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Abstract

Increasing attention has been given to the development of specific techniques to deal with inter-

connections between outputs, inputs, and undesirable outputs for Data Envelopment Analysis (DEA)

models. These techniques offer the advantages of improving the realism and the flexibility of DEA

models; two aspects of crucial importance to convince practitioners about the attractiveness and the

reliability of DEA models. In this paper, we propose a unifying methodology coherent with previous

works to model these interconnections. We suggest treating the outputs as the fundamental com-

ponent of the production process by modelling every output individually. This gives us the option

of considering the interconnections with the inputs and the undesirable outputs. In particular, we

make a distinction between undesirable outputs/inputs that are due to/used by all the outputs, and

those that are due/allocated to specific outputs. Attractively, our methodology also offers the option

of setting a different returns-to-scale assumption for each output-specific production process, and to

choose between different types of convexity. We demonstrate the usefulness of our methodology with

the case of the US electricity plants producing fossil and non-fossil electricity generation.
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1 Introduction

Data Envelopment Analysis (DEA; after Charnes, Cooper and Rhodes (1978)) is

a nonparametric technique that evaluates the efficiency of a Decision Making Unit

(DMU) by comparing its input-output performance to that of other DMUs operating

in a similar technological environment.1 DEA is nonparametric in nature since it

reconstructs the production possibility set using the observed input-output combina-

tions of the evaluated DMUs. To avoid a trivial reconstruction and to match with the

common practice in production theory, regularity conditions, captured by technology

axioms, are imposed to the reconstructed production possibility set. In particular,

the initial DEA model of Charnes, Cooper and Rhodes (1978), also known as the

CCR model, is based on the assumptions of free disposability of the inputs and the

outputs, convexity of the production possibility set, and constant returns-to-scale.2

In many situations, not only are inputs and outputs present in the production pro-

cess, but also undesirable outputs. Undesirable outputs are directly (inter)connected

with the outputs since the former are only present in the production process be-

cause the latter are produced. While different treatments have been suggested in

the literature to include undesirable outputs in DEA models, they all acknowledge

these interconnections.3 A first treatment is to use tailored technology axioms for

modelling these interconnections (such as weak disposability introduced by Färe et al

(1989) and null-jointness introduced by Färe and Grosskopf (2004)); not without crit-

icisms and debates (see Kuosmanen (2005), Färe and Grosskopf (2009), Kuosmanen

and Podinovski (2009), Cherchye, De Rock and Walheer (2015), and Forsund (2018)).

A second option is to apply a mathematical transformation to the undesirable out-

puts (see Scheel (2001), Sieford and Zhu (2002), and Cherchye, De Rock and Walheer

(2015)). Next, tailored efficiency measurements can be used when undesirable outputs

are present (see Chung, Färe and Grosskopf (1997), Färe and Grosskopf (2004), and

Tone and Tsutsui (2011)). Finally, modelling undesirable outputs as inputs has also

been suggested (see Reinhard, Lovell, and Thijssen (2000), and Hailu and Veeman

1See, for example, Färe, Grosskopf and Lovell (1994), Cooper, Seiford and Zhu (2004), Cooper,
Seiford and Tone (2007), Fried, Lovell and Schmidt (2008), and Cook and Seiford (2009) for reviews.

2See Färe and Primont (1995) for more discussion about regularity conditions of DEA models.
3Recent contributions on DEA models with undesirable outputs could be found in Liu et al

(2010), Chen (2014), Maghbouli, Amirteimoori and Kordrostami (2014), Bi et al (2015), Cherchye,
De Rock and Walheer (2015), Liu et al (2015), and Izadikhak and Saen (2018); for reviews, refer,
for example, to Zhou, Ang and Poh (2008) and Dakpo, Jeanneaux and Latruffe (2016).
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(2001); and Färe and Grosskopf (2003) and Hailu (2003) for more discussion about

this modelling).

Besides, the output-undesirable output interconnections, the input-output inter-

connections have also been extensively studied. Different types of inputs reflecting

these interconnections have been considered in the literature. A first category of in-

puts are those used to produce all (or a subset of) the outputs. These types of inputs

have been considered in different DEA models by, for example, Salerian and Chan

(2005), Despic, Despic and Paradi (2007), Cherchye et al (2013), Cherchye, De Rock

and Walheer (2015, 2016), Ding et al (2017), and Walheer (2018 b, c, d, e). These

inputs could also be interpreted as public goods (they are non-rival and non-exclusive

to the output production processes), and, therefore, they give rise to economies of

scale (see Panzar and Willig (1977)) and of scope in the production process (see Pan-

zar and Willig (1981) and Nehring and Puppe (2004)). As such, these inputs form

a prime economic motivation to produce more than one output. Next, a second cat-

egory of inputs are those that are allocated to every output. These types of input

have been considered in different DEA models by, for example, Färe and Grosskopf

(2000), Färe, Grosskopf and Whittaker (2007), Tone and Tsutsui (2009), Cherchye et

al (2013), Walheer (2016a, b, 2018a, f), Silva (2018), and Walheer and Zhang (2018).

Finally, a third category of inputs are those that are proportional to the outputs.

These types of input have been considered in different DEA models by, for example,

Podinovski (2004a, c, 2009), Podinovski et al (2014), Podinovski and Husai (2017),

and Podinovski, Olesen and Sarrico (2018).

All of the above approaches try to enhance the realism of the DEA analysis by

integrating information on the internal production structure. As a consequence, these

approaches offer the advantage of increasing the flexibility of DEA models. These

two aspects of DEA models are of great importance for practitioners as it offers

the option to consider more empirical studies. Also, it improves the attractiveness

and the reliability of DEA models. Improving the realism and the flexibility of DEA

models also occurs though proposing less restrictive technology axioms. Clearly, fewer

assumptions represent an improvement; as for any nonparametric techniques. While

free disposability of the inputs and the outputs seems to be a commonly accepted

assumption (expect when undesirable outputs are involved in the production process),

several extensions have been proposed for the convexity and returns-to-scale aspects.

Banker, Charnes and Cooper (1984) have extended the CCR model to the vari-
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able returns-to-scale case. Their model is also known as the BCC model.4 In many

cases, specially in multiple output scenarios, choosing between these two extreme op-

tions may be complex. Podinovski (2004a) has provided a DEA model combining the

constant and variable returns-to-scale assumptions. In particular, he suggested par-

titioning the input-output into those that could be reduced proportionally (i.e. con-

stant returns-to-scale) and those that cannot (i.e. variable returns-to-scale).5 Tulkens

(1993) proposed a DEA model without the assumption of convexity.6 He named his

model the Free Disposable Hull (FDH). Again, in many cases, choosing between these

two extreme cases may be a difficult task. Intermediate convexity assumptions have

been developed by Petersen (1990) and Bogetoft (1996). They suggested DEA models

relying on partial or relaxed convexity. Intuitively, convexity is maintained but at its

minimal level.7 In practice, this allows us to model economies of scale and of scope

(see also Section 2.1).

In this paper, we propose a unifying methodology coherent with previous works

to model the interconnections between the outputs, the inputs, and the undesirable

outputs. In particular, we suggest treating the outputs as the central component of

the production process by modelling every output individually. Therefore, it gives us

the option of considering the interconnections with the inputs and the undesirable

outputs. We consider that some undesirable outputs/inputs are due to/used by all

the outputs, while others are due to/allocated to specific outputs. It turns out that

our model naturally improves the realism and the flexibility required for empirical

studies. Attractively, it does not come with the disadvantage of requiring additional

assumptions for the production process. In fact, our model is less demanding in

terms of assumptions about the production process, and it offers the option of setting

a different returns-to-scale assumption for each output-specific production process,

4See, for example, Podinovski (2004b, c, 2018), Tone and Sahoo (2006), Lozano and Villa (2010),
Tone (2011), Alirezaee, Hajinezhad and Paradi (2018), and Perez-Lopez, Prior and Zafra-Gomez
(2018) for DEA models with returns-to-scale; and Banker et al (2004), Banker et al (2011), and
Sahoo and Tone (2015) for reviews.

5See Podinovski (2009), Podinovski et al (2014), Afsharian, Ahn and Alirezaee (2015), Podinovski
and Husai (2017), and Podinovski, Olesen and Sarrico (2018) for extensions.

6At this point, we remark that Afriat (1972) was the first to introduce efficiency analysis without
the assumption of convexity for single output case (and using different terminology).

7See, for example, Bogetoft, Tama and Tind (2000), Dekker and Post (2001), Kuosmanen (2001,
2003), Briec, Kerstens and Vanden Eeckaut (2004), Agrell et al (2005), Podinovski (2005), Ehrgott
and Tind (2009), and Podinovski and Kuosmanen (2011) for DEA models without and with partial
convexity.
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and to choose between different types of convexity.

We apply our model to the case of the US electricity plans that use two inputs:

total assets and fuel quantity to produce two (desirable) outputs: fossil and non-fossil

electricity. The fossil electricity generation implies the presence of undesirable outputs

in the production process. Our model offers several advantages when evaluating the

efficient behaviour of the plants. One, we can take the interconnections between the

outputs, the inputs, and the greenhouse gases into account. In particular, fuel input

is not used to produce non-fossil electricity, and the greenhouse gas emissions are due

to the fossil electricity production only. Two, different returns-to-scale assumption

may be assumed for each type of electricity. In particular, while constant returns-to-

scale seems acceptable for fossil energy, we may argue that variable returns-to-scale

is more adequate for non-fossil electricity. Three, overall convexity may be seen as a

too strict assumption for the plant production process. As such, the option of relying

on a relaxed convexity assumption is clearly an advantage in this context. All in all,

our methodology gives the advantage of improving the realism and the flexibility of

the evaluation exercise, and thus proposes more reliable results.

The rest of the paper is structured as follows. Section 2 presents our methodology,

Section 3 presents our empirical study to the US electricity plants, and Section 4

presents our conclusions.

2 Methodology

We consider a production technology that uses N inputs, captured by the vector

X = (x1, . . . , xN)′ ∈ RN
+ , to produce M (desirable) outputs, captured by the vector

Y = (y1, . . . , yM)′ ∈ RM
+ . We also assume that K undesirable outputs, captured

by the vector U = (u1, . . . , uK)′ ∈ RK
+ , are present in the production process. We

start by presenting our method to model the interconnections between the outputs,

the inputs, and the undesirable outputs. To do so, we consider the outputs as the

central constituent of the production process by modelling each output production

process separately. This gives us the option to consider several types of inputs and

undesirable outputs. Next, we show how to define and reconstruct the technology

when these interconnections are taken into account. Finally, we present the efficiency

measurements.
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2.1 Modelling interconnections

Interconnections. Following our previous discussion, we partition the inputs into

different categories. The main distinction is between inputs that are allocated to

specific output production processes, and those that are not. For the former case,

we denote ami ∈ [0, 1], with
∑M

m=1 a
m
i = 1, to represent the fraction of the i-th input

quantity that is used to produce output m. Examples of this type of input include

employees and resources allocated to specific output production processes, and tools

used to produce certain outputs. We consider that the inputs that are not allocated

to a specific output production process are used jointly to produce all (or a subset of)

outputs. Examples of this type of input include factories, infrastructure, machines

and human capital. These inputs constitute a prime economic motivation to produce

multiple outputs; as the DMUs, in general, benefit from economics of scale (see Panzar

and Willig (1977)) and scope (see Panzar and Willig (1981) and Nehring and Puppe

(2004)).

We suggest using an information vector, denoted Am ∈ RN
+ , to summarize the

interconnections between the inputs and output m. Am is defined for output m as

follows:

(Am)i =


1 if input i is jointly used to produce output m,

ami if input i is allocated to output m,

0 otherwise.

(1)

A similar distinction can be done for the undesirable outputs. Firstly, those that

are present in the production process because of the production of all (or a subset)

of outputs. Examples of this type of undesirable output include greenhouse gas

emissions and waste due to the joint production of all (or a subset of) outputs. Next,

those that can be distributed between the different output production process. For

that case, we use bmk , with
∑M

m=1 b
m
k = 1, as the fraction of undesirable output k

that is due to output m. Examples of this type of undesirable output include waste

or emissions due to specific outputs. We remark that undesirable outputs are not

limited to environmental outputs; it also includes, for example, non-performing loans

for a bank.

Again, we can rely on an information vector to capture the interconnections be-

tween the outputs and the undesirable outputs. Let Bm ∈ RK
+ be the vector capturing

6



the interconnections between the undesirable outputs and output m; it is given as

follows:

(Bm)k =


1 if undesirable output k is jointly produced by output m,

bmk if undesirable output k is due to output m,

0 otherwise.

(2)

As a last remark, we point out that in some contexts, the interconnections between

the outputs, inputs, and undesirable outputs may not (or partially) be observed. In

that case, different methods have been suggested to recover such information. We

refer, for example, to Li et al (2009), Yu, Chern and Hsiao (2013), Du et al (2014), and

Walheer (2016b). Knowing or not how the outputs, the inputs, and the undersirable

outputs are interconnected only impacts the practical aspect of our method, not the

definitions of the concepts (See Section 2.3).

Output-specific production processes. Using, the information vectors, we can

define the inputs used to produce output m, denoted Xm ∈ RN
+ ; and the undesirable

outputs due to the production of output m, denoted Um ∈ RK
+ . In fact, it suffices

to proceed to an element-to-element product between the initial input or undesirable

output vector and the information vector to obtain the input or undesirable output

vector for output m. Formally, we obtain the following (where ⊙ stands for the

Hadamard (or element-by-element) product):

Xm =Am ⊙X. (3)

Um =Bm ⊙U. (4)

We can simplify our notation by regrouping the output ym and its undesirable

counterparts Um into a common vector:

Zm =

[
ym

g(Um)

]
∈ R1+K

+ . (5)

We remark that the undesirable outputs are modified through the function g(·).
This function, introduced by Cherchye, De Rock and Walheer (2015), captures the un-

desirable nature of these outputs. Clearly, different transformations are possible, but

two conditions must be fulfilled: g(0) = 0 and g(Um) decreases when Um increases.
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Popular transformations are the opposite and reciprocal value: g(Um) = −Um and

g(Um) = 1/Um. Refer, for example, to Scheel (2001), Zhou, Ang and Poh (2008),

and Cherchye, De Rock and Walheer (2015) for more discussion. We do not specify

the transformation here, but rather leave that choice to the practitioners. See also

our empirical application in Section 3.

All in all, it means that when the interconnections are taken into consideration we

move from an overall or aggregation representation of the production process ⟨Z,X⟩,
where Z =

[
Y g(U)

]′
∈ RM+K

+ , to a multi-output representation ⟨Zm,Xm⟩, for
m = 1, . . . ,M .

Illustrative example. We propose a simple example to illustrate how the informa-

tion vectors are used in practice. We consider DMUs that produce three outputs y1,

y2, and y3 using employees x1, machines x2 and a factory x3. Also, we assume that

employees are allocated to the output production process (30%, 30%, and 40%), and

the machines are only used to produce y2 and y3. Finally, we assume that greenhouse

gas emissions u1, due to the joint production of the three outputs, and specific waste

u2, due to the joint production of outputs 1 and 2, are also present in the production

process. Figure 1 summarizes the production process of the DMUs.

Figure 1: Illustrative example − production process

At the overall or aggregate production level, we obtain:

Y =

 y1

y2

y3

 , U =

[
u1

u2

]
,Z =


y1

y2

y3

g(u1)

g(u2)

 , and X =

 x1

x2

x3

 . (6)

Next, we obtain the following information vectors:

A1 =

 30%

0

1

 ,A2 =

 30%

1

1

 , and A3 =

 40%

1

1

 . (7)
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B1 =

[
1

1

]
,B2 =

[
1

1

]
, and B3 =

[
1

0

]
. (8)

Finally, we obtain the inputs and undesirable outputs for each output (m = 1, 2, 3)

as follows:

X1 = A1 ⊙X =

 30% ∗ x1

0

x3

 ,X2 =

 30% ∗ x1

x2

x3

 , and X3 =

 40% ∗ x1

x2

x3

 . (9)

U1 = B1 ⊙U =

[
u1

u2

]
, U2 =

[
u1

u2

]
, and U3 =

[
u1

0

]
. (10)

Z1 =

[
y1

g(U1)

]
=

 y1

g(u1)

g(u2)

 ,Z2 =

 y2

g(u1)

g(u2)

 , and Z3 =

 y2

g(u1)

0

 . (11)

2.2 Define and estimate the technology

Technology sets. Following our previous discussion and our multi-output repre-

sentation of the production process, it is natural to characterize the technology for

each output m individually. We define the production possibility set for output m as

follows:

Tm =
{
(Xm,Zm) ∈ RN+1+K

+ | Xm can produce Zm
}
. (12)

Tm contains all the combinations of inputs Xm and outputs and undesirable out-

puts Zm that are technically feasible. These sets are, in general, interconnected since

inputs and undesirable outputs appear in several production possibility sets. As we

want to consider relaxed convexity assumptions, we define the input and output sets

for output m as:

Im(Zm) =
{
Xm ∈ RN

+ | (Xm,Zm) ∈ Tm
}
. (13)

Pm(Xm) =
{
Zm ∈ R1+K

+ | (Xm,Zm) ∈ Tm
}
. (14)

Again, these sets are interconnected as inputs and undesirable outputs are present
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in several input and output sets. It turns out that the overall or aggregate production

possibility set is given by:

T =
{
(X,Z) ∈ RN+M+K

+ | ∀m ∈ {1, . . . ,M} : (Xm,Zm) ∈ Tm
}
. (15)

In words, the overall production possibility set contains all inputs and outputs

that are feasible in each output-specific production possibility set. This definition

clearly reveals the interconnections between the output-specific production processes.

The corresponding overall or aggregate input and output sets are defined as follows:

I(Z) =
{
X ∈ RN

+ | ∀m ∈ {1, . . . ,M} : Xm ∈ Im(Zm)
}
. (16)

P (X) =
{
Z ∈ RM+K

+ | ∀m ∈ {1, . . . ,M} : Zm ∈ Pm(Xm)
}
. (17)

Technology axioms. In practice, the technology, captured here by the production

possibility set, is unobserved. As explained in the Introduction, an advantage of DEA

is that it does not assume any functional form for the production possibility set, but

rather reconstructs the production possibility set using the data. Nevertheless, to

avoid a trivial reconstruction, regularity conditions, captured by technology axioms,

are imposed. The initial DEA model of Charnes, Coooper and Rhodes (1978) is based

on the technology axioms of free disposability of the inputs and the outputs, a convex

production possibility set, and constant returns-to-scale.

The distinguishing feature of our method is that we impose these axioms for the

output-specific production possibility sets (i.e. Tm, for m = 1, . . . ,M); and not

for the overall production possibility set (i.e. T ). In fact, imposing these axioms

for the Tm’s is less demanding, and thus less restrictive, than imposing the similar

axioms for T . Intuitively, this comes from the observation that, in general, there are

no specific connections between the output-specific production possibility sets and

the overall production possibility set. This fact is an immediate consequence of the

interconnections between the outputs, the inputs, and the undesirable outputs, and

is formally captured by (15).

We take three examples to illustrate this important fact. One, in a macroeconomic

context, Walheer (2016a, b) proposed to study economic growth of countries using

sector-based indicators. This author assumes that the sector-specific production pos-

sibility sets satisfied the four axioms; this does not mean that the country-specific
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production possibility sets fulfilled the same conditions. This also comes from the

interconnections between sectors considered by this author (e.g. the education and

fiscal systems). It turns out that sector-specific modellings are, in general, less de-

manding in terms of assumptions than country-specific modellings. Next, Cherchye et

al (2013) and Cherchye, De Rock and Walheer (2016) studied cost and profit efficient

behaviour of a large multi-division service firm. They assume that the division-specific

production possibility sets meet the four axioms; but it does not imply that this is

the case for the firm-level production possibility set. Again, this also comes for the

interconnections between the divisions (e.g. divisions use common inputs). Finally,

Cherchye De Rock and Walheer (2015) and Walheer (2018d, e), in the context of

electricity plants producing different types of electricity, assume that the production

possibility set of each electricity type respects the axioms. It does not imply that the

plant-level production possibility set also respects these axioms.

We obtain the following four technology axioms:

T1 (output free disposability): (Xm,Zm) ∈ Tm and Zm ≥ Zm′
=⇒ (Xm,Zm′

) ∈ Tm.

T2 (input free disposability): (Xm,Zm) ∈ Tm and Xm′ ≥ Xm =⇒ (Xm′
,Zm) ∈ Tm.

T3 (convexity): (Xm,Zm) ∈ Tm and (Xm′
,Zm′

) ∈ Tm =⇒ ∀λ ∈ [0, 1] : λ(Xm,Zm)+

(1− λ)(Xm′
,Zm′

) ∈ Tm.

T4 (returns-to-scale): (Xm,Zm) ∈ Tm =⇒ k × (Xm,Zm) ∈ Tm,∀k ∈ Km(rts).

In words, T1 says that if Xm can produce Zm, then it can also produce less out-

put, Zm′
. Next, T2 means that more inputs never reduces the outputs. T3 states

that, if two input-output associations (Xm,Zm) and (Xm′
,Zm′

) are feasible, then any

convex combinations of the two associations are also feasible. Finally, T4 says that

if Xm can produce Zm, k × Xm can produce k × Zm, with k restricted in the set

Km(rts) ⊆ R+
0 . In particular, we use Km(crs) = R+

0 , K
m(drs) = (0, 1], Km(irs) =

[1,∞) and Km(vrs) = {1} for the constant, decreasing, increasing and variable

returns-to-scale assumptions. We remark that axiom T4 naturally gives the option

to consider returns-to-scale assumptions at the output level.

While these axioms are less strict, convexity of the output-specific production pos-

sibility sets remains a strong assumption for many empirical studies. Moreover, this

assumption is not always required (for example, when cost or revenue is of interest,
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see also our discussion in Section 3). As such, we also consider two additional axioms

when only the input or the output sets are assumed to be convex:

T5 (convex input set): Xm ∈ Im(Zm) and Xm′ ∈ Im(Zm) =⇒ ∀λ ∈ [0, 1] : λXm +

(1− λ)Xm′ ∈ Im(Zm).

T6 (convex output set): Zm ∈ Pm(Xm) and Zm′ ∈ Pm(Xm) =⇒ ∀λ ∈ [0, 1] :

λZm + (1− λ)Zm′ ∈ Pm(Xm).

Axiom T5 states that, if two inputs Xm and Xm′
can produce Zm, then any

convex combination λXm + (1 − λ)Xm′
can also produce the same output. Axiom

T6 says the same, but when considering the output side of the production process:

if two outputs Zm and Zm′
can be produced by Xm, then any convex combination

λZm + (1− λ)Zm′
can also produce the same input. Again, we point out that these

two axioms are weaker than assuming a convex input set I(Z) or a convex output set

P (X).

Finally, we remark that additional axioms can be assumed, as for example weak

disposability or local returns-to-scale assumptions. See also our discussion at the end

of this Section when we compare our empirical technology sets with existing sets in

the literature.

Empirical technology sets. The empirical counterparts of the production possi-

bility, the input, and the output sets start with the observation of a data set. Suppose

we observe data for J DMUs. For each DMU j ∈ {1, . . . , J}, we observe the outputs

Yj (with ymj the quantity produced of output m), the undesirable outputs Uj and

the inputs Xj. We assume that we also observe the information vectors Am
j and Bm

j ,

for j = 1, . . . , J and m = 1, . . . ,M . It implies that we observe, for every DMU j and

output m, Xm
j = Am

j ⊙Xj and Um
j = Bm

j ⊙Uj; and thus Zm
j =

[
ymj g(Um

j )
]′
. All

in all, we observe the following data set D:

D = {(Z1
j , . . . ,Z

M
j ,X1

j , . . . ,X
M
t ) | j = 1, . . . , J}. (18)

DEA is based on two important principles to reconstruct the technology. One,

DEA assumes that what we observe is certainly feasible. That is, if we observe the

data set D, then these observed inputs can certainly produce these observed outputs.

Two, DEA is based on the “minimum extrapolation” principle. This principle states
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that the empirical reconstructed set must be the smallest empirical construction that

is consistent with the chosen technology axioms.

We start by presenting the empirical counterpart of the output-specific production

possibility set in (12) when axioms T1-T4 are imposed:

T̂m =

{
(Xm,Zm) ∈ RN+1+K

+

∑J
s=1 λ

m
s X

m
s ≤ Xm;

∑J
s=1 λ

m
s Z

m
s ≥ Zm;

(λm
1 , . . . , λ

m
s , . . . , λ

m
J )

′ ∈ Λm(rts).

}
. (19)

The set Λm(rts) captures the chosen returns-to-scale assumption for the produc-

tion process of outputm. In particular, Λm(rts) is defined, when constant, decreasing,

increasing, or variable returns-to-scale is picked, as follows :

Λm(crs) =(R+
0 )

J . (20)

Λm(drs) =

{
(λm

1 , . . . , λ
m
J )

′ ∈ (R+
0 )

J |
J∑

s=1

λm
s ≤ 1

}
. (21)

Λm(irs) =

{
(λm

1 , . . . , λ
m
J )

′ ∈ (R+
0 )

J |
J∑

s=1

λm
s ≥ 1

}
. (22)

Λm(vrs) =

{
(λm

1 , . . . , λ
m
J )

′ ∈ (R+
0 )

J |
J∑

s=1

λm
s = 1

}
. (23)

It turns out that the overall empirical production possibility set (see (15)), when

T1-T4 are imposed on every output-specific production process, is given by:

T̂ =
{
(X,Z) ∈ RN+M+K

+ | ∀m ∈ {1, . . . ,M} : (Xm,Zm) ∈ T̂m
}
. (24)

Equivalently, we can rewrite the empirical overall production possibility set as

follows:

T̂ =

 (X,Z) ∈ RN+M+K
+

∀m = 1, . . . ,M :∑J
s=1 λ

m
s X

m
s ≤ Xm;

∑J
s=1 λ

m
s Z

m
s ≥ Zm;

(λm
1 , . . . , λ

m
s , . . . , λ

m
J )

′ ∈ Λm(rts).

 . (25)

We remark that, by construction, we have that T̂m ⊆ Tm following the “minimum

extrapolation” principle. In words, T̂m provides a useful inner bound approximation

of Tm (see Cherchye, De Rock and Walheer (2016) for a formal proof when variable

13



returns-to-scale is assumed). It also implies that T̂ ⊆ T .

We continue by presenting the empirical counterparts of the input and output

sets when partial or relaxed convexity is assumed (i.e. axiom T5 or T6 instead of

axiom T4 ). Following Petersen (1990) and Bogetoft (1996), we define a function that

scales up or down the outputs/inputs, depending on the returns-to-scale assumption

chosen, to make two DMUs comparable. It is defined for output m and DMU j as

follows:

αm
s (Z

m
j ; rts) = inf

{
α ∈ Km(rts) | αZm

s ≥ Zm
j

}
. (26)

βm
s (Xm

j ; rts) = sup
{
β ∈ Km(rts) | βXm

s ≤ Xm
j

}
. (27)

The possible values for αm
s (Z

m
t ; rts) depend directly on the returns-to-scale as-

sumption chosen trough the set Km(rts). We recall that Km(crs) = R+
0 , K

m(drs) =

(0, 1], Km(irs) = [1,∞) and Km(vrs) = {1} for the constant, decreasing, increasing

and variable returns-to-scale assumptions. If such a value exists, αm
s (Z

m
j ; rts) gives

the factor by which the value of Zm
s should be scaled to make it comparable with Zm

j .

In a similar vein, βm
s (Xm

j ; rts) gives the factor by which Xm
s should be scaled to make

it comparable with Xm
j . If it is not possible to find such factors, i.e. no comparison

is possible, we set αm
s (Z

m
j ; rts) = +∞ and βm

s (Xm
j ; rts) = −∞.

The smallest empirical construction of the input set in (13) under axioms T1-T3

and T5 is given by:

Îm(Zm
j ) =

 Xm ∈ RN
+

∑J
s=1 λ

m
s α

m
s (Z

m
j ; rts)X

m
s ≤ Xm;

∀s : λm
s (α

m
s (Z

m
j ; rts)Z

m
s − Zm

j ) ≥ 0;∑J
s=1 λ

m
s = 1; and ∀s : λm

s ≥ 0.

 . (28)

The corresponding empirical overall input set (see (16)) is thus given by:

Î(Zj) =
{
X ∈ RN

+ | ∀m ∈ {1, . . . ,M} : Xm ∈ Îm(Zm
j )

}
,

=

 X ∈ RN
+

∀m = 1, . . . ,M :∑J
s=1 λ

m
s α

m
s (Z

m
j ; rts)X

m
s ≤ Xm;

∀s : λm
s (α

m
s (Z

m
j ; rts)Z

m
s − Zm

j ) ≥ 0;∑J
s=1 λ

m
s = 1; and ∀s : λm

s ≥ 0.

 . (29)

As for the production possibility set, the following relationship holds true for the
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empirical and theoretical input sets: Îm(Zm
j ) ⊆ Im(Zm

j ) and Î(Zj) ⊆ I(Zj). We refer

to Cherchye et al (2013) for a formal proof when variable returns-to-scale is assumed.

Finally, when axioms T1-T3 and T6 are assumed, we obtain the following empir-

ical output requirement sets (see (14) and (17)):

P̂ (Xm
j ) =

 Zm ∈ R1+M
+

∑J
s=1 λ

m
s β

m
s (Xm

j ; rts)Z
m
s ≥ Zm;

∀s : λm
s (β

m
s (Xm

j ; rts)X
m
j −Xm

s ) ≥ 0;∑J
s=1 λ

m
s = 1; and ∀s : λm

s ≥ 0.

 . (30)

and

P̂ (Xj) =
{
Z ∈ RM+K

+ | ∀m ∈ {1, . . . ,M} : Zm ∈ Pm(Xm
j )

}
,

=

 Z ∈ RM+K
+

∀m = 1, . . . ,M :∑J
s=1 λ

m
s β

m
s (Xm

j ; rts)Z
m
s ≥ Zm;

∀s : λm
s (β

m
s (Xm

j ; rts)X
m
j −Xm

s ) ≥ 0;∑J
s=1 λ

m
s = 1; and ∀s : λm

s ≥ 0.

 . (31)

Clearly, we also have the two following relationships: P̂m(Xm
j ) ⊆ Pm(Xm

j ) and

P̂ (Xj) ⊆ P (Xj). The proof can be immediately adapted from the proof of Cherchye

et al (2013) for the input sets.

Comparison. In this last part, we position our empirical reconstructions to existing

empirical reconstructions in the DEA literature. In fact, our empirical reconstructions

share close relationships to several well-established reconstructions.

One connection is with the initial DEA models of Charnes, Cooper and Rhodes

(1978). In fact, our empirical reconstruction of the production possibility sets in (25)

corresponds to their reconstruction when only one (desirable) output is involved in the

production process and constant returns-to-scale is assumed (when there is only one

output, interconnections do not exist). When there are more than one output in the

production process, our two empirical reconstructions differ. The main differences are

that our construction gives the option to model interconnections and choose different

returns-to-scale assumptions for every output-specific production process, while their

construction assumes constant returns-to-scale for the overall production process and

ignores the interconnections. A similar discussion holds true when comparing our

empirical reconstruction to the reconstruction of Banker, Charnes and Cooper (1984).
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The main difference is that they assume variable returns-to-scale at the aggregate

level.

Next, there is also a direct connection with the empirical reconstructions of the

input and output sets with those of Petersen (1990) and Bogetoft (1996). In fact, when

there is only one (desirable) output in the production process (29) and (31) correspond

to their reconstruction. We point out a slight difference even in that case; we give

the option to consider increasing returns-to-scale, while this option is not possible in

their model. Clearly, when more outputs are involved, our two reconstructions do not

correspond anymore; and the advantages of ours are to provide more flexibility and

improve the realism (i.e. modelling interconnections and output-specific returns-to-

scale assumption).

Afterwards, our empirical constructions share the spirit of those considered by

Podinovski (2004a) and followers. As in their model, different returns-to-scale as-

sumptions may be considered. One main difference is that they consider that some

inputs and outputs are proportional, implying constant returns-to-scale, while oth-

ers are not, implying variable returns-to-scale. Our modelling is more general in the

sense that it does not asked to partition input-output into two categories; but rather

it allows us to consider various types of interconnections. Moreover, the empirical

reconstructions of Podinovski (2004a) and followers are based on very general tech-

nology axioms; while our modelling is based on very standard and well-established

technology axioms.

Finally, there are also connections with recent works that have opted for the

output-specific modelling of the production process. In particular, the models devel-

oped in Cherchye et al (2013), Cherchye, De Rock and Walheer (2015, 2016), and

Walheer (2018b, c, d, e). One, our model generalized their empirical reconstructions

by considering more possible interconnections between the outputs, the inputs, and

the undesirable outputs (only Cherchye, De Rock and Walheer (2015) have considered

the presence of undesirable outputs). Two, our model is more general since it consid-

ers different returns-to-scale assumptions (only variable returns-to-scale is considered

in their model). Three, different types of convexity is possible in our model (they rely

on partial convexity only for the input set).

As a final remark, we point out that our method is not based on the assumption

of weak disposability (or on any other particular technology axioms when undesirable

outputs are involved, such as null-jointness) of the undesirable outputs. We believe
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that this is an appealing feature of the proposed approach since several issues have

been pointed out when assuming weak disposability (see, for example, Kuosmanen

(2005), Färe and Grosskopf (2009), Kuosmanen and Podinovski (2009), Cherchye, De

Rock and Walheer (2015), and Forsund (2018)).8 Moreover, assuming weak dispos-

ability implies imposing more (unverifiable) structure about the production process.

It turns out that our model remains very close to the initial DEA models, while

offering several additional advantages. Nevertheless, if other technology axioms are

required for empirical studies, they can fairly easily be incorporated into our method-

ology.

2.3 Efficiency measurements

Different types of efficiency measurements can be considered for evaluating the good

practice of the DMUs.9 In this Section, we present the case when potential input

reduction is of interest, and convexity is only imposed for the input sets. This choice

is also motivated by our empirical study (see Section 3).

In general, input-oriented efficiency is evaluated as the distance of the DMU’s

input vector to the isoquant. A natural indicator in our context is the radial input

distance function introduced by Shephard (1970). It is given for a particular DMU j

as follows:

Dj = Dj(Z
1
j , . . . ,Z

M
j ,X1

j , . . . ,X
M
j ) = max

{
ϕ | ∀m ∈ {1, . . . ,M} :

(
Xm

j

ϕ

)
∈ Im(Zm

j )

}
.

(32)

Dt the largest equiproportionate factor by which the inputs can be reduce and still

produced the output quantity. Dj is greater than one, with a value of one reflecting

an efficient behaviour, i.e. inputs are at their minimal level given the outputs. We

remark that Dj corresponds to Shephard’s (1970) distance function only for one-

output cases; when there are more than one output in the production process, they

differ. This follows from the specificities of our methodology (see our discussion at

the end of Section 2.2). In practice, it is more convenient to work with a technical

efficiency measurement. In fact, the (input) distance function is reciprocal to the

8Note that even when weak disposability is assumed, opting for a relaxed convexity approach is
also of interest. See Podinovski and Kuosmanen (2011).

9For example, radial efficiency measurements, non-radial efficiency measurements, hybrid effi-
ciency measurements, directional distance functions, etc. All these efficiency measurements can be
considered here.
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(input-oriented) Debreu (1951) – Farell (1957) technical efficiency measurement. It

is given for DMU j by:

TE j = TE j(Z
1
j , . . . ,Z

M
j ,X1

j , . . . ,X
M
j ) = min{θ | ∀m ∈ {1, . . . ,M} : θXm

j ∈ Im(Zm
j )}.
(33)

As TE j is the inverse of Dj, it is, by construction, smaller than one. When it is

one, it means that DMU j produces outputs with the minimal level of inputs. When

it is smaller than one, it implies some potential input savings (for constant outputs).

Again, we highlight that TE j only corresponds to the definition of Debreu (1951) and

Farell (1957) when one output is considered (we refer to our discussion at the end of

Section 2.2).

As defined, TE j (and thus Dj) is not directly useful as it is based on the theoretical

input sets. We can obtain the empirical counterpart by using the empirical input sets

in (33):

T̂E j = T̂E j(Z
1
j , . . . ,Z

M
j ,X1

j , . . . ,X
M
j ) = min{η | ∀m ∈ {1, . . . ,M} : ηXm

j ∈ Îm(Zm
j )}.
(34)

T̂E j has to be interpreted as TE j; the only difference is that they are based on

empirical and theoretical inputs sets, respectively. It turns out that TE j ≤ T̂E j. In

words, TE j is a lower bound for T̂E j. This immediately follows from the relationship

between the empirical and theoretical input sets discussed previously: Îm(Zm
j ) ⊆

Im(Zm
j ), for m = 1, . . . ,M .

Attractively, in practice, it suffices to solve a linear program to obtain the distance

function and the technical efficiency scores. In particular for DMU j ∈ {1, . . . , J},
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T̂E j is obtained as follows:

T̂E j = min
λm
s (m∈{1,...,M},s∈{1,...,J})

η

∀m ∈ {1, . . . ,M} :
J∑

s=1

αm
s (Z

m
j , rts)λ

m
s X

m
s ≤ ηXm

j ,

∀s ∈ {1, . . . , J},∀m ∈ {1, . . . ,M} : λm
s (α

m
s (Z

m
j ; rts)Z

m
s − Zm

j ) ≥ 0,

∀m ∈ {1, . . . ,M} :
J∑

s=1

λm
s = 1,

∀s ∈ {1, . . . , J},∀m ∈ {1, . . . ,M} : λm
s ≥ 0,

η ≥ 0. (35)

3 Application

We propose to use our new model to tackle the question of the technical efficiency

of US electric utilities in the presence of greenhouse gas emissions. This question

has already been treated in the efficiency literature. Recent empirical studies include

Sarkis and Cordeiro (2012), Sueyoshi and Goto (2012, 2014), Cook, Du and Zhu

(2017), and Walheer (2018b, d, e) for the US; Tone and Tsutsui (2007) and Sueyoshi

and Goto (2011) for Japan; Korhonen and Syrijanen (2003), Jamasb and Pollitt

(2003), and Giannakis, Jamasb and Pollitt (2005) for Europe; Abbott (2006) for

Australia; Pombo and Taborda (2006) for Columbia; and Kulshreshtha and Parikh

(2002) for India. While these empirical studies make use of different strategies to

incorporate the interconnections between electricity generation and greenhouse gases,

they all acknowledge the importance of taking these links into account in the efficiency

evaluation exercise. Also, another common feature of these empirical studies is their

input choice. Indeed, they systematically select input(s) to proxy the total assets and

the quantity of fuel used.

A first particularity of our empirical study is to improve the realism of the mod-

elling of the plant production process by partitioning the electricity generated into

electricity generated by fossil energies (e.g. coal, oil, gas) and electricity generated by

non-fossil energies (e.g. wind, solar, geothermal). This gives us the option to take the

interconnections with the inputs and the greenhouse gases into account. A second

particularity is that we make use of plant-level data developed by the Environmental
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Protection Agency of the US: the eGRID system. We use eGRID 2012 version 1.0

that gives data for 2009. This database provides data for two inputs: nameplate

capacity (used as a proxy for total assets), and the quantity of fuel; two outputs:

fossil and non-fossil electricity generation; and three undesirable outputs: CO2, SO2,

and NOx emissions. Additional variables that we will use to perform a second-stage

analysis are also provided by this database.

In the following, we investigate for potential input reductions for the plants. We

consider that the demand side (i.e. the number of consumers) of the electricity mar-

ket is more or less stable (at least in the short run), while plants do not have real

incentives to diminish greenhouse gases in the US.10 In what follows, we first discuss

the specificities of our set-up in more detail; specifically with respect to the intercon-

nections, convexity and returns-to-scale assumptions. Subsequently, we present our

data and our results.

3.1 Interconnections, convexity, and returns-to-scale

When distinguishing between fossil and non-fossil electricity, several interconnections

are naturally present in the production process. One, we cannot assume that the

whole electricity is produced by the use of fuel. Clearly, fuel is only used to generate

fossil electricity. Two, non-fossil electricity cannot be responsible for the emission of

greenhouse gas emissions. We obtain the following setting for every plant: nameplate

capacity (x1) is used to produce non-fossil (y1) and fossil (y2) electricity; fuel (x2) is

only used to generate fossil electricity; and three greenhouse gases, CO2 (u1), SO2

(u2), and NOx (u3) are present in the production process as the consequence of the

production of fossil electricity. We use g(ui) = −ui (for i = 1, 2, 3) to transform the

greenhouse gases (see Section 2 for more discussion about the possible transforma-

tions). Figure 2 summarizes the production process of the plants.

Figure 2: Plant production process

Adopting the notation of Section 2, for each plant we obtain the following output,

10See, for example, Cherchye, De Rock and Walheer (2015) for an empirical study of electricity
plants when specific targets are specified for the greenhouse gas reductions. These types of targets
could fairly easily be integrated into our model.
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undesirable output, and input vectors at the overall level:

Y =

[
y1

y2

]
, U =

 u1

u2

u3

 , Z =


y1

y2

g(u1)

g(u2)

g(u3)

 =


y1

y2

−u1

−u2

−u3

 , and X =

[
x1

x2

]
. (36)

Next, given our previous discussion about the interconnections between the two

types of electricity, the two inputs, and the three greenhouse gases for the plants, we

obtain the following information vectors:

A1 =

[
1

0

]
,A2 =

[
1

1

]
, B1 =

 0

0

0

 , and B2 =

 1

1

1

 . (37)

It turns out that the input and undesirable output vectors associated with non-

fossil electricity (output 1) and fossil electricity (output 2) are provided by:

X1 = A1 ⊙X =

[
x1

0

]
, and X2 =

[
x1

x2

]
. (38)

U1 = B1 ⊙U =

 0

0

0

 , and U2 =

 u1

u2

u3

 . (39)

Z1 =

[
y1

g(U1)

]
=


y1

0

0

0

 , and Z2 =


y2

g(u1)

g(u2)

g(u3)

 =


y2

−u1

−u2

−u3

 . (40)

We discuss our choice for the convexity and the returns-to-scale assumption. When

undesirable outputs are involved in the production process, the constant and variable

returns-to-scale assumptions are the two most popular choices for empirical works

(see, for example, Zhou, Ang and Poh (2008)). For our empirical study, we choose to

rely on constant returns-to-scale for non-fossil electricity generation, and on variable

returns-to-scale for fossil electricity generation; and impose only convexity of the
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input sets. We denote this case by VRS-CRS. Different arguments can be invoked

to justify our choices. Firstly, we may argue that fossil energy is proportional to

the inputs (similar argument to the one used by Podinovski (2004a) and followers to

justify constant returns-to-scale). Indeed, the quantity of fossil electricity produced

by each unit of fuel input is known (physic law). As such, doubling the inputs (fuel

and nameplate capacity), will also double the fossil electricity production. A similar

reasoning does not hold true for non-fossil fossil electricity, as the production of non-

fossil electricity also depends on external factors (e.g. the wind or solar exposition).

This advocates for choosing a variable returns-to-scale.

Next, we may also argue that fossil electricity is closer to the perfect competitive

market than non-fossil electricity. (Perfect competition is often associated with con-

stant returns-to-scale.) In a sense, fossil electricity production may be assimilated

to an ‘old technology’, while non-fossil electricity production may be assimilated to

‘new technology’. As such, more competition occurs for the latter. Finally, we do not

see any reason to impose convexity of the overall production possibility set, neither

convexity for the output-specific production possibility sets. As we are interested

by potential input reductions, convexity of the input sets is a sufficient assumption

(see also Cherchye, De Rock and Walheer (2015) and Walheer (2018e) for more ar-

guments).

In an illustrative purpose, we also consider two additional cases. Namely, when

constant and variable returns-to-scale are assumed for both types of electricity. We

denote these two extra cases by CRS-CRS and VRS-VRS, respectively.

3.2 Results

We restrict our attention to large plants (i.e. those generating more than 1,000,000

megawatts) that produce both fossil and non-fossil electricity. We end with a sample

of 62 plants. While this number may seem small, it only reflects that most plants are

built to generate one type of electricity in the US (see also Walheer (2018d) for more

discussion). Table 1 reports the corresponding descriptive statistics for the inputs

and outputs taken up in our analysis.

We start by computing the input efficiency scores T̂E when assuming variable

returns-to-scale for non-fossil electricity and constant returns-to-scale for fossil elec-

tricity (i.e. VRS-CRS ) using the linear program provided in (38). Next, in an il-
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Table 1: Descriptive statistics
Outputs Inputs

Non-Fossil Fossil CO2 SO2 NOx Nameplate Fuel
Electricity Electricity Capacity
(MWh) (MWh) (tons) (tons) (tons) (MW) (MMBtu)

Min 660,025 312,500 360,748 332 310 93 490,478
Mean 707,200 507,700 442,100 500 1600 200 4,818,000
Max 19,650,000 11,140,000 11,980,000 20,000 70,000 3,562 117,000,000
Std 2,976,000 1,995,000 1,912,000 200 900 100 1,936,300

lustrative purpose, we recompute T̂E for the two extra cases (i.e. VRS-VRS and

CRS-CRS ). Results are displayed in Table 2.

Table 2: Efficiency scores
VRS-VRS VRS-CRS CRS-CRS

Min 0.4375 0.0909 0.0601
Mean 0.9472 0.7429 0.6017
Median 1 0.9357 0.6197
Max 1 1 1

St Dev 0.1260 0.3063 0.3629
# Efficient 46 24 16
% Efficient 74.19 38.71 25.81

T̂E is interpreted as the potential input reduction keeping the electricity gener-

ation (and the greenhouse gases) constant. The median/average are 0.9357/0.7429

meaning that 6.43%/25.71% of the input quantities could be saved without impacting

the electricity production. Also, 38.71% of the plants are efficient, i.e. they use the

optimal level of inputs to produce the outputs. Clearly the returns-to-scale assump-

tion choice for the two types of electricity has a direct impact on the efficiency scores

and on the number of efficient plants. We observe from Table 2 that it is more difficult

to be efficient when assuming constant returns-to-scale for both types of electricity

than when assuming variable returns-to-scale (16 against 46 efficient plants). This

observation is also confirmed by the other descriptive statistics. This ranking is intu-

itive and also observed when comparing the initial DEA models of Charnes, Cooper

and Rhodes (1978) and Banker, Charnes and Cooper (1984). Finally, our mixed case

(i.e. VRS-CRS )) lies between these two extreme cases (24 efficient plants).

We make used of a truncated regression as a second-stage analysis. Our aim
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is to investigate whether differences in efficiency scores are explained by exogenous

factors.11 The eGRID system provides some relevant variables that may directly

affect the efficient behaviour of the plants. The regression equation is given as:

T̂E = β0 + β1w1 + β2w2 + β3w3 + β4δ1 + β5δ2 + β6δ3 + ϵ, (41)

where w1 is the number of boilers; w2 is the number of generators; w3 is the capacity

factor; δ1 = 1 if a plant uses coal to generate fossil electricity, and δ1 = 0 otherwise;

δ2 = 1 if a plant uses oil to generate fossil electricity, δ2 = 0 otherwise; and δ3 = 1 if

a plant uses gas to generate fossil electricity, δ3 = 0 otherwise.

Table 3 provides the values of the regression coefficients and their significant level

for the VRS-CRS case (we use ∗∗∗, ∗∗, and ∗ to denote the 1%, 5%, and 10% signifi-

cance levels). Again, in an illustrative purpose, we have also estimated the regression

coefficients for the CRS-CRS and VRS-VRS cases.

Table 3: Truncated regressions
VRS-VRS VRS-CRS CRS-CRS

β̂0 0.9141∗∗∗ 0.6232∗∗∗ 0.4542∗∗∗

β̂1 0.0025 0.0682∗∗ 0.0941∗∗∗

β̂2 -0.0117 0.0013 0.0098

β̂3 1.1549∗∗∗ 1.3121∗∗∗ 0.9980∗∗∗

β̂4 -0.0508 -0.4931∗∗ -0.4441∗∗∗

β̂5 0.2703∗ -0.1426∗ -0.3799∗∗∗

β̂6 -0.0451 -0.1292 -0.0601

Some interesting lessons can be learned from the results given by Table 3. Firstly,

whatever the returns-to-scale assumptions chosen, the estimated coefficients β̂1, β̂2

and β̂3 are positive; meaning that the largest plants are, on average, more efficient.

Next, plants that use coal, oil or gas are, on average less efficient under the VRS-

CRS and CRS-CRS cases, but not under the VRS-VRS case. It means that relying

on fossil energy sources reduces the efficient behaviour of the plants. Note that the

regression coefficient associated with the coal energy source is the largest.

11We remark that there is a debate in the literature about the proper way to evaluate the effect of
exogenous factors on efficiency scores. Using a truncated regression seems to be a good compromise.
See, for example, Hoff (2007) and McDonald (2009) for more discussion.
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4 Conclusion

Data Envelopment Analysis (DEA; after Charnes, Cooper and Rhodes (1978)) is a

nonparametric technique that evaluates efficiency of a Decision Making Unit (DMU)

by comparing its input-output performance to that of other DMUs operating in a

similar technological environment. Recently, increasing attention has be given to the

development of specific techniques to deal with interconnections between outputs, in-

puts, and undesirable outputs for DEA models. These techniques offer the advantages

of improving the realism and the flexibility of DEA models; two aspects of crucial

importance to convince practitioners about the attractiveness and the reliability of

DEA models.

In this paper, we propose a unifying methodology coherent with previous works

to model these interconnections. In particular, we suggest treating the outputs as the

foundation of the production process by modelling every output individually. This

thus gives us the option to consider the interconnections with the inputs and the

undesirable outputs, and to make a distinction between different categories of inputs

and undesirable outputs. It turns out that our methodology naturally improves the

realism and the flexibility of DEA models. These advantages do not come with impor-

tant drawbacks. In fact, it is the opposite as our methodology also offers the option

of setting a different returns-to-scale assumption for each output-specific production

process, and to choose between different types of convexity. As such, the realism and

flexibility are improved even more.

We demonstrate the usefulness of our methodology with an application to the

US electricity plants using a plant-level data set. In particular, we decompose the

electricity generation into fossil and non-fossil electricity generation, and model the

interconnections with the greenhouse gases and the inputs for each type of electricity.

We show that inputs can potentially be saved, and perform a second-stage analysis

to explain the (in)efficient behaviours observed.
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