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of the joint rigidity, the elastic buckling load, and this for both sway 

and non-sway frames. As has been shown by previous research, only one 

element is required over the length of the element to model stability. 

This is a marked contribution and advantage of the proposed method, as 

well as its simplicity, and yet accuracy, to solve practical problem with 

little computational effort. Also, it includes stability functions in the 

stiffness matrix, something very often ignored by researchers. Numerical 

results are obtained for frames with various characteristics and support 

conditions when three illustrative examples from the literature are 

presented and discussed. The elastic buckling load is found to be 

strongly affected by semi-rigid joints and reveals that the proposed 

model is computationally very efficient with the expressions presented 

being general. The paper makes reference to the Eurocode 3 approach and 

those of other researchers in comparing the results. The proposed method 

is found to be more effective and simple to use, and yielding to very 

good results. 
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Comparison between Chen et al.* formulation  

and that of the authors’ current study 

 

The governing differential equations of a beam-column are solved in an exact form. 

By using the equilibrium equations based on the deformed shape of a beam-column, 

a complete set of slope deflection equations is obtained. The functions were 

restated and tabulated in a form suitable analysis by Livesley and Chandler (among 

others). For the beam element subjected to end moments and axial load, Chen 

presented the expressions of the end moments as: 
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Expressions (4) and (5) represent the stability functions and in the matrix form as: 
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iiS et ijS  are the stability functions ( presented by W.F.Chen) for stiffness under the 

action of the predominant axial force. In his proposed method, using the beam-

column stiffness degradation approach and the stability functions, divergence occurs 

when the axial force of member is close to zero. 



   


















183,8

285,0004,0

4

543,001,0

15

2
4

222

iiS

   (6.a-b)      

   


















183,8

285,0004,0

4

543,001,0

30
2

222

ijS

 

The author has presented the stiffness matrix of a beam-column based on the 

stability functions in a form that shows the correction factor to the basic first-order 

matrix: 
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Where ; )4,3,2,1( jj  

Table (1): The correction functions due to the axial load are given below 
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To account for semi-rigid joints with springs constants at both ends of an element, the 

author (W.F.Chen)  has just modified the slope deflection equations in Eq.(8.a) to 

Eq.(8.h).For the beam element below, the expressions of the end moments are: 
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Here, the end moments and the stability functions iiS et ijS  previously defined 

have the form: 
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And the stiffness matrix  K  is written in the form:  
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When the axial force is neglected its form is as below: 
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ADOPTED MODEL 

The modeling adopted consists in establishing the stiffness matrix of the element with 

semi-rigid connections taking into account buckling. In the simplified form, the 

stiffness matrix in the local coordinate system is: 
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The stiffness matrix ( 12  ) proposed, can be directly used to formulate the linear, and 

all non-linear aspects (geometric and material ) stiffness matrices( with or without 

semi-rigid joints).Those expressions allow for the variation of the stiffness of a 

member in the presence of :(a) predominant axial force with semi-rigid joints, 

(b)predominant axial force without semi-rigid joints, (c) semi-rigid action without axial 

load; used to revise the stiffness matrix comprising more elements as well as 

predicting the buckling of  a single element. The following Table (2) shows, for 

example jk2  , the difference between these elements of the stiffness matrix and those 

when the behavior of the semi-rigid connection is ignored. 

 

 



    Table (2): jk2  expressions for different cases 

When both axial force and semi-
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The objective of the paper is not to investigate the characteristics, merits and 

limitations of element and formulation, only the method presented by the author is 

describe. Some remarks can be made: 

 

1- The element stiffness matrix derived by the stability functions and many others 

formulations are all different, not only in the method of derivation but also their 

accuracy and efficiency. Even under the name of stability function, there may 

still be different versions used varied forms for the analysis (Majid (1972), 

Livesley (1964), Oran (1973), Chen (1991),  Chan(2000)…). 

2- The stability functions reflect the decrease in the flexural rigidity of a column 

as a function of the compression force applied to it. In fact, they modify the 

moment-rotation relations. The expression of these moments is given by the 

slope-deflection method  (Chen et al.) in which we mainly find the functions of 

stability iiS
 and ijS

.
 

3- The generalization of formulated expressions consider different cases of 

behavior of rigid, semi rigid linear analysis and of a plastic analysis and finally  

the stability analysis. Thus, the analytical confrontation of the expressions 

given by the established formulation makes it possible to consider or not the 

effect of the axial force without having to develop an artifice of calculation to 

remove the indeterminacy or divergence, for example, as is the case with 

some authors (W.F.Chen). 



4- The proposed method, although simple provides a wide range of applications. 

It is based on the matrix formulation of stability functions of beam-column 

witch can take on consideration the effects of axial force and a semi- rigid  

joints explicitly. The verification examples of the method showed a good 

accuracy. Compared with EC3 code and other formulations, the method 

shows its accuracy, simplicity and generality. It can be run easily on personal 

computer. 

 

Reference: 

*Chen W.F., Kishi N., Komuro M. “Semi-rigid connections handbook”. J. Ross 

Publishing, Civil and Environmental Engineering Series. 2011.  
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Notations 

 

k k1 2,    :  Elastic constants of the springs in rotation at the nodes " "i and " "j ,  

  respectively 

D   :  Denominator for the case where both the second order effects and rigidity of 

  the joints are considered       

1D   :  Denominator for the case where only the rigidity of joints is considered   

w        :  Flexural rigidity per unit length 
l

EI
 

)(v
i

 , )(v
i
  : Functions including both axial forces and the rigidity of the joint for different  

                        situations 

 

1. Introduction 

 

Conventional analysis and design of steel frames assume either perfectly rigid or pinned 

joints. However, as is now well established, the real behaviour of the joints is between these 

two extreme cases: the most rigid joints always have some flexibility so that the joints are 

capable of transmitting a bending moment, whereas the pinned joints case always exhibit 

some rotational rigidity. In this intermediate case of semi rigid joints, some rotation with 

corresponding bending moments will develop between the beam and column elements. The 

concept of semi rigid joints in steel structures is well accepted [1-8]. Previous studies have 

indicated that in frame analysis, joint rotational behaviour must be considered. It is therefore 

necessary to incorporate the effect of joint flexibility in the frame analysis, otherwise the 

resulting internal forces and bending moments will contain errors [9-14]. 

 

Mathematical models were proposed in the past to fit the moment-rotation  M curves of 

joints, with various levels of complexity, using experimental data [1-4, 9]. The response of the 

joint is dependent on the geometric and mechanical properties of its components. Because of 

the high number of the parameters influencing the behaviour of connections, accurate 

modeling of such behaviour becomes very complex. Globally, initial rigidity and the ultimate 

moment of the connection are the two most important [15]. 
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Significant research has been carried out using mechanical models to study the joint’s 

behaviour and to introduce their effect in the analysis of structures. Simões da Silva [12] 

proposed a generic model for steel joints under generalized loading. Ihaddoudène [16] 

presented a mechanical model of the connections, where the rigidity of the joint is represented 

by means of rotational and translational springs introducing the concept of non deformable 

element of nodes, thus describing relative displacements and rotations between the nodes and 

the elements of the structure. Eurocode 3 Part 1-8 refers [17], for the characterization of the 

joint mechanical response to the component method based on some different researches and 

amongst them Jaspart [10]. Nassani and Chikho [18] presented a formula to calculate the 

column ultimate load to simulate the behaviour of steel columns in sway structures. The 

structural benefits of using semi-rigid joints are widely recognized and there is nowadays a 

general agreement to include the beam-column joint deformations in structural analysis. 

Various approaches are provided to include such an effect, for instance the finite element 

method [19, 20].The elastic stability of steel frames taking into account the effect of the joint 

flexibility and the elastic member instability are specific aspects to investigate. 

 

Several authors [21-29] have presented models for determining the effective length factor of a 

beam-column with end restraints. Ermopoulos [21] presented a model for determining an 

equivalent buckling length of compression columns with semi rigid joints. Essa [22] proposed 

a design method for the evaluation of the effective length for columns in unbraced multistory 

frames. Raftoyiannis [23] presented the effects of the joint flexibility and elastic bracing 

system on the buckling load. Mageirou and Gantes [24], Gantes and Mageirou [25] proposed 

a model of an individual column representing a multistory frame where the member 

contributions converging at the bottom and top ends of the column are represented by 

equivalent springs. Xu and Liu [26] proposed a method for the stability analysis of semi 

braced steel frames with the effect of semi-rigid connections and the procedure of evaluating 

column effective length. Xu [27] presented a linear programming method to investigate 

stability strengths of unbraced steel frames subjected to variable loading, where the problem 

of determining the elastic buckling loads is expressed as a pair of maximization and 

minimization problems with stability constraints. A number of other alternative approximate 

effective length formulas are available in the literature; an overview is given in Hellesland 

[28] where it is shown how such formulas may be applied in system instability analysis of 

frames and comparisons with the exact effective length results have been carried out for 
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isolated members. Cao et al. [29] presented a mechanical model of spring hinge ended column 

and design formulas to predicate the effective length factors were proposed.  

 

2. Significance of the research 

 

Chen et al. [30] proposed in an implicit form the stability functions derived from a slope-

deflections approach. However, using the beam-column stiffness degradation approach and 

the stability functions, divergence occurs when the axial force of member is close to zero. A 

great deal of information on this subject have been presented by Chen et al.[30]. The proposed 

model however, is based on functions accounting for semi-rigid connections and predominant 

axial load, with an explicit formulation. Therefore, the formulation has the advantage of being 

explicit and simple to use, leading to very good results as is shown in the succeeding sections. 

 

3. Basic assumptions  

 

A previous study carried out by Shayan et al. [31] has shown that the effects of the residual 

stresses and initial imperfections on the buckling load are of the order of 2% and less than 

1%, respectively. Out-plane-effects were not considered as the study is only concerned with a 

two dimensional formulation of the problem. Furthermore, the axial load is applied through 

the centerline of the beam, and therefore no eccentricity is included in the analysis. Giraldo-

Londono et al. [32] investigated the post-buckling and large deflections of beam-columns 

with non-linear semi-rigid connections, taking into consideration shear and axial effects. The 

authors obtained good results for the study of large-deflection and post-buckling behaviour of 

Timoshenko beam-columns with non-linear bending connections. Stamatopoulos [33] 

modeled a plane frame with the supports consisting of non-linear rotational and translational 

springs, employing an energy approach. The author obtained limit values for the rotational 

stiffness for which the flexible supports affect the buckling response of the frame. 

 

Gorgun [34] presented a computer-based analytical method for geometrically nonlinear 

frames with semi-rigid beam-to-column connections, employing modified stability functions 

to model the effect of axial force on the stiffness of members. The linear and nonlinear 

analyses were applied for two planar steel structures. However, the stability functions are not 

specifically given in the model adopted. Nguyen and Kim [35] presented a numerical 

procedure based on the beam–column method for nonlinear elastic dynamic analysis of three-
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dimensional semi-rigid steel frames. Geometric nonlinearity is considered through the use of 

stability functions and geometric stiffness matrix. An independent hardening model is adopted 

to capture the dynamic behavior of rotational. The authors used the SAP2000 software to 

verify the accuracy and efficiency of the proposed analysis through four numerical examples, 

but no validation against test results is presented. 

 

MacRae et al. [36] have shown that in the elastic range, axial shortening may be safely 

ignored, and becomes more important once yielding in the members had occurred. As the 

current study is only concerned with investigating the elastic buckling, axial shortening is 

therefore ignored. Wongkaew and Chen [37] considered inelastic out of plane lateral torsional 

buckling in the advanced analysis for planar steel frame design. The authors showed that out-

of-plane buckling is likely to govern the strength of non-sway frames and may control the 

design of some sway frames. As such, it is important that out-of-plane buckling is considered 

in advanced analysis, post-linear. However, in this linear elastic study, and for simplicity, 

lateral torsional buckling has not been considered, as the frames analyzed are assumed to be 

adequately restrained against the development of lateral torsional buckling failure, as is 

commonly the case in civil engineering structures. 

 

Hence, the following assumptions were made in the development of the mathematical 

formulation of the model: (i) members are initially straight, piecewise prismatic; (ii) plane 

cross section remains plane after deformation; (iii) local buckling and lateral torsional 

buckling are not considered (since the problem is two-dimensional one); (iv) the panel zone 

deformation of the joint is neglected; (v) the effect of residual stresses on the system response 

(especially critical load) is ignored. 

 

4. Mechanical model 

 

The mechanical model adopted (Ihaddoudène [16]) is based on the analogy of three springs. A 

beam element subjected to both a compression axial force N and bending moments iM  and 

jM with semi-rigid joints (Fig.1 and Fig.2) at each end, is considered. 

 

4.1. Equilibrium equations of an element 
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4.1.1 Beam element under unit rotation 1i  

 

    Horizontal force equilibrium 

HHH ji              (1) 

Moment equilibrium at the distance x  

jMHxNyxM )(          (2) 

 Moment equilibrium at end ""i  

ji MHlM                    (3)                                                                                           

The equilibrium of this column in its buckled condition is described  

jMHxNyEIy "          (4) 

EI

M

EI

Hx
yy

j
 2"                  (5)                                                                                     

where          

EI

N
2           (6) 

 

 

The general solution of equation (5) is 

EI

M

EI

Hx
xBxAxy

j

22
cossin)(


                                         (7) 

 

where A  and B are the constants of integration to be determined from the boundary 

conditions for 0)0( y  and 0)( ly  

 

The deflection may then be rewritten as :                                     

 
EI

M

EI

Hx
x

EI

M
HllM

lEI

x
xy

jj

j 2222
cos)1(cos

sin

sin
)(










                  (8) 

 

 and its first derivative is: 

 
EI

H
x

EI

M
HllM

lEI

x
xy

j

j 2
sin)1(cos

sin

cos
)('










                                   (9) 
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The end reactions H  and jM  are, hence, determined from the boundary conditions )0('y  and 

)(' ly  which give the system of equations as: 

 

    
















lEIlEIlklllHlEIklM

lEIMkllHlM

j

jj





sin)sinsincos()sincos1(

sin)(sin)cos1(

22

11

2

2
(10) 

 

By setting 

  
EI

N
llv              (10-a) 

and   
l

EI
w              (10-b) 

 

where EI  and l are respectively the flexural flexibility and the length of a beam element 

The system of equations (10) becomes: 

 

















vEIvwvkvvvHvvwkvM

vvHvvwkvM

j

j

sin)sinsincos()sincos1(

0)(sin)sincos1(

22

11

2




                      (11) 

 

The solution of this system of equations is given by: 

)(1 v
l

w
H              (12) 

)(1 vwM j             (13) 

)(2 vwM i             (14) 

in which : 

D

vvwkvv
v

)sincos1(
)( 2

2

1


        (15-a) 

D

vvv
v

)sin(
)(1


           (15-b) 

)()()( 112 vvv             (15-c) 

Where 

 ),,()sincos22( 21 kkvvvvD              (15-d) 

Table (1) below covers particular situations in terms of joint types at both ends.  



8 

 

4.1.2. Beam element under unit displacement ∆i =1 

A similar procedure is conducted for the beam element of the Fig.(2), the reaction H  and the 

moment equilibrium at the distance x  has the same expressions as given respectively by the 

Eq.(1) and Eq.(2); the expression of the moment iM  is given as (Ihaddoudène and Jaspart 

[38]):  

  ji MHlNM              (16-a)     

 

 The constants of integration to be determined for the Eq. (7) are obtained from the boundary 

conditions of 0)0( y  and 1)( ly
 

 

The deflection and its derivative may then be rewritten respectively as:                                     

 
EI

M

EI

Hx
x

EI

M
EIHllM

lEI

x
xy

jj

j 222

2

2
cos)1(cos

sin

sin
)(










                         (16-b) 

 
EI

H
x

EI

M
EIHllM

lEI

x
xy

j

j 2

2 sin)1(cos
sin

cos
)('










                                   (16-c) 

 

The reactions H  and jM  are determined from the boundary conditions of )0('y  and )(' ly   
for: 

jMky 2)0('                                                                                                               (16-d) 

)()(' 11 ji MNHlkMkly                                                                                 (16-e) 

The solution of the equation system formed gives the functions in the simplified form as 

follows: 

)(
22

v
l

w
H                 (17 ) 

)(
3

v
l

w
M

j
                                                      (18) 

)(
4

v
l

w
M

i
                (19) 

 

Tables (2), (3), and (4) give the expression of the coefficients used in Eq.(17) to Eq.(19) for 

different boundary conditions at both ends.  
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It is worth noting that for the situation of clamped ends ( 021  kk ), neglecting the 

deformation of the joints, the expressions are the same of those given in table (1). For pinned 

ends,  21 kk , 2

2 )( vv  ,  )(3 v = )(4 v =0. 

 

5. Stiffness matrix of an element 

 

In order to establish the modified stiffness matrix including both the effects of axial force and 

connection flexibility, one needs to consider different situations. 

 

In the local reference system, the stiffness matrix which is represented by the nodal degrees of 

freedom (
1

V , 
1

  , 
2

V , 
2

 ) of an element is given by: 

 

                  





















44434241

34333231

24232221

14131211

kkkk

kkkk

kkkk

kkkk

K
e        (20)  

 

The nodes of the beam which are represented by non deformable nodes at each ends [13, 15, 

16, 38] have different flexibilities 1k  and  2k  at both ends i  and j  respectively. In order to 

establish the different elements of the stiffness matrix eK in local reference system, 

equilibrium equations and rotational deformations are considered for each element k ij . 

 

5.1. Elements jk2  

The terms k ij  of the stiffness matrix have been derived by establishing the equilibrium 

equations and rotational deformations of an element with semi rigid joints subjected to axial 

forces  N and moments iM , jM at each of the ends ""i and "" j . 

 

From established equations (12), (13) and (14), the terms jk2  of the stiffness matrix may be 

derived by considering the equilibrium equations of an element such shown in Fig. (3). 

D

vvwkvv

l

w
v

l

w
k

)sincos1(
.)(. 2

2

121


         (20-a)  
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D

vwvkvvvv
wvwk

)sincos(sin
)(.

2

2

222


        (20-b) 

2123 kk            (20-c)
 

D

vvv
wvwk

)sin(
)(.

124


          (20-d) 

 

The same procedure is followed to derive all the terms of stiffness the matrix eK  of an 

element which is given below:      

  

 













































Dl

vvcsv
Dl

cv

Dl

sv
SYM

Dl

svv

Dl

cv

Dl

vvcsv
Dl

cv

Dl

sv

Dl

cv

Dl

sv

EIK e

)(

)1()(

)()1()(

)1()()1()(

1

2

1

2

3

3

2

2

2

2

2

1

2

3

3

2

2

2

3

3









     (21) 

with: 

svwkkvwckk 2

2121 )()(        (22-a)
 

vwsk11           (22-b) 

vwsk22           (22-c) 

“s” and “c” are sin and cos of an angle. 

 

5.2. Different boundary conditions at the ends of the element  

For some different boundary conditions, the particular elements jk2  above (j=1, 2, 3, 4) are 

considered below: 

 

5.2.1.  Element jk2 , when the joints are rigid with the presence of axial forces :  

If the deformation of the joints is neglected then, 021  kk , the elements jk2  of the 

stiffness matrix are reduced  to the well known expressions : 

)22(

)1(2

221
vsc

cv

l

EI
Hk




        (23-a) 

)22(

)(
22

vsc

vcsv

l

EI
Mk

i



        (23-b) 
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             2123 kk          (23-c) 

)22(

)(
24

vsc

svv

l

EI
Mk

j



        (23-d) 

 

The stiffness matrix in the local reference system can be obtained as: 

 









































































)22(

)(

)22(

)1(

)22(

)22(

)(

)22(

)1(

)22(

)(

)22(

)1(

)22()22(

)1(

)22(

2

2

3

3

2

2

2

2

3

3

2

2

3

3

vscl

vcsv

vscl

cv

vscl

sv
SYM

vscl

svv

vscl

cv

vscl

vcsv

vscl

cv

vscl

sv

vscl

cv

vscl

sv

EIKe

  

(24) 

 

5.2.2. Element jk2 , when joints are semi rigid and no axial forces are present 

In contrast, if the axial force is neglected and the deformation of the joint are considered 

with  1k  and 2k  at ends ""i  and "" j  respectively, the element jk2  of the modified 

stiffness matrix established [13]: 

 

 1)31)(31(4

)21(18

21

2

21





wkwkl

wkw
k                                                                      (25-a)   

1)31)(31(4

)31(12

21

2

22





wkwk

wkw
k                                                                                 (25-b)

 

2123 kk                                                                                                                (25-c)

 

1)31)(31(4

6

21

24



wkwk

w
k                                                                                (25-d) 

 

The stiffness matrix of an element may be obtained as follows: 

 

 

     

 

 
















































1

1

1

1

2

1

21

11

2

1

2

1

1

2

1

21

1

2

2

1

21

)31(12

)21(18)(136

62118)31(12

)21(18)(1362118)(136

D

wkw

lD

wkw

lD

wkkw
SYM

D

w

lD

wkw

D

wkw

lD

wkw

lD

wkkw

lD

wkw

lD

wkkw

K
e

 (26)     
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Where, 1)31)(31(4
211

 wkwkD                 (27) 

 

In order to establish the different elements of the stiffness matrix in eK in local reference 

system, expressions have been derived by considering only the equilibrium equations and 

boundary conditions for each element  k ij
 as presented in reference (Ihaddoudène et al. [15]). 

The expressions presented are more general and useful as they take all varieties of situations 

of the joints: considering or neglecting the semi-rigidity of joints and axial forces or 

combining them in any situation from stability functions established. 

 

6. Examples 

 

Some examples previously published [24, 25] are presented, for which the proposed approach 

is demonstrated and the results are compared and validated. 

 

In this section, the critical buckling load is determined for different sway and non-sway 

frames (Ihaddoudène[16], Ihaddoudène and Jaspart [38]). 

 

The following three examples discussed are taken from the reference [24, 25] where the 

characteristics of the structural elements are given below:  

 

For the beam 












kNEA

mkNEI

896490

.48573 2

 and for the column  












kNEA

mkNEI

1272600

.90699 2

   

and the flexibility  mkNradk ./150/11   

  

6.1. Non-sway frame 

The steel frames shown in figure (4) are analyzed and compared with different results given in 

the references [24, 25]. The analysis of the results is given in the tables (5) and (6) below. 

 

The buckling load obtained by the present study, for both cases, is the same as the one 

obtained by the cited references. It is reached when the stiffness matrix is singular (i-e. 

determinant is zero). 
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Despite the different boundary conditions for the beam in case (a) and case (b) in Figure (4), 

the results reported in Table (5) and Table (6) are quite similar. In fact, the semi-rigid joint 

acting at the upper extremity of the column possesses a very low stiffness in comparison to 

the one of the beam and should be classified as "pinned" according Eurocode 3 part 1-8 [17]. 

This explains why the boundary conditions at the right extremity of the beam are not 

influencing significantly the critical cases for case (a) and case (b). 

 

6.2. Multistory sway frame 

The multistory frame of figure (5) is analyzed using the proposed formulation compared to 

those given by the reference [24]. Table (7) below gives the buckling load values obtained for 

different methods. 

 

The table above (7) summarizes the value of the critical load obtained by different methods. 

The proposed method gives the value of kNPcr 94.21 , identical to those given by the finite 

element method ( kN02428.22  ) and by the authors ( kN9399.21 ) and is in very good 

agreement with not only finite element results but Eurocode 3 results as well [17]. This was 

not the case for “EC3 as cited in the reference [24]”. This results from the fact that this EC3 

evaluation is based on the assumption of rigid beam-to-column joints. An improvement of this 

procedure aiming at accounting for the presence of sem-rigid joints is expressed in [40]. 

 

6.3. Sway and non-sway frame 

The two situations of sway and non sway frames shown in figures (6a) and (6b) are 

considered, respectively. Tables (8) and (9) give the value of the critical load obtained for 

these two cases using the different considered methods. 

 

For the sway frame, the critical load obtained by the proposed method is very close to that 

given by Mageirou and Gantes [24] and is respectively equal to kNPcr 7.14  

and kNPcr 77.14  and is in a good agreement with that obtained with the method clause 

5.2.1(4)B of EC3 [17]. 

The results as reported in the reference (Gantes and Mageirou [25]) ( See Tables 7 and 8 ) 

calculated with Eurocode 3 [17] for sway and non-sway frames are very different from those 

obtained by the authors with EC3 clause 5.2.1(4)B [17]. 
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The results obtained using this analytical formulation are clearly consistent with those 

obtained by the above references, the finite element method and the application of  EC3 

clause 5.2.1(4)B for both sway and non sway frames. The formulation provides a simple 

solution for each of the design situations that refer to the concept of elastic critical resistance. 

 

7. Conclusions 

 

A simple effective mechanical model for determining the elastic buckling load for both sway 

and non-sway multistory plane steel frames with semi-rigid connections was proposed and a 

corresponding stiffness matrix presented. 

  

The novelty of the model consisted in the development of comprehensive approach taking 

into account, simultaneously, the effects of the joint rigidity and the elastic buckling load, and 

this for both sway and non-sway frames. Only one element is sufficient over the length of the 

element to model stability. Numerical results are obtained for frames with various 

characteristics and support conditions when three illustrative examples from the literature are 

presented and discussed. 

 

Illustrative published examples of frames are presented and examined, and comparison 

between the results gives a good correlation, suggesting that the proposed model is adequate 

and may be a useful tool in the analysis of steel frames with semi-rigid joints. Additionally, 

the results obtained using the proposed method agrees well with those obtained by other 

approaches, however the present method is much simpler to use and apply for a wide range of 

conditions. It is shown that joint flexibility is a very important parameter that needs to be 

incorporated into the instability analysis of frames with semi-rigid joints. 

 

In previous work carried by other researchers, e.g. [24], concerning the application of EC3, is 

that it ignores the effect of the rigidity of the joints in the evaluation of the critical load, which 

explains the difference in the results. Furthermore, as the reference structures are almost a 

mechanism because of the rather low joint stiffness, the determination of the critical load is 

very sensitive to the rigidity of the joint. Nevertheless, the current approach gives very good 

results, making it a comprehensive, effective and reliable technique to use for two 

dimensional steel frames with semi-rigid joints, with or without sway, with the problem of 
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instability taken into consideration. Thus, P-effects can easily be taken into account using 

the current model. 
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Table (1): Different types of joints at element extremities 
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Table (2): Expressions of )(2 v , )(3 v  and )(4 v for different element boundary conditions  
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Table (3): Particular case of semi-rigid and fully rigid ends  
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Table (4): Particular case of fully rigid and semi-rigid ends 
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Table (5): Comparison of the critical load values for the case (a)  
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Table (6): Comparison of the critical load values for the case (b)  
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  Table (7): Critical load values obtained with different methods [24] and the present study. 
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Table (8): Comparison of the critical load values for sway frame 
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Table (9): Comparison of the critical load values for non sway frame 
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Figure (2): Beam element under unit displacement ∆i =1 
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Figure (4): Studied systems [24] 
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         Figure (6): One story frame [24] 
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