
n addresses. P

Common trunk Given three nodes, A and B, a very sim-  3.4. WASP on Network Processor
ple use of the ephemeral state allowgo tag routers An application on the IXP is typically split up into several
on pathS — A with one packet while a second packet components that will run on the different processing eleimien
will travel along pathB — S and record the addresses of Pipe-line processing is typically assisted by hardwsmetch
tagged routers This can identify the common pa$t- R~ rings programmed to relay packet handles and metadata be-
tween MEs. Note that the packet content is transmitted iyrec

3This mechanism was initially described in [15], though nofi¢he ESP
operations provide support for it 4E.g. dropping B-frames in favour of I-frames in an MPEG flow [17]
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Figure 4: Layout of the Ephemeral Store, showing 3 kdys (K2 and K3)

hashed to the same valéeand chained in the entry table, with their respective Figure 5: Cumulative Distribution of packet forwarding latg at low through-
creation time ¢time). put forcount instruction

from 1/O buffers into DRAM (by the RX microblock) and only Most our operations will not manipulate just a single 64-bit
meaningful parts will be fetched on demand, e.g. by the Elassya|ue, but rather operate dnplesin the ESS that need to be
fier microblock CLS. manipulated atomically. We allowed WASP to use two consec-
The setup of our proof-of-concept implementation is de-ytive entries of the ESS to offer a 32-byte memory bank where
picted on Fig. 3. We limited ourselves to layer 2 forwarding elements of a tuple can be grouped together under a single key
(plus WASP processing) and the XScale’s role is limited toThe nap microbyte allows such an entry to be accessed as a
microcode loading, monitoring and debugging. We kept ESRecond bank by the VPU. WASP programs rewritten to take ad-

and WASP apart, on separate MEs, to ease individual testing @antage of this alternate access mode are referred toreg™
each implementation. Each of the 4 MEs doing WASP or ESRy, the following section.

processing is connected to the classifier with 16 indepeanden
queues and operates its own ESS.
Out of the 256 MB of DRAM available on our Radisys 4 Performanceon |XP2400

ENP-2611 card, 192 are under the control of the Linux ker- For our performance analysis of WASP on IXP platform, we

stly focused on two “reference” functions that were alsea

ate the overhead introduced by bytecode interpretatiomstga
a pre-compiled version of the same function. Tloaint func-
tion only needs one variable in the ESS that is used as a gounte
Each packet increments the counter and drops itself if tha-co
ter is above a given threshold. Thel | ect function is used
to aggregatesamples fromn sources, using one ESS variable
to store the temporary aggregate for thesources that have
already been processed, and a second variable to countthe re
mainingn — k sources that should still give their sample. A
col | ect packet is forwarded only when thesamples have
been aggregated and then continues towards its destimngition
the aggregated sample.

The pseudo-code farount andcol | ect functions, as
well as their translation in WASP bytecode and an example of

in SRAM and arentry tablehosted in DRAM, where each en-
try consists of a 64-bit key, its associated 64-bit valuerapth-
data for a total of 24 bytes. Every slbin the hash table points
towards the oldest entry in the store whéresh(K;) = k.
Other colliding entries (e.gK> and K3 on Fig. 4) that hash
to the same valué are simply chained in their creation or-
der. Thanks to this organisation, periodic cleanup of th8 S
greatly simplified. We just sequentially scan entries in IN\RA
starting froml ast _cl ear ed mark until we hit an entrne
with e.ctime + 7 > now. When e.g.K; expires, we replace
pointer in SRAM slotk by a pointer toKs (e.next) and we
advancd ast _cl ear ed.

The initial implementation of ESS on IXP was borrowed

from [4] and was accessed through two opcod@mkup and how they can be used on a merging tree is detailad20].

| nser t) that mimics statementsl = get(key) andput(val, Through the rest of this documenty * prefix will be used

key) found in the pseudo-code of ESP functions. In previousto refer to a WASP packet (e.g¥ count ) while E: * prefix
work on x86 architecture [17], we explored various ways te op rlgfers to ESP packets '

timise ESS accesses to compete with the performance of ES
A first approach, later referred to akaché, simply adds a
one-entry cache storing the last key looked up and the asldre o ] . )
of the corresponding entry in DRAM. The effect is that we im- Al latencies in this section have been measured directly
mediately know where to write back a value with iheser t on the IXP, through instrumentation of the “receive” (RX)dan
microbyte. This saves one hash table lookup in SRAM and
chain walking in DRAM. We observed that maintaining a larger——— , .

. A lighter version can also be found ahttp://www.run.monte-
cache is not worth the effort for WASP programs. fiore.ulg.ac.be/"martin/resources/wasp-prm.pdf

é.l. Latency Measurements
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Figure 6: Cumulgtive Distribution of packet forwarding latg at low through- of the samples are located no further tli@ms from the clos-
putforcol I ect instruction est step centre — which corresponds to variance in latency of
DRAM accesses. Those steps are intriguingly spacéd by:s

“transmit” (TX) microblocks provided by Intel as part of the on average, with very small deviation, independently oftiee
IXA SDK, after proper synchronisation of ME timestamp coun-tocol or function considered. By deeper inspection of tharch
ters. The 1Gbps interface cards of the PCs in our lab indeestored in the ESS, we can state that this is not an artifact of
proved to introduce load-dependent defaysat interfere with  some hash collision, nor an extra delay incurred by the icreat
all trace-based measurements — not mentioning NTP offsety cleaning of entries.
seen as high as 1. Taking advantage of the internal structure  Actually, if we look at latencies until packets are queued
of the RX and TX code, we further separated latency measurde TX microblock, we get a smooth, Gaussian-like distriboti
ments depending on whether packet size was below or aboviogether with the fact that the delay 86 ns almost exactly
128 byte$. This later allowed us to isolate measurements forcorresponds to the time required to transmit a minimalesize
a specific class of packets by artificially “inflating” all @h packet on the 1Gbps medium, it sounds reasonable to consider
packets we submitted to the IXP with padding bytes. that the “stepping” is introduced by the transmit hardwage d

In the conditions described above, our WASP filter forwardspending on whether it is found idle or busy when our transmit
W count packets with an average latency of 6,84 Dumb  request is submitted.
packets of identical size have an average latency of 2s481d
W count packets that are not processed (i.e. going through.2. Throughput Measurement
classifier tests, but without bytecode interpretationptak av- 4.2 1. Methodology
erage2.91 us. The same experience repeated vétrcount The maximum capacity of our traffic generator (on a dual-
packets showed an average latency dff ;.s. Comparatively, qre Xeon, 3Ghz) was 907 Mbps with all packets having the
the IPv4 forwarder demonstration application [21], takege 1 ,5ximum size and 170 kpps (98 Mbps) when using only pack-
erage 6.92:s to forward a 64-byte packet under 25% through- (g of minimum size, which is way below the theoretical max-
put. The results focol | ect (Fig. 6), on the other side, are y,m throughput of a single port-pair Gigabit Ethernet 884
less impressive: 136% of the native version. WthS s for — ypns) - In order to keep our tests independent of additional
WASP against.29 uis for ESP, we clearly see the impact of a gquipment (e.g. aggregating hubs) and to minimise the amoun

longer WASP program here. _ of code to be modified on the network processor, we opted for
We repeated the experiment with the one-entry cache ery nat.software, half-hardware “traffic accelerator” best.
abled, which only led to a slight improvement @87 u.s and As depicted on Fig. 7, we connected port 2 of the ENP-

0.78 s respectively (se®VASP /cacheeries on Fig. 5). HOW- 5511 poard to a single test machine and wire the two remaining
ever, as reported through théASP /mayseries on Fig. 6, mak- s together. We have then rewritten the classifier'ssrtde

ing use ofmap strongly improved the latency &f col | ect enforce the following policy:

packets which is now almost equal (101%) of native ESP coun-

terpart. Another good thing is thahapalso achieves good per- 1. regular packets coming on port 2 are returned to port 2;
formance (106% oE: count latency) although it waalready 2. WASP/ESP packets coming on port 2 are delivered either

using only one key. It even performs better teachealthough to port O or 1 depending on a bit of the Computation 1D
it now transfers twice as much memory, thanks to DRAM burst  (CID) field;
transfers. 3. packets received on port 0 are delivered to port 1 and vice-

We can also observe on Fig. 5 that the latency distribution  versa.

is mostly split into two (or sometimes three) steps and tb&t 9 The result is the creation of a two-way loop involving one

WASP/ESP processing and one transmitting delay that keeps
SLikely due to interrupt moderation mechanisms on Broadcom NetXe packets until they drop themselves. We can “load” this logp b

BCM5701 and on-board Intel 82541GI/PI Gigabit Ethernetticaler ding i tal traffic f the test hi d wateh t
"Which is the size of am-packet the atomic data unit between the switch sending incremental trafnc from the test machine and waie

fabric interface and the processing unit of the IXP




#queues|| 1 2 4 6 8 16 length:#ME || 2:1 6:1 | 10:1 2:2 6:2 | 10:2
WASP (1ME) || 315 | 528 | 653 746 764 788 ESP || 1502 | 1296 | 1124 || 1733 | 1470 | 1314
ESP (AME)|| 390 | 672 | 1096 | 1258 | 1430 | 1546 W /cache|| 946 | 902 | 826 || 1858 | 1686 | 1476
WASP (2ME) || 315 | 632 | 1026 | 1190 | 1293 | 1552 W/map | 774 | 730 | 680 1526 | 1396 | 1225

ESP (2ME) || 390 | 779 | 1298 | 1603 | 1744 | 1744

Table 2: Throughput (kpps) with 16 queues, depending on ¥keeage hash
Table 1: throughput (kpps) of WASP and ESP microblocks, @siogcount chain length, with one (left) or two (right) microengines.
packets with single entry per hash chain and varying numbacidfe queues
and hardware contexts.

We then reproduced the experiment with 1 to 8 threads bal-
. . . anced on two different MEs to estimate how increased CPU
|mpactor_1the system. We of course adjusted ESP functions a wer improves the performance. A “4 threads” setup thus
WASP microbytes to allow unlimited threshol_ds. . means that we will have 2 active queues served on each ME.

Rule #1 ensures that the loop remains noise-free during OUC(,omparing rows 1 and 3 in Table 1 confirms that the WASP

measurements. We have indeed observed that the test maChiH?erpreter is CPU-bound. Indeed, while balancing the load
automatically exchaqges a few.packets every time we reloagn two different MEs leads to throughput increased by 20%
the test software, which may quickly lead to an extra 200 kpp%\/ith ESP, WASP sees its throughput improved by 57 (4 queues)

stress on the Ioop.r]TemEorariI?Z(:I;s;izt)ll(ing “.Jle :LI we (;an:‘meato 70% (8 queues), and the maximum throughput when all 16
sure a maximum throughput o pps in the loop for reg-queues are used has almost doubled.

ular” packets, which is 99.86% of the theoretical maximum
throughput of a full-duplex Gigabit Ethernet link. Any thugh-
put limitation that we will measure with ESP and WASP pack-
ets will then be attributed either to WASP/ESP microbloak, o
to WASP/ESP specific part of the classifier.

4.2.3. Increasing Hash Chain Length
In order to estimate performance of a saturated store, we ex-
tracted chains of colliding keys observed in the store amd ge

) r for h individual “com ion” rieskopack
We also observed that packets that simply start wigvi® erated for each individual *computation” a seriesigbackets

microbyte can be processed at a maximum throughput of 2 96 at will reference one of thé keys that belong to the same
y P gnp .Chain, therefore experiencing chain traversal of lengdmfrL

kpps by a single ME. The same program padded to 16 mi;

crobytes and carrying one bank of unused data (thus with a When processing on a single ME, we can note that the gap

similar fetch/chgcksum C.OSF thanw count) will grow to between ESP and WASP performance is reduced (from 50 to
100 bytes on wire and will limit the throughput to 2046 kpps 40%) as the average chain length increases. We can also ob-

- 0 ) . ;
98.22% of the theoretical maximum for packets of that size. serve that the relative throughput reduction is less i in

the case of WASP (the worst observed throughput is 87% of the
best one with WASP, against 74% in the case of ESP). Table 2

Using the_ “transmitted packets” counter of the TX micro- gives the observed throughputs for b&hcount and the two
block, we estimated the throughput of flowsaiunt packets flavours of W count already discussed in section 4.1. Sur-

“Si”g both WASP andl ESP Whi_le varying the_gmount of pro'prisingly, when we fully load the two MEs, the WASP packet
cessing resources activated. Since the classifier useslfhe C

usingl ookup outperformghe native implementation offered

figld to select the'queue a packet should take to reach WASB)y ESP, and this regardless of the ESS state. The final expla-
microblock, and since only one hardware _thread can operate qiinn has been found in the code: the ESP microblock — in its
?;r? dql\ljg;?caafnabtclen;iltiy/veeai?tilgiesd S?r?]CI?erZSXr\:C?r?n¥htLea? Brrent state — will re-generate the CRC checksum and update
ues allowed for CID in the traffic Znerait)o); The begt erfor—pa-Cket header and operands in DRAM regard!ess of the compu-
-9 ) P tation performed. The WASP VPU comparatively keeps track
mance of ESP and WASP on a single ME correspond to 58 angk yata and state “dirtiness” and will only issue a DRAM up-

38% of the ma_ximal throughput, respectively. : date when the content of the packet has been modified — which
By translating throughput measureméritn) (wheren is never happens in the caseaxfunt
the number of active threads) into inter-packet delBys) = '

n/T(n), we can observe that each new active thread on the Mg 4 Throughput of Collect function

increases that delay by, (almost constant and in the range _ . .
800-900ns), makingD(n) ~ D(1) + (n — 1)8 almost linear We repeated t_he experience W(Ib.| | ect pa.ckelts using
with n in the case of WASP. We cannot apply a similar model toOnly thekth entry in chains. Suc_:h chams are built vwibun_t
ESP, as it uses a special read-and-modify bus cycle thatesdu packets that drop themselves immediately after executin.
vertical bar in Fig. 8 reports the throughput of one scen@eq,

the available DRAM bandwidth as the packet rate increases. " . . )
While there are only 8 hardware threads on a ME, we car?'ther ESP or WASP, and chain length) for increasing amount
9(; processing power. We can observe here again how ESP takes

see on Table 1 that all the 16 queues have been required - )
achieve the highest throughput. This can be charged tortee ti advantage of additional threads and how WASP rather benefits

required to probe 8 (empty) queues and has been avoided in fLIlrom an additional ME, even with the same number of threads.

ther tests by properly balancing thective CIDs among the 16 . We have seen in section 4.1 that we could cOmMe up with a
available queues (rather than using queuds.1 similar latency for thecol | ect operation for a single thread,
o and as expected, on a single ME, WASP remains way behind in

4.2.2. Count Performance with 1 Entry per Chain



Compared Collect Throughput 5. Towards Deployment

With latencies below Zs and throughput up to 1.5 Mpps,
WASP can offer an interesting trade-off between flexibitityd
performance from an end-user point of view. From an oper-

1300+
1200

1100
1000+

:gg =i ator's perspective, hqwever, the amount _of resources nedjui
o 7001 I Lx16th for a guaranteed service level are prohibitive.
Q. B3 2x4th . . .
o 600y B 1xth While the WASP service model allows partial deployment,
500 - W 1x4th

and even deployment only on some interfaces through sikiekic
filter boxes, it still lacks some level of fine-tuning that vidal-

low the operator to decide what amount of resources he’s will
ing to dedicate to WASP traffic, and protect his router agains
e w2 E4 W4 E6 W6 E8 W8 E10 W10 unusually high demand for WASP processing. This section

explores possible adjustments to the proposed impleniemtat

Figure 8: Measured throughput (kpps) for thel | ect operation with chain ~ that can take advantage from the knowledge of “normal” WASP
length varying from 2 to 10 entries, for both ESP and WASP.(&§is ESP  load to lower the required resources. Any such approach, un-
walking a 6-entries c_hain), varying the amount of threads MiEdused for less properly protected, becomes vulnerable to attacksenvhe
processing (€.g. 2x8is 2 MEs, each processing 8 queues). a group of hosts craft a flow of WASP packets exceeding the
available resource, therefore degrading or denying WASP se

terms of throughput (see e.g., the 1x8 series). With two ME¥ice to other packets.
doing WASP processing however, we can now slightly outper-
form ESP. In this case, both ESP and WASP have to commi¢-1. Alternate Structures for the ESS
the packet variables into DRAM. The performance improve-  The organisation of the ESS as a hash table, as presented in
ment can thus be fully attributed to the reduction of memorysection 3.4, has clearly the drawback that excessive chiagth
accesses during the ESS entries lookup. This is true as bng snay degrade performance up to the point that service will be
WASP does not hit the memory bandwidth limit, which hap-denied. As a first defensive measure, we can salt the hashing
pens withiV10. Indeed, while WASP requires less memory ac-function with a local random value and enforce a maximum
cesses, each memory access transfers twice the amounesf bythain length, so that attackers cannot craft a collectigraoket
per access, theoretically requiring more DRAM bandwidtmth that ends up in the same chain. Still, the total amount of keys
ESP to sustain the same number of packets per second. we could store in the ESS is limited by the amount of expensive

Rather than reading a full bank (48 bytes, including meta-SRAM which defines the number of chains the ESS can have.
data) while walking the chain, we repeated the experimetit wi We considered the alternative of balanced trees for the ESS,
a modifiedmap implementation that only fetches 24 bytes dur- as these have better worst case. The constraints would be tha
ing chain walking, and then issues an extra access to ge¢the rthe tree can storg0 million items® with a maximal depth of 8
maining 24 bytes once the correct entry is found (the “max” selevels. As a first estimation, this is only possible if nodes have
ries foriW8 andW10 on Fig. 8). This indeed slightly improved at least a degree of 9, but this could not be arranged so that th
the throughput fol¥’8 and W10 (from 924 to 928 kpps and node (9 pointers and keys) fits the transfer registers ofgesin
829 to 840 kpps resp.), but actually degrades the perforenandviE thread.
for chains of 6 entries and below. As a potential alternative  Another possible option would be to use a foresiVofrees
we could let the extra 24-byte transfer happen while the VPUhat satisfy the constraints mentioned above and to map each
continues to process the next instructions, and susperui-exe key to a single tree without memory lookup (e.g. through dhas
tion only if the data are still missing when we further advanc function). As a first estimatiorg'® B+tree holding at most 4
in the memory bank. This is typically an efficient programgnin keys per node would meet the constraints. However this ap-
technique on the MEs, and our first estimations suggest that wproach would involve a memory overhead of 90% of the values
could achieve up to 877 kpps fov' 10. It would require, how-  stored®, and we expect difficult implementation of insertions
ever, a significant revision of our code since we need to tete@nd deletions in a way that keeps the periodic store cleanup
and update the partially mapped bank transparently. lightweight enough (in terms of additional DRAM bandwidth

In other words, if we were to implement both WASP and an-requirements).
other function that is more memory-bound on an IXP network  The forest’ approach would not completely solve the case
processor (such as IP table lookup or execution of pre-dechpi  where one of the trees receives significantly more keys than t
operations on the ESS such as ESP), it would be preferable to
balance the amount of threads we are willing to dedicatedo th
WASP interpreter on the available microengines (thus sharing ~ ®Actually 29,660,000 items, assuming a top rate of 2,966 Kppd, all

. . - WASP packets creating an entry for 10 seconds
microcode and local store with the other functlons) rathant SWhich we experimentally determined as the maximal number of DRAM

grouping them on a single microengine. accesses we can afford per ESS lookup.
10Assuming 32 bytes of value per key, keys alone accounting3et dver-
head
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rest of the forest either, and is thus just a way to allow “leng size might differ, and thus this cannot be enforced as a arle f
chains” with the same amount of DRAM requests. It could thus‘fair” packets globally.

be preferable to stick to the hash table approach, but to-oper Compiling bytecode into native code is a well-known tech-
ate it fully in DRAM, and to dedicate enough memory (28MB nigue used to speed up execution of bytecode languages ,which
per store) to hold the hash pointers in order to keep all shainif applied here, could allow us to sustain a given traffic with
short enough, though this still has to be confirmed by aduliio reduced CPU power. In the IXP network processor, each mi-

performance measurements. croengine has its own control store, capable of storing 4096
instructions (callediwords, and only the XScale core can alter
5.2. Best-Effort ESS the contents of those control stores.

Rather than engineering the size of the state store to allow Our measurement shows that, below 1pf{rds, the con-
every packet to create new state, which requires up to 1.3 GEOI store need8.25 ;s perpword written. It must also be noted
for a full-duplex Gigabit Ethernet interface, an operatagih ~ that reprogramming is only feasible when the ME is halted,
prefer to estimate how much memory is sufficient to sustairfVhich leads to an extra delay 86 us in our setup. The hand-
daily traffic through statistical analysis. Users wouldritex- ~ craftedcol | ect function of the ESP filter, for instance, re-
pect the operator to ensure fairess when load is increased KUires 60uwords of unique code, and we estimate that a di-
yond the level the installed amount of memory can supportf€ct translation of WASP microbytes into IXP native codeldou
When deciding whether a WASP packet should be allowed té2ke up to 10Q:words. Assuming that both the XScale and the
create a new entry, it would then be interesting not only tm¢o  ME are ready for the reprogramming of a filter function sim-
how many entries have been created by gigregaten the last  ilar to col I ect would thus cost between 45 and yis. If
T seconds, but also how long the current packet is. we suppose that this allowsvd col | ect packet §.45 is) t0

However, the potential denial of state creation in a router i have the processing time & count (2.57 ), it still takes
dependently of other routers’ decision may be inconverfiant 63 packets to amortise the cost of micro-store reprogragmin
applications deriving e.g. from common trunk identificatio In these circumstances, only very specific traffic patterns
Indeed, when creating state in nearby routers, WASP pragranfould benefit from just-in-time compilation approach wikM
have no guarantee that further routers will also accept tete.s N€tWOrk processors. Yet, if the node can identify thenost
Still, if she optimistically creates state in routers closker, the ~ used WASP programs whose sizes do not exceed the free space
user consumes quota for her aggregate and might see fugther N the micro-store after compilation, it would be theoreitic
quest denied later on — just when she gets the chance to cre@Ssible to strongly improve the performance of the nodéewhi
state near the core. keeping the ability to processy program and to dynamically

In case two neighbour domains support WASP and have néidapt to a new set of popular functions.
gotiated a “fair rate” of WASP entries created per second, it
would be preferable for applications to be notified (e.gotigh 5 conclusions
node environment variables) whether their packet are “o pr
file” for upstream entry allocation. A WASP program could  We designed WASP after lessons learnt from former active
then avoid creating state nearby unless it is “blessed” By throuters, taking into account constraints in network preoes
router and receives the guarantee that it can install stateei  programming. The result is a scalahligtual processorthat

next domain as well. can safely interpret user-emitted bytecode on router drds
This has been achieved at the cost of a restricted progragnmin
5.3. Optimising through compilation model that does not allow most of the constructs found in a

Although our interpreter is capable of latencies appraaghi 9eneral-purpose programming language. Yet, WASP bytecode
those of the ESP prototype and throughput slightly outperfo is expressive enough to implement several applicatiocifpe
ing ESP, we must not forget that WASP would keep the ALUN€twork measurement and control protocols.
of microengines almost fully busy, potentially leading tgirer We have implemented and tested WASP VPU on the IXP
power consumption. Moreover, te@unt andcol | ect pro- 2400 network processor in a *filter box” setup. Under low lpad
grams used in our tests remain relatively short (16 bytes)-co the interpreter is competitive with pre-compiled openasias
pared to the longest program allowed in WASP (64 bytes). ~ S€en in ESP and the advantage of larger entries for the state
We thus repeated throughput measurements with “benctitore has been confirmed. The VPU processing makes however
mark” packets of variable length, mixing ALU microbytes and More intensive use of the microengines ALU and throughput
access to packet scratchpad variables. It revealed thaugh will not scale with the number of active threads as well as it
WASP processing time increases linearly with bytecode, sized0€S with ESP. It does however scale well with the number of
the slope ranges from 7 to 10 times higher than the one of pack@1|croeng|nesTh|3 advocates for integration of both code (ESP
forwarding times. In other words, on our IXP2400 setup, a 24nd WASP), as well as run-time-compiled optimisations ef fr
byte program should be placed in a 206-bytes packet to ensufslent WASP programs if any, on the same microengine, which
wire speed processing, and a 64-byte program should not p¥ould better balance the ALU usage.
found in a packet smaller than 470 bytes. Unfortunately, for e also observed that the increase of the average chain
another implementation, the ratio between code size arkipac !€ngth in the state store may have an important impact on the

10



forwarding latency of WASP and ESP packets. A mechanisnii4] J. Lu and J. Wang :“Performance Modeling and Analysis of Web
limiting the longest chain will be mandatory to support ag
tions that measure network performance or that try to eefarc

given quality of service. The size of the ESS is thus no longer
the only key parameter for proper ESS behaviour: the amount
of SRAM holding the hash table will define the average chairl16l

length and the average latency of ESS accesses.

We initially opted for a interpreter-based solution beeaus [17]
IXP2xxx series, unlike other NPUs [6], appear poorly suited
to Just-in-Time compilation. It is clear however that an IXP
2400 barely has enough resources to handle a couple of Gst?]

flows full of WASP packets. In a production version of WASP,

performance (and number of MEs available for other compo#{19]
nents) could be strongly improved by a control componerit tha
would compile native code chunks for the most frequent func-
tions present in the bytecode. How we can efficiently idgntif [20]
whether we have or not a native code chunk for a given packet

is still ongoing work.
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