Published in: Computer Networks and ISDN Systems, 25 (1992), 23-41

A framework based on implementation relations
for implementing LOTOS specifications

Guy Leduc

Research Associate of the National Fund for Scientific Research (Belgium)
Université de Liege, Institut d’Electricité Montefiore, B 28, B-4000 Liege 1, Belgium
Tel.: + 32 41 562698; fax: + 32 41 562989; e-mail: u514401 @bliulg1 1 .bitnet

Abstract

A framework is developed for studying the implementation process, as a stepwise process in which
an abstract specification is successively transformed to reach a final compilable specification adapted
to the computer environment. In this context, an implementation relation is referred to as the relation
which should link any “valid” implementation to its abstract formal specification. In other words, the
implementation relation is intended to express formally the notion of validity. Our framework allows
the exact characterization of the transformations which may take place at each step for a given imple-
mentation relation. This framework is essential for dealing with non-transitive implementation rela-
tions. In the second part of the paper, these results are exemplified in LOTOS on some existing rela-

tions, and an apparent paradox is presented. Some new results about these relations are also derived.

Keywords
LOTOS, implementation relation, refinement, implementation process, transformation, conformance,

specification, implementation, abstraction, FDT, process algebra

1. Introduction

In this paper a general mathematical framework is developed for reasoning on the implementation
process. The implementation process is the part of the design process dealing with the implementa-
tion or realization of a formal specification, in which an abstract specification is successively trans-
formed into a more implementation-oriented one. This process is composed of synthesis and analysis
activities, and involves very likely many intermediate stages before reaching a final (compilable)
specification [3, 14, 5]. Moreover, the successive transformations which may take place at each stage
are numerous; which implies that many final stages may be derived from the initial specification.
However, the intent is to reach a final stage which is considered as a “valid” implementation of the

initial abstract specification.

One of the main problems in this context is the formalization of this notion of validity, i.e. the nature
of the link which should hold between the allowed final stages and the initial stage of the implemen-

tation process.

A framework based on implementation relations for implementing LOTOS specifications

Validity as an equivalence

The usual view with algebraic techniques is to require that an equivalence relation is preserved
throughout the whole implementation process. Equivalence relations play a central role in process al-
gebraic languages such as CCS [25], ACP [2] or LOTOS [17, 6] for reasoning about systems and
analysing their properties. Many different notions of equivalence have been proposed, and this is not
surprising since there are many properties which may be relevant in the analysis of distributed sys-
tems [13]. However, these equivalences are almost always based on some observation criterion, i.e.
two systems are considered equivalent if, and only if, they are indistinguishable by external observa-
tion of a certain kind. The main idea is indeed to discriminate systems on their external behaviour
only, and thus abstract away from internal details. However, there remain many reasonable ways to
observe systems [13, 29, 21]. Examples of such equivalences are the observation equivalence [26,

25] or the testing equivalences [4, 12, 8, 15].

This approach ensures that the implementation will behave (externally) exactly as described in the
specification. The structure of the specification may of course change during the stepwise process in
order to be closer to an implementation structure for instance; however nothing changes externally,
i.e. other co-operating or communicating systems are not able to distinguish between any possible fi-
nal stages of the design. In LOTOS, several specification styles have been identified for different
purposes [30]. The implementation process may then be considered as successive transformations of

(parts of) the specification from one style to another one [28].
Validity as a non necessarily symmetric relation

Even if this view is attractive, there is in our opinion a more appropriate view which takes into ac-
count the asymmetric character of the implementation process. Instead of considering that any final
stage should be somehow externally equivalent to the specification, the idea is to define a less restric-
tive and usually asymmetric relation. These relations are referred to as implementation relations in the

sequel.

With process algebraic techniques, such relations have been less studied than equivalences. There is
no well-established opinion on the desired nature of these implementation relations, but some trends
exist however. For instance, it is usually admitted that an implementation may be more deterministic
than the specification. With this view, an implementation relation would be better formalized by a
preorder (i.e. a reflexive and transitive relation) than by an equivalence. A preorder, having an
asymmetric character, defines an ordering among systems. If this preorder is chosen carefully, it can
be interpreted as an implementation relation, i.e. if two systems A and B are such that
B is less (abstract) than A according to this ordering, then it means that in a certain sense
B implements A, or B is a valid implementation of A. For instance, a criterion which may be
formally expressed by such a relation is the reduction of the nondeterminism, i.e. B is a valid imple-
mentation of A if, and only if, B is obtained from A by resolving some (voluntarily) open nondeter-

ministic choices of A.

A framework based on implementation relations for implementing LOTOS specifications

Some implementation relations based on this idea have been defined. They are often (but not always)
preorders. In TCSP, such a relation had already been introduced [4, 16] as a preorder of the failures
equivalence. In CCS, other preorders of various testing equivalences were introduced [12]. And fi-
nally, in LOTOS, preorders of the testing equivalence, as well as a conformance relation, have been
defined [8]. In [21], we have surveyed the main equivalences and their associated preorders, and
tried to relate many apparently different views, based on traces, refusals or acceptance sets, and di-

vergences.

The concept of an implementation relation has also been introduced in other formal models. For in-
stance, with logic-based specifications [11], B is usually considered as an implementation of A iff
B = A, i.e. B satisfies more properties than A. With state machines or I/O automata, a specification
B may be considered as an implementation of the specification A iff there is an appropriate mapping
from B to A [22, 18, 19, 23, 1, 24]. With modal transition systems (i.e. an extension of a LTS with
necessary and admissible transitions) [20], B is considered as an implementation of A iff there exists

a refinement relation between B and A.
Content of the paper

In our framework, we consider a generic implementation relation, called a reference implementation

relation, which is supposed to express formally the notion of validity explained above.
The paper then focuses on the following problem:

Given this reference implementation relation, what are the induced restrictions on the allowed
transformations between two intermediate specification stages in the implementation process? In
other words, how can we characterize the implementer’s freedom at each step as a consequence of

the choice of the reference implementation relation?

The framework is then exemplified by instantiating the reference implementation relation with some

existing relations. Some new results about these relations are also presented.

We have tried to make as few mathematical hypotheses as possible about the reference implementa-
tion relation. For instance, we suppose that it is reflexive, but not necessarily symmetric and transi-
tive. The reflexivity is justified by the fact that a specification is a valid implementation of itself. The
symmetry is obviously not required since a specification and an implementation are not interchange-
able in general. The transitive character is debatable but, in our opinion, not necessarily required.
This point will be further discussed in section 2, and an interesting example of a non-transitive rela-

tion, viz. conf, will be analysed in section 8.

It is important to note that these implementation relations are studied per se, and that we do not intend
to define transformation rules which could be applied in the design process to help in the automatic
derivation of a valid implementation. Our results are however intended to help understand what rela-

tion should hold, and thus be verified, between two design stages for a given reference implementa-

A framework based on implementation relations for implementing LOTOS specifications

tion relation. The results have also been extended to allow local transformations, i.e. transformations
in any LOTOS context. This leads to consider the monotonicity of the LOTOS operators w.r.t. these
relations, or, stated otherwise, the precongruent character of these relations. This framework is
essential for dealing with non-transitive implementation relations. In particular, a counter-intuitive or
apparently paradoxical result has been discovered, which states that the designer’s freedom between

two stages may be greater when the reference implementation relation is more restrictive.

2. Implementation relation concept

In this section we reason in a very general way about the concept and the purpose of a formal imple-
mentation relation. Such relation, denoted imp in the sequel, is intended to express the conditions that
an implementation must fulfil in order to be considered as valid with respect to a specification. We
will not define imp in this section, but rather develop a generic framework where suitable properties
of imp are discussed when we consider the stepwise derivation of an implementation from a specifi-

cation.

A specification is an unambiguous description of an object at a relatively high level of abstraction.
Very often, either the goal is not to implement this object as such, or it is simply impossible to imple-
ment it. There are various reasons such as the level of abstraction, the non-constructive character of
the specification or the specification model. This justifies in practice the need for a transformation
process starting with a very abstract specification and ending up with an implementation. There may

be intermediate stages in this process.

Before going further, let us remark that, as discussed in [7], the term implementation does not mean
physical implementation, but rather a specification at a very low level of abstraction, i.e. a model of
the physical implementation. This makes it possible to include a notion of implementation in a formal
theory. The link between a physical reality and its model remains of course informal by nature.
Therefore, in this paper, an implementation is a formal description at a very low level of abstraction,
which is not supposed to be refined or transformed any further in a formal way. It is thus needed to

translate it or compile it into, e.g., a more classical programming language such as C, Pascal or Ada.

The transformations taking place between the different stages of the design preserve some be-
havioural characteristics while changing others. A less abstract specification is usually required to re-
spect in some sense a more abstract specification, but this does not necessarily mean that they have to
exhibit exactly the same behaviour. For example, the functionality may be reduced or extended, non-

determinism may be removed partially.

The notion of validity of an implementation w.r.t. a specification is not expressed in the specification
itself. This is not surprising and probably suitable because it allows for the definition of several such
notions. The same approach has led to the definition of several equivalence relations between specifi-

cations. Therefore a formal relation, imp, should be defined in order to decide whether or not a given

A framework based on implementation relations for implementing LOTOS specifications

implementation is valid with respect to the specification. The pair “specification + implementation re-
lation” is a definition, or a compact notation, characterizing in fact a (possibly infinite) set of valid
implementations. Again the choice of an equivalence relation is similar in the sense that the pair
“specification + equivalence relation” defines a class of specifications, all of them being equivalent
according to the relation. We consider however that the notion of formal implementation has a more
fundamental nature because it induces naturally, whatever it is (see definition 2.1), an equivalence

relation.
Some properties of imp can be stated a priori.

Imp must be reflexive because the specification is a valid implementation of itself. From now on, imp
is therefore reflexive. If we denote Id the identity relation which is the smallest reflexive relation, we
have Id C imp.

Moreover imp is not required to be symmetric because an implementation and a specification are ob-

viously not interchangeable in general.

What is less evident is the question of the transitivity of imp, i.e. whether we require that a valid im-
plementation of a valid implementation is again a valid implementation. Note that if imp is not transi-
tive, the valid implementation cannot be used in turn as an intermediate specification; which is not its

purpose anyway.

We will show how imp induces naturally an equivalence relation, and how imp restricts the imple-
menter’s freedom at each design step. This latter point will be achieved by way of the derivation of
the weakest relation, denoted imp-restr, which must hold between two intermediate design stages.

Let us already note that imp-restr will naturally be transitive, whatever imp is.

The results will also be extended to allow local transformations, i.e. transformations in any LOTOS
context. This leads to consider the monotonicity of the LOTOS operators w.r.t. imp-restr (and not
imp), or, stated otherwise, the precongruent character of imp-restr in the LOTOS contexts.

We now start the study of the framework by presenting the natural equivalence induced by imp and

denoted imp—eq.

Definition 2.1
S;imp-eq S, iff {Il1@imp S;}={111imp S,}
where {1/ I imp S} denotes the set of processes I which are valid implementations of S ac-

cording to the relation imp.

Intuitively, two specifications are equivalent iff they determine exactly the same set of valid imple-

mentations in the sense of imp.

A framework based on implementation relations for implementing LOTOS specifications

It is obvious that imp-eq is reflexive, symmetric and transitive. Imp-eq is therefore an equivalence
relation whatever imp 1is.

If imp is considered as the reference relation, this equivalence has a fundamental nature in the sense
that no distinction should be made between two specifications allowing the same set of valid imple-
mentations. The equivalence relation is derived naturally from the implementation relation. The con-

trary is not always possible.

One might think that imp-eq is the equivalence defined by imp M imp!,ie. two specifications are
equivalent iff each one is a valid implementation of the other one. However, imp M imp! is not nec-

essarily an equivalence.

Proposition 2.2
imp-eq C imp N imp™!

The proof is immediate because §; imp-eq S, = (S; imp S, A S, imp S;). This is derived from the
definition of imp-eq and the property of reflexivity of imp.

We now introduce another relation, denoted imp-restr, which plays a central role in the stepwise
derivation of a valid implementation from a given specification. We consider that each step of this ac-
tivity can only restrict the set of valid implementations, the final stage being the expected implementa-

tion which is therefore valid by construction.

Definition 2.3
Sy imp-restr S; iff {11 1imp S} C{I|1imp S;}

The purpose of this relation will become apparent in the sequel. Let us already note that replacing the
specification S; by another specification S, (closer to an implementation) such that S, imp-restr S;
guarantees that the remaining valid implementations are valid implementations of S;.

Propositions 2.4

) imp-restr is a preorder (i.e. a reflexive and transitive relation)
(ii) imp-restr 2 imp-eq

(i) imp-restr N imp—restr’] = imp-eq

The proofs are straightforward.

Now we may come back to the question of the transitivity of imp, i.e. should imp be transitive? We
think that arguments in favour of the transitive nature of imp are coming from the confusion between
imp and imp-restr. Remember that imp expresses the formal link between two objects, a specification
and an implementation; the transitive nature has no sense at this level since there are no notion of
composition of this relation. By contrast, imp-restr is intrinsically related to the stepwise nature of the

implementation process, since B imp-restr A means that B is closer to an implementation than A, or

A framework based on implementation relations for implementing LOTOS specifications

that B restricts the set of valid implementations more than A does. This is the reason why it is not

surprising that imp-restr is naturally transitive whatever imp is.

The transitive relation imp-restr results from the choice of imp, which is not required to be transitive.
These two relations will be further related by the next propositions.

Proposition 2.5
imp-restr C imp

The proof is easy from the definition of imp-restr and the reflexivity of imp.

Proposition 2.6

imp o imp-restr = imp
where the symbol ‘0’ denotes composition of relations.

Proof
The proof follows from the two following arguments

(1) Id C imp-restr = imp C imp o imp-restr
(ii) imp o imp-restr C imp
because if I imp S> A S, imp-restr S; then [imp S;, by definition of imp-restr
O

Let us now consider some properties of the relations stronger than imp-restr. These properties will

characterize imp-restr and outline its fundamental role in the implementation process.

Proposition 2.7
V R, we have R C imp-restr < imp o R C imp

Proof
(=) Directly from the two following facts:
R C imp-restr = imp o R C imp o imp-restr, and
imp o imp-restr = imp
(=) By contradiction, consider any relation R such that R C imp-restr does not hold. We will prove
that imp o R C imp does not hold.

By hypothesis, there exist P and Q such that PR Q A = (P imp-restr Q) ©)
= (P imp-restr Q) = 31, such that Timp P A = (I imp Q) (%)

We deduce from (*) and (**) that 31, P, Q, such that [imp P A PR Q A = (I imp Q),
and therefore — (imp o R C imp)
a

If we restrict ourselves to the reflexive relations stronger than imp-restr, we get the following result.

Proposition 2.8
V R, we have Id C R = (R C imp-restr < imp o R = imp)

A framework based on implementation relations for implementing LOTOS specifications

This is easily derived from proposition 2.7 noting that Id € R = imp C imp o R.

Corollary 2.9
imp-restr may be defined as the least relation R such that imp o R = imp

This is a direct consequence of propositions 2.6 and 2.7. This corollary is fundamental; its impor-

tance will be apparent in section 3.
If imp is transitive, we get the following stronger results.

Proposition 2.10
imp is transitive = imp-eq = imp N iﬂp'l

In this case two specifications are equivalent iff each one is a valid implementation of the other one.

Proof
By proposition 2.2 it suffices to prove that imp N imp! Cimp-eq or, stated otherwise, that V P, Q,

we have P imp Q A Qimp P ={I|1imp P} ={I!1imp Q}
Consider any [such that / imp P. By hypothesis P imp Q, which implies by transitivity of imp that
I imp Q. The proof is similar if we consider any / such that / imp Q.

|

So, when imp is transitive, imp-eq can be defined advantageously as follows:
S;imp-eq S, iff S;imp S, A S;imp S;.

Proposition 2.11
imp is transitive iff imp-restr = imp

Proof

(=) From proposition 2.5, it suffices to prove that imp C imp-restr. This is obvious because if
P imp Q, for any I such that I imp P we derive [imp Q by transitivity of imp.

(<) imp = imp-restr implies imp o imp = imp o imp-restr
Since imp o imp-restr = imp, by proposition 2.6, we get imp o imp = imp

Proposition 2.12
imp is transitive < (V R, we have Id CR = (R Cimp < imp o R = imp))

Proof

(=) imp transitive = imp-restr = imp, therefore the right-hand side of proposition 2.12 is correct by
proposition 2.8.

(=) Obvious, take R = imp O

A framework based on implementation relations for implementing LOTOS specifications

3. Allowed transformations w.r.t. an implementation relation

We now consider the activity of deriving an implementation from a specification. This activity is sup-
posed to be a stepwise transformation where each step consists in replacing a specification by another
one according to some design criteria. This transformation process is a synthesis activity which is
likely to be empirical but which is usually required to preserve some properties expressed by a suit-
able relation, denoted R in the sequel. This means that S can be replaced by S’ in a step iff S" R S.
We may imagine as many relations R as we want if they express some practical criteria. However, if
we require that a step can only restrict the valid implementations, the choice of imp imposes con-

straints on the allowed relations R.

Definition 3.1
(i) A transformation from S to S’ is an R-transformation iff S’ R S
(i1) An R-transformation is allowed by imp iff
VS, S, wehave SRS ={I|1imp S’} C{II|Iimp S},
or equivalently, iff R C imp-restr, by definition of imp-restr.

Intuitively R can be used to characterize some transformations allowed on S (and denoted R-trans-
formations) iff the derived specification S’ does not allow some new valid implementations (figure
3.1).

{I1Timp S}

Figure 3.1: a transformation step
The next proposition shows another way of characterizing the allowed R-transformations.

Proposition 3.2

R Cimp-restr < imp o R C imp

The proof is immediate by proposition 2.7.

A framework based on implementation relations for implementing LOTOS specifications

If R is reflexive, we have the following stronger result.

Proposition 3.3
IdCR = (R Cimp-restr < imp o R = imp)

The proof is immediate from proposition 2.8

4. Link with the OSI Reference Model

Now, we apply this framework to study the relations which should hold between a service specifica-

tion, a protocol specification, any intermediate specification and the final implementation.

The relation R, (figure 4.1) should characterize some allowed transformations with respect to imp in

order to ensure that the implementation is valid w.r.t. the protocol. The requirement is of course the
same for R;. At this stage it does not seem mandatory that the service and the protocol be equivalent

in some sense, but we will come back to this problem later on.

Service_spec
A

R,

» Protocol_spec

B,
imp
Any_intermediate_spec

imp
Implementation
Figure 4.1: link with the OSI RM

The only requirement which arises from this study of the design process is therefore that all the trans-
formation relations (R;, R,, ...) be stronger than or equal to imp-restr. More precisely, it suffices to
verify the following (we suppose that there is at least one intermediate step):

(i) protocol_spec imp-restr service_spec

(i1) first_intermediate_spec imp-restr protocol_spec

(iii) any_intermediate_spec_but_the_first imp-restr previous_intermediate_spec

(iv) implementation imp last_intermediate_spec.

Imp-restr may be called a consistency relation [7], because if protocol_spec imp-restr service_spec,

for example, then any valid implementation of the protocol specification is also a valid implementa-

10

A framework based on implementation relations for implementing LOTOS specifications

tion of the service specification. This property is in our opinion the weakest link required to hold

between a protocol and a service, once the reference implementation relation, imp, has been adopted.

We may also require that the protocol specification should be complete [7] with respect to the service
specification, i.e. protocol_spec imQ-restr'I service_spec. The argument being that if this does not
hold, this complicates unnecessarily the layer above which has been designed to work with the ser-
vice and not the protocol. If the protocol specification is not complete with respect to the service
specification, we are sure that no valid implementation will be complete either. If it is considered as
unacceptable, either the protocol or the service specification should be redesigned in order to get
protocol_spec imp-eq service_spec (imp-eq = imp-restr) img—restr']).

A last property that imp-restr must fulfil arises when we consider the protocol and the service in the
context of their upper layer. Imagine that we replace, in the specification of the protocol (N+1), the
service (N) by the protocol (N), and suppose that protocol (N) imp-restr service (N) as required by
the design process. It is important to ensure that, in so doing, we preserve the consistency of the
protocol (N+1) with respect to the service (N+1), i.e. protocol (N+1) imp-restr service (N+1) still
holds.

Formally, let us define these objects in LOTOS (figure 4.2):

o0 N+1_saps O N+1_saps
Protocol_N+1 Protocol_N+1

Layer_N+1 Layer N+1

+ N_saps }’ N_saps
Service N Protocol N

Layer_N
+ N-1_saps
Service_N-1

Figure 4.2: transformations within the OSI framework
protocol_N+1 [N+1_saps] := hide N_saps in
layer_N+1 [N+1_saps, N_saps]
I[N_saps]!
service_N [N_saps]
where protocol_N [N_saps] imp-restr service_N [N_saps]

11

A framework based on implementation relations for implementing LOTOS specifications

This property can be stated as follows: it is necessary that
protocol_N+1 [N+1_saps] imp-restr service_N+1 [N+1_saps]

or stated otherwise, that
hide N_saps in (layer_N+1 [N+1_saps, N_saps] |[N_saps]l protocol_N [N_saps])
imp-restr service_N+1 [N+1_saps].

A similar case occurs when a layer (N) or an entity (N), say X, is replaced by another one, say Y,

such that Y imp-restr X.

More generally, consider two processes Q and S synchronized through the gate set y (i.e. Q I[y] S),

and a process P such that P imp-restr Q.
It is necessary that (hide yin (P I[y]l S)) imp-restr (hideyin (Q I[y]l S))

Two general properties that imp-restr must fulfil for the previous formula to hold, are:

(i) VP, Q, S, we require P imp-restr Q = Vv, (PI[y]l S) imp-restr (Q I[y]I S)
(ii) VP, Q, we require P imp-restr Q = Vv, (hide yin P) imp-restr (hide y in Q)

These properties are called substitution properties with respect to the parallel composition operator
and the hiding operator. The substitution property in other contexts (such as action-prefix or choice)
does not seem so important, as they have no associated architectural significance. However, we also
often require these substitution properties in order to allow the replacement of any part Q of a specifi-
cation by another part P such that P imp-restr Q and thereby guarantee that no new implementation
would be allowed. If any of these substitution properties is not satisfied, imp-restr should be replaced

by a stronger relation which satisfies them.

This stronger relation is precisely the least precongruence stronger than imp-restr, which will be de-

fined after the notion of context.

Definitions 4.1
A context C [.] is a behaviour expression with a formal parameter ‘[.]’, called a hole.
C [B]is C [.] where all occurrences of ‘[.]” have been replaced by B.

For example, if C [.] = hide ain (Al [.]),then C [B] = hide ain (A Il B).

Definition 4.2
The least precongruence stronger than imp-restr is denoted cimp-restr and defined by:
V P, Q, we have P cimp-restr Q iff V context C [.], we have C [P] imp-restr C [Q].

5. Another viewpoint on this implementation process

Now we take the problem the other way round and consider the possible reference implementation

relations which are preserved when changes in the specification respect some well-known relation R.

12

A framework based on implementation relations for implementing LOTOS specifications

This relation represents the degree of freedom of the designer, it means that (s)he may replace any

part Q of an intermediate specification by P, provided that P R Q.

Definition 5.1
Let R be a reflexive relation,

imp is a relation preserved by R-transformations, iff
VP, Q,wehave PRQ = VY C][.],C[P]imp-restr C [Q].

Informally, imp is a relation preserved by R-transformations, iff when we limit the replacements of
any part Q of a specification C [Q] by processes P such that P R Q, then the new specification C [P]

has fewer valid implementations (in the imp sense) than C [Q].

Note that it is imp-restr, and not imp, which is needed in this definition: as explained in section 3, if
imp 1is the relation which should hold between the first and the last stages of the design process,

imp-restr should hold between any two intermediate stages.

Proposition 5.2
Let R be a reflexive relation,
imp is a relation preserved by R-transformations, iff cimp-restr 2 R

Proof
(=) Since imp is a relation preserved by R-transformations, we get by definition 5.1 that

V C[.], we have C [P] imp-restr C [Q] and then by definition 4.2:

P cimp-restr Q
(=) Suppose PR Q.

From R C cimp-restr, we get P cimp-restr Q.
Then by definition 4.2, V' C [.], we have C [P] imp-restr C [Q].

Proposition 5.3
Let R be a precongruence,
imp is a relation preserved by R-transformations, iff imp-restr 2R .

Proof
(=) Trivial by proposition 5.2
(<) If R Cimp-restr and R is a precongruence, then R C cimp-restr. The result then follows from

proposition 5.2.
a

Note again that we get imp-restr 2 R and not imp =2 R.

Proposition 5.4
Let R be a precongruence,

imp is a relation preserved by R-transformations, iff imp o R = imp

13

A framework based on implementation relations for implementing LOTOS specifications

The proof is immediately derived from proposition 2.8.

Informally, if we limit the replacements of any part Q of a specification C [Q] by processes P such
that P R Q (where R is a precongruence), then for any reference implementation relation imp such
that imp o R = imp, the new specification C [P] has fewer valid implementations (in the imp sense)
than C [Q].

We finally conclude this framework with some propositions indicating that things are not always as

intuitive as we would think.

Proposition 5.5
Let R; and R, be two reflexive relations.
If R; C R, and imp is a relation preserved by R,-transformations

then imp is a relation preserved by R;-transformations.

Proof
From R, C cimp-restr and R; C R,, we get immediately R; C cimp-restr. a

This proposition is intuitively obvious, because if you restrict the freedom of the designer, then more
implementation relations will be preserved. The next proposition however hurts intuition because it is

very close to the previous one and seems to contradict it.

Proposition 5.6
Let R be a reflexive relation.
If imp; C imp, and imp; is a relation preserved by R-transformations

then it is not necessarily true that imp, is a relation preserved by R-transformations.

We show an interesting counter-example in section 9. This proposition seems paradoxical. It means
that if you choose a more generous implementation relation (i.e. a relation which allows more valid
implementations), then it may happen that, for a given degree of freedom of the designer (made pre-
cise by R), you may produce an implementation which was valid w.r.t. the former and no more valid
w.r.t. the latter !

Of course, if we replace imp; by imp;-restr in this proposition, the result holds, viz.

1

if imp,-restr C imp,-restr and imp,-restr is a relation preserved by R-transformations

then imp,-restr is a relation preserved by R-transformations.

But, the point remains that the imp -restr are NOT the implementation relations, they are only the

5

weakest relations which should hold between any two intermediate stages in the design process in
order to preserve imp; at the end.

The next proposition states a sufficient condition on imp, to solve this problem.

14

A framework based on implementation relations for implementing LOTOS specifications

Proposition 5.7
Let R be a reflexive relation.
If imp; C imp, and imp; is a relation preserved by R-transformations and imp, is transitive

then imp, is a relation preserved by R-transformations.

Proof

We know that imp,-restr ~ C imp;, by proposition 2.5
C imp,, by hypothesis
= imp,-restr, by proposition 2.11

Therefore, cimp,-restr C cimp,-restr,

directly from definition 4.2 and imp;-restr C imp,-restr
Finally, R C cimp;-restr, by hypothesis
C cimp,-restr, just derived

More generally, the next proposition states the fundamental result.

Proposition 5.8
If cimp,-restr C cimp,-restr and imp; is a relation preserved by R-transformations

then imp, is a relation preserved by R-transformations.

The proof is simply the last part of the proof of proposition 5.7.

6. Discussion of the framework

One may argue that an implementation process where the specification phase and the implementation
phase are clearly separated is overly naive and does not match reality [27], specification and imple-
mentation being respectively the already-fixed and the yet-to-be-done portions of a multi-step system
development. In our framework, each stage of the implementation process should be a valid realiza-
tion of the specification. By valid we mean that behaviours specified by the intermediate specification
are a subset of those defined by the specification. It is not sure that this approach matches current
practice at least in an environment where the initial specification is not a standard. It seems that, in
actual practice, the intermediate steps may violate the validity condition, i.e. rather than implementing
the specification, the designer knowingly redefines the specification. This may arise for several rea-
sons among which we find the impossibility to foresee all the implications of specification choices,
some of them leading to undesirable effects. One is thus forced to consider these steps as being part
of the specification process and not part of the implementation process. The problem is to fix the
point behind which all the steps must satisfy the validity condition. This point is then considered as

the reference specification.

15

A framework based on implementation relations for implementing LOTOS specifications

Another way to allow some violation of the validity condition is to consider that any intermediate
stage should be valid w.r.t. the initial specification. This is less restrictive than being valid w.r.t. the
previous intermediate stage. For example, one may have cases where

interm; imp-restr spec,

but = (interm, imp-restr interm;)
whereas interm, imp-restr spec.

Clearly, interm; is a valid transformation of the initial specification, spec, and interm, is not a valid

transformation of interm; but is valid w.r.t. spec.

This does not change fundamentally the framework since in such cases, it suffices to discard interm;
and consider that interm, is the first valid intermediate stage; the process may then continue this way

from interm,.

Finally, let us remark that many implementation relations, or notions of validity, may coexist and
thus many equivalence relations too. The framework presented in this section makes no assumption
on the reference implementation relation, except that it must be reflexive. In particular, the framework
will be very useful to deal with the non-transitive relation conf in the next sections where we discuss
the properties of well-known relations with respect to this framework. These relations are based on

traces and refusals, but other kinds of relations could be considered similarly.

7. Definitions and properties of well-known implementation relations

Some implementation relations have been proposed in [7, 8]. We briefly recall them in a trace-refusal

formalism.

Notations 7.1

L is the alphabet of observable actions, and i is the internal (i.e. unobservable) action.

P—a—P’ means that process P may engage in action a and, after doing so, behave like process P’.

P—i*—P’means that process P may engage in the sequence of k internal actions and, after doing so,
behave like process P’.

P—a.b—P’ means A P, such that P—a—P” A P”—b—P’.

P=a=P’ where a € L, means 3 k,, k; €N, such that P—ik0q ik1—p’

P=a=> where a € L, means that 3 P’, such that P=a=>P’, i.e. P may accept the action a.

P=a=> where a € L, means - (P=a=>), i.e. P cannot accept (or must refuse) the action a.

P=0=P’ means that process P may engage in the sequence of observable actions o and, after doing
so, behave like process P’. More precisely, if o = a,...a, where a;, ... a, € L:
Jky, ...k, EN, such that P—i*0.a,.i* a, ..a,.i"—P’

P=0=>means that 3 P’, such that P=o0=P’

P after c={P’ | P=0=P’},

i.e. the set of all behaviour expressions (or states) reachable from P by the sequence o.

16

A framework based on implementation relations for implementing LOTOS specifications

Tr (P) is the trace set of P,i.e. {0/ P=o=>}; Tr (P) is a subset of L*.

Ref (P, o) is the refusal set of P after the trace o, i.e.
Ref (P, o) ={X | 3P’ €P after o, such that P’=a=>, ¥ a €X};
Ref (P, o) is a set of sets and a subset of £ (L), the power set of L (i.e. the set of subsets of L).
A set X C L belongs to Ref (P, o) iff P may engage in the trace o and, after doing so, refuse ev-

ery event of the set X.

Some possible interpretations of the notion of validity have been presented and formalized in [7, 8]

by means of three basic relations, viz. conf, red and ext , and two related ones, viz. cred and cext.

Some related equivalences have also been proposed, viz. te and tc.

Definitions

7.2

Let P; and P, be processes.

P; conf P,

P]&dpzlff

P, ext P, iff

iff V o €Tr(P,), we have Ref (P;, o) C Ref (P, O) or equivalently,
iff Y o &Tr(P;) NTr(P,), we have Ref (P;, o) C Ref (P5, O)
because if 0 €Tr (P,) — Tr (P;), then Ref (P;, 0) = &

Intuitively, P; conf P, iff, placed in any environment whose traces are limited to those
of P,, P; cannot deadlock when P, cannot deadlock. Stated otherwise, P; deadlocks
less often than P, in such an environment. This relation has been taken as the formal
basis of conformance testing in [10], and is denoted the conformance relation.
Example: Ala,b] :=a; b; stop

Bla,b,c] :=1i;a; stop [] b; c; stop
We get A conf B:
Let us consider all the traces o of B: { ¢, a, b, bc}; either the trace is not a trace of A
(for example, b or bc),or V A’ € A after o, if A’ refuses any event in a set K, then 3
B’ € B after o, such that B’ refuses any event in the same set K. For example, let
A’ € A after a, i.e. A’ = b; stop, which thus refuses any event in {a, c}; now, I B’
€ B after a, viz. B’ = stop which also refuses any event in {a, c}.
(1) Tr (P;) & Tr (P,), and
(ii) P; conf P,
Intuitively, if P; red P,, P; has fewer traces than P,, but even in an environment
whose traces are limited to those of P;, P; deadlocks less often. Red is the reduction
relation.
Example: A [a] := a; stop

Bla,b,c] :=1i;a; stop [] b; c; stop
We get A red B
(1) Tr (P;) 2Tr (P,), and
(ii) P; conf P,
Intuitively, if P; ext P,, P; has more traces than P,, but in an environment whose

traces are limited to those of P,, it deadlocks less often. Ext is the extension relation.

17

A framework based on implementation relations for implementing LOTOS specifications

Example: A/a,b,c] :=a; b; stop [] b; c; stop
B[a,b] := a; b; stop
We get A ext B
P cred P, iff (i) P, red P,
(i1) Stable (P,) = Stable (P;)
where a process is stable when it cannot perform an initial internal action;

more formally, Stable (P) iff = 3 P’, such that P—i—P’;

cred is the least precongruence stronger than red [7] (see note hereafter).

cext = ext 1 cred This is the least precongruence stronger than ext [7] (see note hereafter).
te=red N red”’ =ext Next-! This is the testing equivalence.
tc = cred N cred™ = cext Ncext-!

This is the least congruence stronger than te [7] (see note hereafter).

Note: cred, cext and tc are (pre)congruences only if we exclude hiding contexts creating divergence,

i.e. an infinite sequence of internal actions. This is studied in detail in [21].

Properties of conf
() confDred

(i) confDext

(i) conf =red o ext

Properties (i) and (ii) are directly derived from the definitions.
Property (iii) has been first established in [7]; another proof is given in [21].

In the last part of this section 7, we present new results or generalize previous results about these re-

lations.

Proposition 7.3
conf Cext o red

This generalizes the result in [7] where it was proved by a counter-example that ext o red C conf

does not hold. This counter-example allows us to only prove the weaker proposition conf C ext o

red. The proof is provided in [21].
In the sequel, we compose the relations defined above in order to identify some new relations.

Proposition 7.4

ext o conf = ext o red

Proof

From conf C ext o red, we get by left composition with ext: ext o conf C ext o ext o red
Now, by transitivity and reflexivity of ext , we have ext o ext o red = ext o red, thus leading to
ext o conf C ext o red (*)

18

A framework based on implementation relations for implementing LOTOS specifications

On the other hand, from red C conf, we have by left composition with ext:

ext o red C ext o conf. (**)
The result follows from (*) and (¥*).

Proposition 7.5

conf o conf = conf o red

Proof
From ext o red = ext o conf, we get by left composition with red: red o ext o red = red o ext o conf,
which is equivalent to conf o red = conf o conf, because conf = red o ext

O
Proposition 7.6
confored = ext o red
Proof
From conf C ext o red , we derive successively
red o ext C ext o red, by definition of conf
red o ext o red C ext o red o red by right composition with red
confored Cextoredored, by definition of conf
conf o red C ext o red, by transitivity and reflexivity of red (*)

On the other hand, from conf O ext, we derive by right composition with red:

conf o red 2 ext o red (**)
The result follows from (*) and (**).

Proposition 7.7

conf = conf o con

where conf” denotes the transitive closure of conf (informally, conf o conf o confo ...).

In other words, conf o conf is the transitive closure of conf, which is the strongest transitive relation
weaker than conf.

Proof
It suffices to prove that conf o conf o conf = conf o conf.
conf o conf o conf

= conf o conf o red by proposition 7.5
= conf o red o red by proposition 7.5
= conf o red by transitivity and reflexivity of red
= conf o con by proposition 7.5

19

A framework based on implementation relations for implementing LOTOS specifications

Figure 7.1: relations between te, red, ext, conf, con

Proposition 7.8
conf” = ext o red

The proof follows directly from propositions 7.7,7.5 and 7.6.

All these results are summarized in figure 7.1.

Figure 7.2 shows how cred, cext and tc are related to these relations.

cext

20

A framework based on implementation relations for implementing LOTOS specifications

8. Conf as reference implementation relation

Conf has been taken as the formal basis of conformance testing in [10]. Since conformance testing is
primarily concerned with the testing of valid implementations, conf'is a good candidate as reference

implementation relation. Moreover, conf'is an interesting example of non-transitive relation.

This section studies the implementation framework when imp has been instantiated by conf.
Consequences and perspectives of this choice are also analysed. Conf is reflexive and thus satisfies

the only prerequisite, but conf is not transitive. Consider the following example from [7]:

Example: b;stop []i;a;stop conf i;a;stop conf b;c;stop[]i;a; stop
but = (b; stop [] i; a; stop conf b;c; stop []i; a; stop)

A first interesting question about conf is the nature of the preorder conf-restr and the equivalence
conf-eq which are related to conf. We first instantiate some general results stated in section 2, and
then propose other equivalent definitions of conf-restr and conf-eq.

Proposition 8.1
conf-eq C conf-restr C conf

Derived immediately from propositions 2.4 and 2.5, since conf is not transitive.

Proposition 8.2
conf-eq C conf N conf’

Proof

From proposition 2.2, we derive conf-eq C conf N conf !

Moreover, there exist P and Q such that P conf Q and Q conf P but = (P conf-eq Q), as shown here-
after:

Let P = a; stop and Q = (a, stop [] a; b; c; stop), we get P conf Q and Q conf P, but

- (P conf-eq Q) because if we take I = a; b, stop, we have I conf P but = (I conf Q).

Proposition 8.3
conf-eq D te

i.e., conf-eq is weaker than the testing equivalence

Proof

We have to prove that P te Q A I conf P = I conf Q.

We first note that

(a) PteQ=PextQO by definition of te

(b) I confP A Pext Q=1confoextQ by definition of composition

We know by proposition 7.2 (iii) and transitivity of ext that conf o ext = conf,
therefore I conf Q by (b).

Moreover there exist two processes P and Q such that P conf-eq Q but = (P te Q).
For example, P = a; stop Q =1i;a; stop [] b; stop

21

A framework based on implementation relations for implementing LOTOS specifications

= (PextQ), so = (Pte Q)
It can be shown very easily that P and Q have exactly the same sets of conforming implementations,

so P conf-eq Q

O
Proposition 8.4
conf-eq N trace-eq = conf N @gﬂ‘] M trace-eq = te
or equivalently,
VY P, Q, we have
P conf-eq Q A (Tr (P) =Tr(Q)) < PconfQ A QconfP A(Tr(P)=Tr(Q)) < PteQ
For processes with equal trace sets, conf-eq, conf N @gﬂ’] and te are identical.
Proof
We know that conf N conf™ N trace-eq = te, by definition of ze
So, conf-eq M trace-eq C te, because conf-eq C conf N conf™!
It remains to prove that te C conf-eq /N trace-eq.
This is easily deduced from the two arguments:
(1) Pte Q =Tr (P) =Tr (Q), or equivalently, te C trace-eq, by definition
(ii) P te Q = P conf-eq Q, or equivalently te C conf-eq, by the previous proposition.
O

Proposition 8.5

ext C conf-restr

Proof
We know that conf o ext = conf by proposition 7.2 (iii) and transitivity of conf.
By proposition 2.7, this implies ext C conf-restr
Moreover there exist P and Q such that P conf-restr Q but = (P ext Q), see example of the proof of
proposition 8.3.
O

Note that by contrast, = (red C conf-restr). This will have some consequences which will be dis-

cussed later on.

All these results are summarized in figure 8.1. The shaded area is exactly the testing equivalence.

Examples are provided in [21] to prove that the inclusions are strict and that no area is empty.

To gain a more intuitive understanding of conf-restr and conf-eq, we provide other equivalent defini-

tions.

22

A framework based on implementation relations for implementing LOTOS specifications

Figure 8.1: links between the main relations

Proposition 8.6
P conf-restr Q iff

(i) PconfQ

(ii) Vo&Tr(Q)-Tr(P), we have L € Ref (Q, O)
The proof is provided in [21].

Proposition 8.7

P conf-eq Q iff

(i) PconfQ A QconfP, ie. YVo&Tr(P)NTr(Q), we have Ref (P, o) = Ref (Q, 0)
(ii) Vo&Tr(P)-Tr(Q), we have L € Ref (P, 0)

(iii) Vo&Tr(Q)-Tr(P), we have L € Ref (Q, O)

This follows directly from conf-eq = conf-restr N conf-restr”.

Note on conf-eq versus te

If conf is adopted as reference implementation relation, the testing equivalence is too strong, i.e.
some processes which are not testing equivalent may define exactly the same set of conforming im-

plementations.

Consider the following example where P conf-eq Q:
P=a;stop and Q = (a; stop[]a; b, stop).

23

A framework based on implementation relations for implementing LOTOS specifications

If P and Q are two specifications, they define exactly the same set of valid implementations (in the
conf sense), in particular P conf Q and Q conf P. Therefore no distinction can be made between them
by testing, provided that the test is based on the conf relation, which is for instance the case of the

canonical tester [9].

Note however that if P = a; stop and Q = (a, stop [] a; b; c; stop), we do not have P conf-eq Q any
more because a; b; stop is a conforming implementation of P but not of Q. This fact may be explained
intuitively as follows: a conforming implementation of Q may, or may not, accept b after a; but if it

accepts b, then, unlike conforming implementations of P, it cannot refuse c afterwards.
On the allowed transformations w.r.t. conf

Proposition 8.5 states that ext C conf-restr, which means that ext-transformations are allowed by
conf. More precisely, one may replace a specification by an extension of it, this transformation does
not allow new conforming implementations; in fact this transformation generally reduces the set of

valid implementations.

By contrast, it is very interesting to remark that red C conf-restr does not hold. The consequence is
that red-transformations are not allowed by conf: reducing the nondeterminism of a specification S to
obtain the specification §’ may in general have the drawback of accepting as valid (i.e. conforming)
implementations some processes which were not conforming implementations of S. The following

example illustrates this problem:

let :=i;a,stop[]b; c; stop,
S’ :=a;, stop, S’ red S
:=a; stop [] b; stop, IconfS’, but = (IconfS).

However red M ext C conf-restr, which means that reducing the nondeterminism while preserving

the traces has not the above-mentioned drawback.

Furthermore, cred C conf-restr does not hold either.

Conf seems to be a strange implementation relation, viz. when one reduces the nondeterminism of a
specification, new conforming implementations may be allowed as a side effect, whereas when one

extends the functionality, the set of conforming implementations is reduced.
Local transformations

In sections 4 and 5, we discussed the way to characterize the conditions that local transformations
must satisfy in order to ensure that the resulting transformation of the global specification should be
allowed w.r.t. to imp. This has led to the notion of the least precongruence stronger than imp-restr.
The next question that we investigate is thus the nature of the least precongruence stronger than conf-

restr.

24

A framework based on implementation relations for implementing LOTOS specifications

Proposition 8.8

The least precongruence (see note after 7.2) stronger than conf-restr is cext,
i.e. P cext Q iff V context C [.], we have C [P] conf-restr C [Q].

The proof is provided in [21].

Proposition 8.8 guarantees that if any part Q of a specification C [Q] is replaced by a process P such
that P cext Q, we get a specification C [P] with C [P] conf-restr C [Q] and thus the set of implemen-

tations conforming to C [P] is included in (or equal to) the set of implementations conforming to

Clo].

What is very interesting to note is that the least precongruence stronger than conf is cred (2 cext).
But the non-transitive character of conf forced us to restrict the relation which should hold between
intermediate specifications to a stronger transitive relation conf-restr, and this relation was no more

weaker than cred.

Stated otherwise, if conf'is the reference implementation relation, any design step consisting in re-
placing a process Q by a process P in any context! is guaranteed to preserve or restrict the conform-

ing implementations, provided that P cext Q.

Finally, from proposition 8.8, we derive immediately that the least congruence (see note after 7.2)

stronger than conf-eq is again tc.

9. An apparent paradox
Let us consider red as the reference implementation relation.

Red is reflexive and transitive, so by simple particularization of propositions 2.10, 2.11, 2.12, and

3.2, we get the next propositions.

Propositions 9.1

1) red-restr = red

(i) red-eq=red Nred” =te

(iii) VR, we have Id CR Cred =red o R = red , and

(iv) R -transformations are allowed by red iff R C red
The next proposition now recalls a well-known result (see [7]).

Proposition 9.2

The least precongruence (see note after 7.2) stronger than red is cred,
i.e. P cred Qiff V context C [.], we have C [P]red C [Q].

25

A framework based on implementation relations for implementing LOTOS specifications

Proposition 9.2 guarantees that if any part Q of a specification C [Q] is replaced by a process P such
that P cred Q, we get a specification C [P] with C [P] red C [Q] and thus the set of reductions of
C [P] is included in (or equal to) the set of reductions of C [Q].

If we consider the possible reference implementation relations which are preserved when the local
changes in the specification respect some well-known precongruences, and compare the results of
sections 5.6 and 5.7, we are facing some kind of paradox. Indeed, it appears that the freedom of the
designer in changing parts of a specification without allowing new valid implementations may be
greater when the reference implementation is stronger. If we compare the results derived from the
two cases where conf and red have been chosen as reference implementation relations (see table 9.1),

the degrees of freedom, modelled by the least precongruences stronger than respectively conf-restr
and red, are respectively cext and cred. And of course red C conf but cred O cext. This is the

counter-example mentioned in proposition 5.6. This is due to the fact that conf o red C conf does not

hold: conf o red = conf".

imp cimp-restr
conf cext conf Dred,
red cred whereas cext C cred

Table 9.1: examples of imp and related cimp-restr relations

Consider S := i, (i; a; stop [] c; stop) [] b; c; stop

And §’ :=i; a; stop [] ¢, stop the result of a transformation of S.
S’ red S

Let I := a; stop [] b; stop, we get I conf S’ but = (I conf S)
Conversely, VI, we have I red S’ = Ired S.

The following proposition summarizes the results.

Proposition 9.3

(i) Any reference implementation relation imp such that imp o cext = imp is preserved by cext-trans-
formations.

(i1) Any reference implementation relation imp such that imp o cred = imp is preserved by cred-trans-

formations.
The proofs follow directly from proposition 5.2

Examples 9.4
Examples of implementation relations preserved by cext-transformations:

cext, ext, cred, red, conf, conf-restr, conf"

Examples of implementation relations preserved by cred-transformations: cred, red, conf’

26

A framework based on implementation relations for implementing LOTOS specifications

Conf'is not preserved by cred-transformations.

10. Conclusion

In this paper, our interest has been focused on so-called implementation relations, and their role in the
design process has been underlined. We think that an equivalence is not necessarily the right relation
to be proved or to be preserved throughout the implementation process. An equivalence is sometimes
too restrictive to capture the link which should hold between two different specifications of a system.
For instance, it seems reasonable to require that the service specification and the protocol specifica-
tion should be trace equivalent, but not necessarily that they should be testing equivalent. One may

accept for instance that the protocol could be more deterministic than the service.

Formally: (i) protocol trace-eq service, and

(1) protocol conf service
i.e. protocol trace-eq M conf service,
or equivalently, protocol red N ext service.

In order to ensure that the service may be replaced by the protocol in any LOTOS context (see note
after 7.2), one would require a little bit more, viz. protocol cred N cext service,

or equivalently, protocol cext service.

The problem is similar in the design process where the initial formal specification is transformed sev-
eral times before reaching a more implementable specification. Again, what is required is not neces-
sarily the equivalence between the initial specification and the implementation specification. A more
general view is to verify that the implementation specification is among the valid implementations of
the initial specification where the notion of validity is formally expressed by an asymmetric relation.
In this case, the successive transformations which take place in the design process are not restricted
to equivalence preserving steps. There remain of course restrictions which are related to the notion of
validity just mentioned. The link between these restrictions and the notion of validity has been inves-

tigated.

More precisely, we have introduced the basic notion of a reference implementation relation imp, and
shown how an associated equivalence relation imp-eq is naturally deduced. The stepwise transforma-
tion process leading from the specification to a valid implementation has been discussed with respect
to this implementation relation, i.e. a transformation may only restrict the set of valid implementa-
tions. The allowed transformations have been characterized by another relation denoted imp-restr and
related to imp. Finally, the transformation relations have been discussed in the LOTOS operator con-
texts, in order to see how local transformations in a specification should be further restricted in par-
ticular contexts. This has led to consider the monotonicity of the LOTOS operators w.r.t. imp-restr,

or more precisely, to define the least precongruence stronger than imp-restr.

27

A framework based on implementation relations for implementing LOTOS specifications

In the second part, we have studied the well-known conf relation which may play the role of a refer-
ence implementation relation. We have derived the associated conf-restr and the least precongruence
stronger than conf-restr which somehow model the freedom of the designer at each transformation.
This study has put in evidence that the link between this freedom and the reference implementation
relation is not necessarily as simple as we would think when the reference implementation relation in
not transitive, which is the case of conf. This may lead to some apparent paradoxes as discussed in
section 9.

Finally, there is an interesting line of research which we have only touched upon lightly in this paper,
and which may be summarized by the following question:

what do we mean by a valid implementation of a specification?

or, what should be the nature of the link existing between the abstract formal specification and the

final (compilable) stage of design modelling the implementation?

Some criteria exist and may be split into two categories:

- the intuitive criteria: e.g. an implementation may be more deterministic or cannot be more diver-
gent than its specification;

- the technical or mathematical criteria: e.g. the LOTOS operators should be monotonic or even con-

tinuous w.r.t the implementation relation, or one of its associated relations.
Are there other interesting criteria which could be formalized in process algebraic techniques ?

Or, are there interesting extensions of existing models, such as the modal transition systems of [20],

where more interesting implementation relations may be defined?
Acknowledgements

I thank very much Professor Ed Brinksma for his precise and judicious remarks on a preliminary

version of my thesis from which the present paper is extracted.

References

[1] M. Abadi, L. Lamport,

The Existence of Refinement Mappings

in: Third Annual Symposium on Logic in Computer Science, Edinburgh, Scotland, July 88, 165-175.
[2] J.A.Bergstra, J. W. Klop,

Algebra of Communicating Processes with Abstraction,

Theoretical Computer Science 37 (1985) 77-121 (North-Holland, Amsterdam).

[3] D. Blyth, E. Dubuis, H. Hansson, G. Juanole, M. Kapus-Kolar, H. Kerner, G. Leduc, G. Le
Moli, A. Lombardo, S. Marchena, W. Orth, J. Pavon, B. Pehrson, M. Tienari, F. Vogt,
Architectural and Behavioural Modelling in Computer Communication,
in: M. H. Barton, E. L. Dagless, G. L. Reijns, eds., Distributed Processing (North-Holland, Amsterdam, 1988,
ISBN 0-444-70419-1), 53-70.

[4] S.D. Brookes, C.A.R.Hoare, A.W .Roscoe,

A theory of Communicating Sequential Processes
Journ. ACM, Vol. 31, No. 3, July 1984, 560-599.

28

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A framework based on implementation relations for implementing LOTOS specifications

K. Bogaards,

LOTOS supported system development,

in: K.J. Turner, ed., Formal Description Techniques (North-Holland, Amsterdam, 1989, ISBN: 0-444-87126-8)
279-294.

T. Bolognesi, E. Brinksma,

Introduction to the ISO Specification Language LOTOS,

Computer Networks and ISDN Systems 14 (1) 25-59 (1987).

E. Brinksma, G. Scollo,

Formal notions of implementation and conformance in LOTOS

Rept. No. INF-86-13, Twente University of Technology, Department of Informatics, Enschede, The
Netherlands, December 1986.

E. Brinksma, G. Scollo, C. Steenbergen,

Process specification, their implementations and their tests,

in: G.v. Bochmann, B. Sarikaya, eds., Protocol Specification, Testing and verification, VI (North-Holland,
Amsterdam, 1987, ISBN 0-444-70126-5), 349-360.

E. Brinksma,

On the existence of canonical testers

Rept. No. INF-87-5, Twente University of Technology, Department of Informatics, Enschede, The Netherlands,
January 1987.

E. Brinksma,

A Theory for the Derivation of Tests,

in: S. Aggarwal, K. Sabnani, eds., Protocol Specification, Testing and verification, VIII (North-Holland,
Amsterdam, 1988, ISBN 0-444-70542-2).

K. M. Chandy, J. Misra,

Parallel Program Design - A Foundation,

(Addison-Wesley, 1989, ISBN 0-201-05866-9).

R. De Nicola, M.C.B. Hennessy,

Testing equivalences for processes,

Theoretical Computer Science 34 (1984) 83-133 (North-Holland, Amsterdam).

R. De Nicola,

Extensional Equivalences for Transition Systems,

Acta Informatica 24 (1987) 211-237.

E. Dubuis, R. Gotzhein, H. Hansson, G. Juanole, H. Kerner, P. Lahtinen, G. Leduc, A.
Lombardo, S. Marchena, W. Orth, S. Palazzo, J. Pavon, U. Thalmann, M. Tienari, I. Tvrdy,
A Framework for the Taxonomy of Synthesis and Analysis Activities in Distributed System
Design

in: R. Speth, ed., Research into Networks and Distributed Applications (North-Holland, Amsterdam, 1988,
ISBN 0-444-70428-0), 859-871.

M. Hennessy,

Algebraic Theory of Processes,

(MIT Press, Cambridge, London, 1988, ISBN 0-262-08171-7).

C.A R. Hoare,

Communicating Sequential Processes,

(Prentice-Hall International, London, 1985, ISBN 0-13-153271-5).
ISO/TIEC-JTC1/SC21/WGI1/FDT/C,

Information Processing Systems - Open Systems Interconnection - LOTOS, a Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour,

IS 8807, February 1989.

L. Lamport,

Specifying concurrent program modules,

ACM Transactions on Programming Languages and Systems 5 (2) 190-222 (1983).

S.S. Lam, A. U. Shankar,

Protocol verification via projections,

IEEE Transactions on Software Engineering, SE-10 (4) 325-342 (1984).

29

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

A framework based on implementation relations for implementing LOTOS specifications

K. G. Larsen,

Modal Specifications,

in: J. Sifakis, ed., Automatic Verification Methods for Finite State Systems (LNCS 407, Springer - Verlag,
Berlin Heidelberg New York, 1990, ISBN 3-540-52148-8), 232-246.

G. Leduc,

On the role of implementation relations in the design of distributed systems,

Agrégation dissertation, University of Liege, Dept. Systémes et Automatique, B28, Liege, Belgium, July 1990.
N. Lynch, M. Fisher,

On describing the behavior and implementation of distributed systems,

Theoretical Computer Science 13 (1981) 17-43 (North-Holland, Amsterdam).

N. Lynch, M. Tuttle,

Hierarchical correctness proofs for distributed algorithms,

in: 6th ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada ,
Aug. 87,137 - 151.

M. Merritt,

Completeness Theorems for Automata,

Rept. AT&T Bell Laboratories, Murray Hill, NJ, May 1989.

R. Milner,

Communication and Concurrency,

(Prentice-Hall International, London, 1989, ISBN 0-13-114984-9).

D. Park,

Concurrency and Automata on Infinite Sequences,

in: Theoretical Computer Science (LNCS 104, Springer-Verlag, Berlin Heidelberg New York, 1981, ISBN 3-
540-10576-X), 167-183.

W. Swartout, R. Balzer,

On the Inevitable Intertwining of Specification and Implementation,

Communications of the ACM, Vol. 25, No. 7, July 1982, 438-440.

P. van Eijk,

Tools for LOTOS Specification Style Transformations,

in: S. T. Vuong, ed., FORTE ’89, Vancouver, Canada, Dec. 89 (North-Holland, Amsterdam, 1990).

R.J. van Glabeek,

The Linear Time - Branching Time Spectrum,

in: J.C.M. Baeten, J.W. Klop, eds., CONCUR ’90, Theories of Concurrency: Unification and Extension,
(LNCS 458, Springer - Verlag, Berlin Heidelberg New York, ISBN 3-540-53048-7), 278-297.

C.A. Vissers, G. Scollo, M. van Sinderen,

Architecture and Specification Style in Formal Descriptions of Distributed Systems,

in: S. Aggarwal, K. Sabnani, eds., Protocol Specification, Testing and verification, VIII (North-Holland,
Amsterdam, 1988, ISBN 0-444-70542-2).

30

