
Published in: K. Parher, G. Rose, eds., IFIP Transactions C-2: Formal Description Techniques IV, Elsevier
Science Publishers B.V. (North-Holland), Amsterdam (1992), 313-327.

1

A LOTOS Data Facility Compiler (DAFY)1

Eric Lallemand
Research Engineer

Guy Leduc
Research Associate F.N.R.S. 2

Université de Liège, Institut d’Electricité Montefiore, B28, B-4000 Liège 1, Belgium
Tel: + 32 41 562691 Fax: + 32 41 562989

E-mail: u514401@bliulg11.bitnet or leduc@montefiore.ulg.ac.be

Abstract
If we take a look at existing LOTOS specifications, we notice that the description of the needed
data types is very often huge. This causes the lack of concision of most descriptions of complex
systems. We propose to tackle this problem in two steps. First, we define extensions to the
LOTOS language allowing short definitions of most of the data types used in practical LOTOS
specifications. Second, we propose a tool called “DAFY” (Data Facility Compiler) which is
able to translate these extensions into standard LOTOS.

1. Introduction
LOTOS (Language Of Temporal Ordering Specification) was developed by FDT (Formal
Description Technique) experts during the years 1981-1988. The basic idea behind LOTOS is
that systems can be described by defining the temporal relation between events describing the
externally observable behaviour of a system.

LOTOS has two relatively independent components:
- The first one deals with the description of the process behaviour of a system, and is based

on a modification of CCS (Calculus of Communicating Systems - [Mil 80], [Mil 89]) and
CSP (Communicating Sequential Processes - [Hoa 85]).

- The second one deals with the description of data structures and value expression and is
based on the abstract data type language ACT ONE which was developed at the Technical
University of Berlin ([EhM 85]).

Although it has been developed for OSI (Open Systems Interconnection), LOTOS is a Formal
Description Technique which is generally applicable to distributed, concurrent information pro-
cessing systems. LOTOS was developed with the purpose of allowing the production of sys-
tem descriptions which are unambiguous, complete, consistent, precise and concise.

In fact, when we take a look at existing specifications, we notice that the description of the
needed data types is often huge. This causes the lack of concision of most descriptions of
complex systems. This problem has already been identified by G. Scollo in 1986. In order to
solve it, he proposed to extend the language definition ([Sco 86]) with shorthand notations to
be able to produce concise data type descriptions. However, most of the extensions proposed

1 This work was partially supported by the Commission of the European Communities under the ESPRIT II
programme in project OSI 95.

2 Fond National de la Recherche Scientifique: National Fund for Scientific Research (Belgium)

A LOTOS Data Facility Compiler (DAFY)

2

by G. Scollo were not included in the standardized definition of the language. Thus, the prob-
lem remains unsolved as system descriptions using the extended language are neither interna-
tionally accepted by the scientific community nor tractable by LOTOS related tools.

2. The language extensions
The shorthand notations, proposed by G. Scollo in 1986 when LOTOS was not a standard yet,
intended to ease the data definition work and to speed it up ([Sco 86]).

After a short description of the proposed facilities, we will evaluate their usefulness and we will
look at the feasibility to define additional facilities.

2.1. The extensions proposed by G. Scollo

2.1.1. “Constant”

This language extension allows the easy definition of data types whose value domains (sorts)
consist only of a finite number of constants whose names are the parameters of the extension
invocation 1 .

The operations defined within this type allow the comparison of the constants (equality,
inequality). These operations are defined considering that constants of different names are dif-
ferent.

A more complete version of this extension also defines additional operations such that “less
than”, “less or equal”, “greater than”, “greater or equal”. The results provided by these opera-
tions are based on an order relation which will somehow have to be defined by the user of this
extension. This will be done in relation with the order of the names of the constants in the pa-
rameter field of the extension invocation.

2.1.2. “Map”

This facility allows the easy and explicit description of a function (possibly partial) between the
two sorts which are the parameters of the extension invocation.

The operations defined by this type allow:
- the association of a (new) value to a term of the function domain;
- the generation of the value associated to a term of the function domain;
- the generation of the function domain;
- the comparison of two functions, …

2.1.3. “OneOf”

LOTOS allows the use of the same name to refer to different operations (if it is possible to dis-
tinguish each occurrence of the same identifier because of either the nature of the operation ar-
guments or the relative position of the operator with respect to its arguments). This feature is
called “overloading” and it is not allowed to be used for sort identifiers. So it is not possible to
use the same identifier to denote two different sorts.

This extension tries to remedy this situation by allowing the definition of a sort as the “union”
of other value domains which are the parameters of the extension invocation.

1 By “extension invocation”, we mean the text to be typed by the specifier who uses the language extension.

A LOTOS Data Facility Compiler (DAFY)

3

The operations associated with this type allow the comparison of two terms of the “global” sort
and to know to which “subsort” a term belongs.

2.1.4. “Set” and “String”

These facilities represent the well-known concepts used in mathematics or in computer science.

2.1.5. “Tuple”

This extension allows the definition of a sort as the cartesian product of a finite number of data
domains which are the parameters of the extension invocation.

This type is similar to a “record” in PASCAL or to a “struct” in C.

The operations associated with this type allow the construction of a term (i.e. assign an initial
value to all fields of the structure), the extraction of the value of a tuple component, the modifi-
cation of one or several components of a tuple and at last the test of equality of two tuples.

Note that, as for the “Constant” extension, a more complete version of the “Tuple” extension is
also available. This extended version defines and uses an order relation over the tuples.

2 . 2 . Other extensions of the language ?

It may seem surprising that other abstract data types like those mentioned in [UhS 90] are nei-
ther included in the standard library nor proposed to be defined as language extensions. Are
“Queues”, “stacks”, “trees”, … (which are very frequently used in ordinary programming lan-
guage) useless in the LOTOS context ? It seems that the answer of this question is “yes”.
Indeed, the study of the protocol and service specifications of the transport and the session lay-
ers of the OSI model ([ISO 9571], [ISO 9572], [ISO 10022] and [ISO 10023]) illustrates that:
- Most data types used in the specifications could be specified by using the language exten-

sions proposed by G. Scollo.
- Data types similar to “stacks” or “trees” are not used.
- Data types similar to “queues” are rather seldom. Moreover, each occurrence generally hav-

ing specific characteristics, it would only be possible to specify a reduced version of this
type which only takes account of the common characteristics of all the “queues” (which can
be resumed in the “first in, first out” data access policy). Another reason that led us to reject
this type as a possible extension is the impossibility to correctly and completely specify op-
erations representing partial functions in ACT ONE. Indeed, a partial function is a function
which is not defined on all the values of its domain. This is the case of the function which
tries to extract the value of the first element of a queue as the result is undefined if the queue
is empty.

- Other data types used in the specification are few, quite short and too particular to consider
the creation of facilities enabling their substitution.

These results also take account of the fact that it is possible to specify some data types using
processes ([Got 87], [Led 87], [Led 90]).

2.3. The treatment of the extensions

As the use of non-standard features is forbidden in LOTOS and as the extensions proposed by
G. Scollo seem very useful, we decided to design a tool which translates an extended LOTOS
specification (based on variants of these extensions) in a standard LOTOS specification. This
tool will ease the specification task in two significant ways:
- it will permit the reduction of the length of the specifications written by specifiers;

A LOTOS Data Facility Compiler (DAFY)

4

- it will allow an easy definition of most of the needed data types.

Although the “Set” and “String” extensions proposed by Scollo were retained in the standard
library, we have chosen to treat them because the extension invocations translated by DAFY
will be much easier to use than the library types which have to be correctly actualized and re-
named.

Although we only consider the extensions proposed by G. Scollo, the tool will be designed in a
modular way in order to allow the incorporation of future extensions.

3. Definition of the extension invocation syntax and of the transla-
tions produced

3.1. The extension invocation syntax

When we defined the syntax to be used to invoke the extensions, we had to find a compromise
between two opposite desires:
- On one hand, the desire to use a syntax as close as possible to the one used for abstract data

types in LOTOS. The use of the extensions will then seem as natural as possible.
- On the other hand, the need for the translation tool to be able to distinguish the use of an

extension from a standard data type definition (this is only possible if the syntax used for the
extension invocations is different enough from the one used by standard LOTOS).

Taking the technical problem related to the design of a compiler into account, but considering
that we wanted to produce a tool easy to use, we chose the following syntax for the extension
invocations:

type type_name isdafy extension_name
[actualizedby type_name_list using]

[sortnames sort_name]
[opnnames (operation_name for operation_name)+]
parnames identifier_list
endtype

Parts between “[]” are optional and “(operation_name for operation_name)+” means the repe-
tition of at least one “(operation_name for operation_name)” group.

Example of the use of this syntax:
type Constant_3 isdafy Constant
sortnames Const
parnames Const_1, Const_2, Const_3
endtype

This example defines the “Constant_3” type and the “Const” sort whose only three terms are
“Const_1”, “Const_2” and “Const_3”. In this invocation of the “Constant” extension, we
chose to impose the produced sort name (which is by default chosen equal to the type name)
but we did not ask the compiler to modify the operation names which are produced by default.
This modification could have been done as in standard LOTOS using the “opnnames” key-
word.

The only differences between an actualization in standard LOTOS and an extension invocation
are:
- The use of the “isdafy” (is data facility) keyword which effectively indicates that we will

use a language extension rather than a previously defined data type;
- The non-use of the “for sort_name” after the “sortnames” keyword;

A LOTOS Data Facility Compiler (DAFY)

5

- The use of “parnames” followed by an identifier list. This word has been used in order to
uniformly treat the parameters of all the extensions (the parameters of the “Constant” exten-
sion are operation names whereas the parameters of the other extensions are sort names).

Let us note that only the “isdafy” word is considered as a new keyword by the data facility
compiler. The “parnames” word and the extension names (“Constant”, “Map”, “OneOf”, …)
can be used as normal LOTOS identifiers (except “Constant+” and “Tuple+” which are used to
design the extended version of the “Constant” and “Tuple” extensions; they are not standard
LOTOS identifiers).

3 . 2 Translation of the extension invocations

3.2.1. The generic data type concept

The standard LOTOS allows the description of parametrized data types which can be consid-
ered as partial specifications where only some general features of the type are described and
“holes” (formal sorts, operations and equations) are left to be filled later with further details. An
example of such a parametrized data type is the well-known “Set” defined in the standard li-
brary annexed to the LOTOS language definition ([ISO IS 8807]). From this “Set” definition, it
is possible to easily generate the definition of any set whose operations have the same proper-
ties as those specified in the initial type. For this reason, “Set” is considered as a generic data
type definition.

By using the same LOTOS feature, it is possible to define generic data types by defining the
operation properties of a “Map” (its domain and its range are the parameters), a “OneOf” for a
given number of subsorts gathered (these sorts are the parameters), a “String” (the sort of the
elements contained is the parameter), a “Tuple” of a given number of fields (the sorts of the
fields are the parameters). An example of such a generic data type produced by DAFY and rep-
resenting a “Tuple” of three fields is given between the 22nd and the 92nd line of the annex B.

There is no need to use parametrized data types to define sorts consisting only of a finite num-
ber of constants as only the constant names are unknown. Nevertheless, because of the renam-
ing feature of the standard LOTOS, it is also possible to specify a generic type which defines
a sort of a given number of constants whose names are adaptable at will. An example of a
generic data type defining three constants is given between the 4th and the 20th line of the an-
nex B.

Taking the preceding remark into account, we decided to produce the translations of the exten-
sion invocations in two stages:
- the production of a generic data type completely specifying the concepts used by the facility

(possibly taking the number of parameters into account) and,
- the adaptation of the generic data type to the particularities of the facility invocation.

These translations will be produced at two different levels of specification by the data facility
compiler:
- the generic data types needed by the complete set of extensions used in the source specifica-

tion will be produced just before the “behaviour” symbol in order to give them global
scope (cf. lines 4 to 92 of the annex B);

- the translations instantiating the generic data types will be produced where the extension in-
vocations are detected (these translations are said “local”). (cf. lines 97 to 132 of the annex
B).

Let us note that it is impossible to define a single generic data type to describe a “Tuple” of any
number of fields because the properties of the operations depend upon this number. For the
same reason, it is also impossible to define a single generic data type for a “Constant” or a

A LOTOS Data Facility Compiler (DAFY)

6

“OneOf” of any number of parameters. Thus, we will have to produce as many generic data
types as the different numbers of parameters used in these three extensions.

4.2.2. Partial functions specification

We will not describe each line of the translations (local or generic) produced for each facility
but we will rather describe the two major problems we had to face during the study of the
translations and the way we solved them.

The semantics of the LOTOS language makes it impossible to describe partial operations com-
pletely and correctly ([EhM 85]). Two of the most common solutions used to overcome this
problem are:
- “The error value solution”: The use of an error value which will be returned if the function is

undefined for the values of its arguments.
- “The set solution”: The modification of the definition of the problematic operation such that

it does not return a single value but a set of values. Thus, if the operation was originally de-
fined for some arguments and returned “v”, it will now return the singleton containing “v”
and, if the operation was not defined, it will now return the empty set.

The use of the first solution very often leads to contradictions in the produced equations. The
second solution is not free of problems either. Indeed, the insertion of the result of the opera-
tion in a set only delays the problem because it is not possible to specify a total function that
could extract the solution possibly contained in the set.

Another solution would consist in simply not defining the behaviour of the operation if the rep-
resented function is not defined.

Considering that no solution is perfect, we decided initially to use the “set” solution to specify
the properties of the partial operations of the “Map” and the “OneOf” facilities. Later, we ex-
tended DAFY very quickly (2 hours’ work) in order to support the “undefined” solution.

4.2.3. Term rewriting systems

In order to simulate LOTOS specifications, and in particular to evaluate ACT ONE value ex-
pressions, the usual technique consists in translating the ACT ONE equations into a term
rewriting systems. Classically, the equations of the data types definitions are interpreted as
rewrite rules from left to right by the simulator3. This means that if the applying conditions of
an equation are satisfied and if a portion of an expression matches the left hand part of the
equation, then this portion of expression may be replaced by using the right hand part of this
equation. The set of equations of the data type specification (also referred to as the equational
theory associated with the specification) are then interpreted as what is commonly called a “term
rewriting system”.

However there are basic theoretical limitations to this translation process: some equational the-
ories cannot be translated into terminating and confluent term rewriting systems. Consequently,
some valid LOTOS specification (w.r.t. the syntax and static semantics defined in the standard
[ISO IS 8807]) are not “simulable”.

A term rewriting system is terminating ([Der 85]) iff no infinite derivations are possible (i.e.
any sequence of successive applications of rewrite rules must terminate, that is derive a term
which is irreducible).

3 This is the case of the HIPPO V2.1 symbolic simulator of the ESPRIT/SEDOS LOTOS Toolset, but most
of the other LOTOS tools apply similar translations.

A LOTOS Data Facility Compiler (DAFY)

7

A term rewriting system is confluent ([Der 85]) iff each correct value expression has at most
one normal form (i.e. by any sequence of successive applications of rewrite rules, in any order,
at most one irreducible term may be found).

In practice, when a specified equational theory makes it impossible to derive an ad-hoc termi-
nating and confluent term rewriting system, it is necessary to modify in a significant way the
equational theory itself. For example, the set equational theory can be translated if an order re-
lation is correctly defined for the elements contained in the set. This is due to the fact that, to
obtain a terminating and confluent rewrite system, one of the n! representations of a set contain-
ing n elements must be given a greater importance, and this can only be done if a correct order
relation is defined over the elements of the set.

Taking the preceding remark into account, we decided to produce two translations for each data
facility:
- The first one is said “theoretical” and is obtained without taking the limitations of simulator

tools into account.
- The second one is said “simulable”, and takes these limitations4 into account and thus speci-

fies variants of these types which generates terminating and confluent rewrite systems.

Being simpler, cleaner and more compact, the first one will be used as reference. Being
“simulable” the second one will be used to validate the specification.

An example of a “simulable” translation produced by DAFY is given in the annex B. The only
difference between this translation and the “theoretical” one corresponding to the same source
specification is that lines 15, 17 and 18 are replaced, in the latter, by a single equation:

“c1 eq c2 = c2 eq c1;”
In conjunction with the equations of the 13th, 14th and 16th lines, this equation expresses the
same properties of the “eq” operation (constants of different names are different).

5. Design of the tool
The structure of the extension invocations makes it possible to use a compiler to translate them.

As the standard LOTOS and the proposed extension invocations satisfy the constraints related
to the use of “lex” and “yacc” tools of the UNIX environment, we were able to use them to
produce DAFY.

Proceeding this way, we certainly produced the tool faster than if we did it by hand, but above
all it allows us to write a quite modular source code. Indeed, it is possible to easily modify the
code either to extend the number of extensions treated by the compiler, or to modify the trans-
lations produced for an extension (in order to, for example, take account of the limitations spe-
cific to other simulators), or even to use another syntax for the extensions (provided that the
new syntax satisfy the constraints imposed by “lex” and “yacc”).

About 6 months work were needed to produce the code of DAFY which is divided into three
major parts:
- the code needed to produce the lexical analyzer (about 2800 lines of “lex” code),
- the code needed to produce the syntactic analyzer (about 2500 lines of “yacc” code),
- the code needed to produce the translations of all the data facilities (about 1400 lines of C).

4 Being designed to be integrated with the SEDOS LOTOS Toolset, we will also have to take account of the
fact that HIPPO does not support the standardized definition of the LOTOS language ([ISO IS 8807]). It only
supports the draft international standard definition ([ISO DIS 8807]). This implies that some features allowed
by the final definition of LOTOS are not supported (the renaming combined with the actualization is an
example of such a feature).

A LOTOS Data Facility Compiler (DAFY)

8

This last part is contained in different files which contain all the procedures needed to produce
the translation of one language extension.

Let us examine the main characteristics of the lexical analyzer and of the syntactic analyzer.
They are the most important parts of the DAFY compiler (cf. Figure 1).

Lexical
Analyser

Syntactic
Analyser

+

Library invocations +
extensions invocations +
 "behaviour"+ "endspec"

Specification using
the extended LOTOS

Standard LOTOS Specification

"Local" translations
+ generic data types

Behaviour expression +
standard data types definitions

Figure 1: Structure of DAFY.

5.1 The lexical analyzer

The main characteristics of the lexical analyzer of the DAFY program are:
- It correctly identifies the lexical tokens defined in the clause 6.1 of the standard LOTOS

definition 5 except the “*)” token which indicates the end of a comment and which must be
preceded by a separator (sequence of spaces, of tabulations or carriage return) to be cor-
rectly recognized. The “behaviour” symbol is always correctly identified but for reasons of
translation, it must be located on a new line (it can only be preceded by separators on its
line).

- It correctly identifies the “isdafy” and “parnames” words which are used in the data facili-
ties. These two words are not considered in the same way by the compiler. Indeed, “isdafy”
is considered as a keyword (and can not be used as a normal LOTOS identifier) whereas
“parnames” is not. This difference results from the fact that “isdafy” actually identifies an
extension invocation in comparison to a normal data type definition.

- It recognizes a new type of identifier when it is used in extension invocations. These identi-
fiers are built by using a LOTOS identifier concatenated to the string composed of the “*”
character followed by a natural number (let “n” be this natural number). In fact, such an
identifier represents a list of “n” LOTOS identifiers separated by a comma.

- It extracts the extension invocations, the library type invocations, the “behaviour” and the
“endspec” symbols from the extended LOTOS specification. Only these parts are transmitted
to the syntactic analyzer because they are the only parts needed to produce the translations.

5 This clause defines the basic characters, the keywords, the special symbols and the format of the identifiers
used in the standard LOTOS. It also defines the format of the comments which can be used in the
specification.

A LOTOS Data Facility Compiler (DAFY)

9

5.2. The syntactic analyzer

The main function of the syntactic analyzer (as well as checking the syntax of the extension in-
vocations and reporting the detected errors) is to “decode” the correct extension invocations.
The decoding goes with a static semantic check of the following points:
- Is the number of parameters used in the invocation correct ? It must be equal to 1 for the

“Set” and “String” extensions and equal to 2 for the “Map” facility;
- Are the renamed operations defined for the referenced facility ?
- Are all the parameters different if they must be so (for the “Constant” and “Map” facilities) ?
- Are all the library types used by the generic translations (which have global scope) invoked

before the “behaviour” symbol ? If it is not so, warnings are reported in an error file.

Once the decoding and the semantic check of an extension invocation are finished, the local
translation is produced if no error has been reported.

Then, the analyzer indicates in a variable the type of extension used and, if needed, the number
of parameters used. This stage is needed in order to produce only the generic data types actually
used by the local translations.

If the end of the source specification is reached without any error, the analyzer calls a procedure
which inserts the generic data types used by all the local translations just before the “behaviour”
symbol. If errors have been detected, they will be reported in an error file whose name must be
given when starting DAFY.

Although the analyzer is not always able to correctly identify the nature of the errors encoun-
tered during the compilation, their location is correctly reported. This allows an easy debugging
of specifications using the extended language. The DAFY compiler recovers rapidly and cor-
rectly after the detection of most of the errors.

5.3. The resulting translation tool

As the DAFY compiler supports the complete standard LOTOS, it can translate the extension
invocations inside a specification using almost any standard LOTOS features. Indeed, in order
to produce a specification which is tractable by DAFY, the specifier only needs to check that:
- the “*)” symbol indicating the end of a comment is preceded by at least a separator (space,

tabulation or carriage return);
- the “behaviour” symbol is only preceded by separators on its line;
- the “isdafy” word is only used to indicate the use of a language extension (it may not be

used as an identifier).

5.4. Integration of DAFY in ILOT

ILOT (Integrated LOTOS Toolset - [Sch 90]) is a program which was designed to integrate an
editor (EMACS) and the tools of the SEDOS LOTOS Toolset (the “SCLOTOS” syntactic ana-
lyzer, the “LISA” semantic checker, the “HIPPO” symbolic simulator, …) into a user-friendly
environment. It was conceived on a SUN 3 workstation and uses many of the resources pro-
vided by SunView (Sun Visual Integrated Environment for Workstations) to ease the design
and the treatment of a LOTOS specification.

In order to treat a specification using the extended language as easily as those using the stan-
dard language only, we have integrated DAFY in ILOT (cf. figure 2). With this new version of
ILOT, it is almost possible to treat a specification without knowing that extensions of the lan-
guage are used.

A LOTOS Data Facility Compiler (DAFY)

10

Syntax Checker (SCLOTOS)

Abstract Tree Builder (LASTB)

Integrated Static Analyser (LISA)

Symbolic Simulator (HIPPO)

Editor (EMACS)

Pretty Printer
(PPLOTOS)

Cross Referencer
(LXREF)

Standard LOTOS Specification

Data Facility Compiler (DAFY)

Specification with
or without Data Facilities

User-friendly Interface

Editor (EMACS)

Fig. 2: Structure of ILOT.

6 . Conclusion
We have developed a tool (called “DAFY” - Data Facility Compiler) which translates lan-
guage extensions into standard LOTOS. It allows the concise description of most of the data
types frequently used in LOTOS specifications. We have integrated this tool into the user-
friendly “ILOT” environment running on a SUN workstation.

The use of DAFY for the specification of the Transport Protocol showed us that this program
allows the reduction of the size of the data type descriptions to about 60 % of the length of
those using only standard language data types. The gain obtained by students with small ex-
amples has even been greater as they needed less than 30 lines of extension invocations to de-
fine all the necessary data types, while the translation of the invocations produced more than
300 lines. DAFY has been defined to produce a quite optimal code. Nevertheless, it is still

A LOTOS Data Facility Compiler (DAFY)

11

possible to shorten the size of the produced code by suppressing the lines corresponding to op-
erations which are automatically produced in the translation but not used in the remaining part
of the specification.

When designing the tool, we wanted it to be:
- Easy to use. This led us to choose a syntax very close to the one used in standard LOTOS

data type definitions.
- Modular in order to be able to extend it easily. Some examples of extensions that we could

imagine are: the treatment of newly added language extensions (if the syntax used for the
new extension is similar to the one used at the moment), to allow the production of other
translations for the partial operations, to take the particularities and limitations of other
LOTOS simulators into account, …

- Portable : DAFY, initially developed on a “SUN 3” station, has been easily ported on a
“SUN/SPARC” station and on a “DEC 3100” workstation.

7 . Acknowledgments
We would like to thank professor A. Danthine of the “Systèmes et Automatique” department of
the University of Liège who proposed the design of a data facility compiler. We would also like
to thank F. Marso and Ch. Pecheur who helped us to realize DAFY. We are grateful to France
Bierbaum, Professor Danthine’s assistant, and to the students attending the course “Protocole
de Réseaux d’ordinateurs”. They have been the first users of this program and they provided
valuable feedback to improve it.

9 . Bibliography
[Der 85] N. Dershowitz,

Termination,
in: J.-P. Jouannaud, ed., Rewriting Techniques and Applications, LNCS 202 (Springer-
Verlag, Berlin Heidelberg New York Tokyo, 1985, ISBN 3-540-15976-2) 180-224.

[EhM 85] H. Ehrig and B. Mahr,
Fundamentals of Algebraic Specification 1, Equations and Initial Semantics,
in: W. Brauer, B. Rozenberg, A. Salomaa, eds., EATCS , Monographs on Theoretical
Computer Science (Springer Verlag, Berlin Heidelberg New York Tokyo, 1985, ISBN 3-
540-13718-1).

[Got 87] R. Gotzhein,
Specifying abstract data types with LOTOS,
in: G.v. Bochmann, B. Sarikaya, eds., Protocol Specification, Testing and Verification, VI
(North-Holland, Amsterdam, 1987, ISBN 0-444-70126-5) 15-26.

[Hoa 85] C.A.R. Hoare,
Communicating Sequential Processes,
(Prentice-Hall International, London, 1985, ISBN 0-13-153271-5).

[ISO DIS 8807] ISO/TC97/SC21/WG1/FDT/C,
LOTOS - A Formal Description Technique based on the Temporal Ordering of
Observational Behaviour,
DIS 8807, July 1987.

[ISO IS 8807] ISO/IEC-JTC1/SC21/WG1/FDT/C,
Information Processing Systems - Open Systems Interconnection - LOTOS, a
Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour,
IS 8807, February 1989.

A LOTOS Data Facility Compiler (DAFY)

12

[ISO 9571] ISO/IEC-JTC1/SC21/WG6 Ad-hoc group,
Information Technology - Open Systems Interconnection - LOTOS
Description of the Session Service,
TR 9571, Sept. 1989.

[ISO 9572] ISO/IEC-JTC1/SC21/WG6 Ad-hoc group,
Information Technology - Open Systems Interconnection - LOTOS
Description of the Session Protocol,
TR 9572, Sept. 1989.

[ISO 10023] ISO/IEC-JTC1/SC6/WG4 Ad-hoc Group,
Formal Description of ISO 8072 in LOTOS,
DTR 10023, ISO/IEC-JTC1 N1519, Aug. 1991.

[ISO 10024] ISO/IEC-JTC1/SC6/WG4 Ad-hoc Group,
Formal Description of ISO 8073 in LOTOS,
Revised text for DTR 10024, ISO/IEC-JTC1/SC6 N6978, Aug. 1991.

[Lal 90] E. Lallemand
Développement d’un outil d’aide à la définition des types de données en
LOTOS,
Graduate dissertation, University of Liège, June 1990.

[Led 87] G. Leduc,
The Intertwining of Data Types and Processes in LOTOS,
in: H. Rudin, C.H. West, eds., Protocol Specification, Testing and Verification, VII,
(North-Holland, Amsterdam, 1987, ISBN 0-444-70293-8) 123-136.

[Led 90] G. Leduc,
Process-oriented and data-oriented specifications in LOTOS
Thesis annexed to the Agrégation dissertation, Université de Liège, Dept. Systèmes et
Automatique, B28, B-4000 Liège, Belgium, 1990.

[Mil 80] R. Milner,
A calculus of communicating systems,
LNCS 92 (Springer-Verlag, Berlin Heidelberg New York, 1980, ISBN 3-540-10235-3).

[Mil 89] R. Milner,
Communication and Concurrency,
(Prentice-Hall International, London, 1989, ISBN 0-13-114984-9).

[Sch 90] F. Schumacker,
Interface conviviale à un ensemble d’outils LOTOS,
Bulletin scientifique de l’Association des Ingénieurs Electriciens sortis de l’Institut
d’Electricité Montefiore, 1/1990.

[Sco 86] G. Scollo,
Some facilities for concise data type definitions in LOTOS,
Rept. ESPRIT/SEDOS/C1/WP/13/T, University of Twente, March 1986, also in: Potential
Enhancements to LOTOS, ISO/TC97/SC21 N2015.

[UhS 90] J. Uhl, H.A. Schmid,
A Systematic Catalogue of Reusable Abstract Data Types,
LNCS 460 (Springer-Verlag, New York Berlin Heidelberg, 1990, ISBN 0-387-53229-3).

A LOTOS Data Facility Compiler (DAFY)

13

Annex A : Specification using some extensions of the language

 1 specification demo : noexit
 2 library Boolean, Element, FBoolean, NaturalNumber, String,

Octet endlib
 3
 4 behaviour
 5 stop
 6 where
 7 type Address isdafy CONSTANT
 8 sortnames Add
 9 parnames Add1, Add2, Add3
 10 endtype
 11
 12 type Data isdafy STRING actualizedby Octet using
 13 parnames Octet
 14 endtype
 15
 16 type Packet isdafy TUPLE actualizedby Address, Data using
 17 opnnames DstAdd for comp1
 18 SrcAdd for comp2
 19 Data for comp3
 20 parnames Add*2, Data
 21 endtype
 22 endspec

Annex B : Translation produced by DAFY
 1 specification demo : noexit
 2 library Boolean, Element, FBoolean, NaturalNumber, String,

Octet endlib
 3
 4 type dafy_constant3 is Boolean
 5 sorts dafy_constant3
 6 opns const1 : -> dafy_constant3
 7 const2 : -> dafy_constant3
 8 const3 : -> dafy_constant3
 9 _eq_, _ne_ : dafy_constant3, dafy_constant3 -> bool
 10 eqns forall c1, c2 : dafy_constant3
 11 ofsort bool
 12 c1 eq c1 = true;
 13 const1 eq const2 = false;
 14 const1 eq const3 = false;
 15 const2 eq const1 = false;
 16 const2 eq const3 = false;
 17 const3 eq const1 = false;
 18 const3 eq const2 = false;
 19 c1 ne c2 = not (c1 eq c2);
 20 endtype
 21
 22 type dafy_tuple_el1 is Element renamedby
 23 sortnames dafy_tuple_el1 for Element
 24 endtype
 25
 26 type dafy_tuple_el2 is Element renamedby

A LOTOS Data Facility Compiler (DAFY)

14

 27 sortnames dafy_tuple_el2 for Element
 28 endtype
 29
 30 type dafy_tuple_el3 is Element renamedby
 31 sortnames dafy_tuple_el3 for Element
 32 endtype
 33
 34 type dafy_tuple3_basic is
 35 dafy_tuple_el1, dafy_tuple_el2, dafy_tuple_el3
 36 sorts dafy_tuple3
 37 opns cons : dafy_tuple_el1, dafy_tuple_el2, dafy_tuple_el3

 -> dafy_tuple3
 38 comp1 : dafy_tuple3 -> dafy_tuple_el1
 39 comp2 : dafy_tuple3 -> dafy_tuple_el2
 40 comp3 : dafy_tuple3 -> dafy_tuple_el3
 41 eqns forall el1 : dafy_tuple_el1,
 42 el2 : dafy_tuple_el2,
 43 el3 : dafy_tuple_el3
 44 ofsort dafy_tuple_el1
 45 comp1 (cons (el1,el2,el3)) = el1;
 46 ofsort dafy_tuple_el2
 47 comp2 (cons (el1,el2,el3)) = el2;
 48 ofsort dafy_tuple_el3
 49 comp3 (cons (el1,el2,el3)) = el3;
 50 endtype
 51
 52 type dafy_tuple3_new is dafy_tuple3_basic
 53 opns new_comp1 : dafy_tuple3, dafy_tuple_el1 -> dafy_tuple3
 54 new_comp2 : dafy_tuple3, dafy_tuple_el2 -> dafy_tuple3
 55 new_comp3 : dafy_tuple3, dafy_tuple_el3 -> dafy_tuple3
 56 eqns forall t1 : dafy_tuple3,
 57 el1 : dafy_tuple_el1,
 58 el2 : dafy_tuple_el2,
 59 el3 : dafy_tuple_el3
 60 ofsort dafy_tuple3
 61 new_comp1 (t1, el1) = cons (el1, comp2(t1), comp3(t1));
 62 new_comp2 (t1, el2) = cons (comp1(t1), el2, comp3(t1));
 63 new_comp3 (t1, el3) = cons (comp1(t1), comp2(t1), el3);
 64 endtype
 65
 66 type dafy_tuple3_expanded is dafy_tuple3_new
 67 opns
 68 new_comp1_comp2 : dafy_tuple3, dafy_tuple_el1, dafy_tuple_el2

 -> dafy_tuple3
 69 new_comp1_comp3 : dafy_tuple3, dafy_tuple_el1, dafy_tuple_el3

 -> dafy_tuple3
 70 new_comp2_comp3 : dafy_tuple3, dafy_tuple_el2, dafy_tuple_el3

 -> dafy_tuple3
 71 new_comp1_comp2_comp3 : dafy_tuple3, dafy_tuple_el1,

 dafy_tuple_el2, dafy_tuple_el3
 -> dafy_tuple3

 72 eqns forall t1 : dafy_tuple3,
 73 el1 : dafy_tuple_el1,
 74 el2 : dafy_tuple_el2,
 75 el3 : dafy_tuple_el3
 76 ofsort dafy_tuple3
 77 new_comp1_comp2 (t1, el1, el2) = cons (el1, el2, comp3(t1));
 78 new_comp1_comp3 (t1, el1, el3) = cons (el1, comp2(t1), el3);
 79 new_comp2_comp3 (t1, el2, el3) = cons (comp1(t1), el2, el3);

A LOTOS Data Facility Compiler (DAFY)

15

 80 new_comp1_comp2_comp3 (t1, el1, el2, el3) = cons (el1, el2,
 el3);

 81 endtype
 82
 83 type dafy_tuple3 is dafy_tuple3_expanded
 84 opns _eq_, _ne_ : dafy_tuple3, dafy_tuple3 -> fbool
 85 eqns forall t1, t2 : dafy_tuple3
 86 ofsort fbool
 87 t1 eq t2 =
 88 (((comp1 (t1) eq comp1 (t2)) and
 89 (comp2 (t1) eq comp2 (t2))) and
 90 (comp3 (t1) eq comp3 (t2)));
 91 t1 ne t2 = not (t1 eq t2);
 92 endtype
 93
 94 behaviour
 95 stop
 96 where
 97 type Address is dafy_constant3 renamedby
 98 sortnames Add for dafy_constant3
 99 opnnames
 100 Add1 for const1
 101 Add2 for const2
 102 Add3 for const3
 103 endtype
 104
 105
 106 type Data_basic is String renamedby
 107 sortnames Data for string
 108 endtype
 109
 110 type Data is Data_basic actualizedby
 111 Octet, Boolean, NaturalNumber using
 112 sortnames Bool for FBool
 113 Nat for Fnat
 114 Octet for element
 115 endtype
 116
 117
 118 type Packet_basic is dafy_tuple3 renamedby
 119 sortnames Packet for dafy_tuple3
 120 opnnames
 121 DstAdd for comp1
 122 SrcAdd for comp2
 123 Data for comp3
 124 endtype
 125
 126 type Packet is Packet_basic actualizedby
 127 Address, Data, Boolean using
 128 sortnames Bool for FBool
 129 Add for dafy_tuple_el1
 130 Add for dafy_tuple_el2
 131 Data for dafy_tuple_el3
 132 endtype
 133
 134 endspec

