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Introduction

B Motivation: Building risk-assessment maps for the projected retreat of the Antarctic ice
sheet in the presence of uncertainties.

B Challenges:

» How to quantify the uncertainty in the retreat of the Antarctic ice sheet: excursion sets of
spatially non-homogeneous random fields.

» Computational ice-sheet models have generally a high computational cost.

> lce sheets can exhibit abrupt and irreversible retreats (risk of instabilities).
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Problem setting

B Let {Y(x),x € D} be a random field defined on a probability space (©, i, P), indexed
by D C RY (d > 1), with values in R and with continuous paths almost surely.

B Positive excursion set:
EF 0 =% 0=&H={xeD:Y(x)>u},
where u is a threshold of interest. The set £} defines a random closed set in RY.

B Objective: Characterise the variability/uncertainty in the random closed set &,
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Confidence regions for excursion sets

B The uncertainty in random sets may be characterised using the concept of confidence
regions [Bolin and Lindgren, 2015; French and Hoeting, 2015].

B A closed set ("' € § is an outer confidence region for & with probability at least « if
P(c, CC))>a.

B An open set C* € £ is an inner confidence region for - with probability at least « if
P(Clce))>a
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Parametric family of sets

B Interest is directed towards finding the largest inner confidence region:
Ch = arg max |S| subject to P(S C &) > a.
This optimisation problem does not in general have a unique solution.
B The family of sets £ is restricted to a parametric family of nested sets
T,={xeD:T(x)>p,pec(0,1)},

where T : D — [0, 1] is referred to as a membership function.
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Evaluation of a confidence region in a parametric family of sets

1) Determine a membership function T for the random field:

» T should (1) quantify the difference between the random field and the threshold u and (2)
account for the uncertainty in the random field [French and Hoeting, 2015].

» Examples for T based on first-order statistical descriptors of the random field:
Tix) = P(Y(x) > u), Ta(x) = <1 +erf <]E[Y(X)]_“>> )= L [14 BN —u )
2 2V[Y(x)] 2 E[(Y (x) — u)?]
2) Solve an optimisation problem:
» The optimal threshold p* satisfies

*= inf psubjecttoP(T, C &N > a.
pr = Inf psubj (T, C&) =

» The evaluation of the inclusion probability can be computationally expensive unless the
problem is restricted to simple random fields.



Estimating confidence regions as a problem of quantile estimation

B We recast the optimisation problem

p* = inf psubject toP(T, C &) >
pe(0,1)

as an equivalent generalised problem of quantile estimation:

=inf{p € (0,1): Fy(p) = a} = qy(a),
where F, is the cdf and g, the generalised quantile function of the random variable
x= sup T(x).
xe(&F)°
B Proof:
P(T,Cé&))
P((€4)" < (T,))
P(T(x) < p,x € (£)°)
p)

P( sup  T(x) <
xE(Sj)C
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(3) Implementation of the problem of quantile estimation for confidence regions
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Evaluation of confidence regions: Computational aspects

B Let {Y(x),x € D} be the response of a stochastic computational model that depends
on an R"-valued random vector & = (§1,...,&n).

B Evaluation of a first-order statistical descriptor T of the random field:

» For each x € D, build an approximation '?(x) of T(x) using standard nonintrusive methods
for uncertainty quantification (Monte Carlo sampling, spectral expansions, kriging, ...).

B Estimation of the a-quantile of the random variable x:
» Monte Carlo sampling method:

gy(a) =infa: I-c;(a) > a,
where

~, 1<
Fr(a)= > 1" < a)
=1

is the sample distribution function built on the i.i.d. samples {x(),1 </ <v}.

» Monte Carlo sampling may be intractable for computational models with a high
computational cost and extreme quantiles.
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Quantile estimation based on a surrogate model

a) Polynomial chaos expansion of the response of the stochastic model:
1) Polynomial chaos representation of the random field:

Y(x &)~ YP(x,€) = Z YE(X) ta(£)-
|e|=0
2) Estimation of the excursion set:
EFm &P ={xeD:YP(x)>0}.

3) Surrogate model for x:
x(§)~ sup  T(x).

xe(&SP)"
b) Polynomial chaos expansion of the random variable y:
X&) = sup T(x) Z X2 ba(€
xe(é‘*) |oe|=0

» This approach is enabled by the reformulation of the optimisation problem for confidence
regions as a problem of quantile estimation of a random variable.
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Quantile estimation based on a surrogate model: Approximation error

e The error bound depends on the local
approximation error between x and X in 13
the vicinity of g, ().

e A low error bound requires X to be locally
accurate in the vicinity of g, ().

e Surrogate models with a low global
approximation error do not necessarily
achieve a low local approximation error. pe
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Quantile estimation based on a hybrid approach

B Following Li and Xiu (2010), we build a hybrid surrogate model X" by correcting the
surrogate model X with x in the vicinity of g, («):

XM(€) = X&) (IX(8) — ax(@)] > 7) + x (€)1 (IX(€) — ax ()] < 7).

Let x : R™ — R be a measurable continuous function, X be a surrogate model of x
and Y™ be a hybrid surrogate model with ~y that satisfies

P(X—x[>7) <e
for some € > 0. Then, the quantile function gy satisfies

|azn (@) — ax(a)] = O(e).

. . . 1 ~
B The threshold ~y to achieve an error control of € is given by v = 75 |Ix — Xl[Le-
B Algorithm: Evaluate iteratively x at a set of new points around the estimated quantile in

the parameter space until a desired level of accuracy is achieved.
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(4) Application: Uncertainty quantification in the retreat of the Antarctic ice sheet
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|ce-sheet simulation: Problem setting

Forcing Ice-sheet model Excursion set
as(61), au(60,)  {Y(x) = h(x,€) + 2b(x,€),x € D} £ ={xeD:Y(x) >0}

51 ~ U(O’ 1)
52 ~ U(O, 1)
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Reference solution with Monte Carlo sampling

B We build a reference solution using v = 5000 Monte Carlo samples.

B Membership function:
R 1<
T(x)=- I(Y(x) >0).
(0= 2192 0)

B Quantile estimation:

gy(a) =infa: I?;(a) > .

Membership function Confidence regions

o =050
(p = 0.60)

a = 0.90
(p =0.93)

a =0.99
(p=0.99)

21



Polynomial chaos expansion of the response of the stochastic model

Y(x) [m]

B The local response may exhibit a sharp discontinuity in the presence of instability.

B A polynomial chaos approximation leads to a poor approximation of the response.
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Polynomial chaos expansion of the random variable x

B The random variable x exhibits a smoother behaviour than the random field (global
averaging).

B A polynomial chaos approximation of x provides a more accurate surrogate model.
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Hybrid approach: validation test

B The efficiency of the hybrid method is measured as the percentage of evaluations of the
computational model required to determine the reference quantile.

B The efficiency of the hybrid method is improved for a surrogate model based on a
polynomial chaos expansion of .

SUP,e (&%) T(x) X
100 100

—e—a =0.5
80 ——a =209 80
—e—a = 0.99

. 60 . 60
S~ S
40 40
20 20
0 0
0 2 4 6 8 10

18/21



Risk-assessment map

B We build a risk-assessment map for the retreat of the Antarctic ice sheet by
superimposing confidence regions with different levels of probability.

B Confidence regions give insight into the most vulnerable regions to instabilities and the
impact of uncertainties on the retreat of the Antarctic ice sheet.
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Conclusion

B Uncertainty in excursion sets:
» Confidence regions provide a useful way to represent the uncertainty in excursion sets;
» Confidence regions are estimated in a parametric family of nested sets;
» Estimating a confidence region may be recast as a problem of quantile estimation.
B Implementation:
» Quantile estimation based on a surrogate model requires the surrogate model to be locally
accurate in the vicinity of the quantile;

» We used a multifidelity approach in which the computational model is only evaluated in the
vicinity of the quantile.

B Application:
» Surrogate models based on a polynomial chaos expansion of the computational model
perform poorly in the presence of instability and abrupt behaviours;

» A surrogate model for the random variable x may perform better than a surrogate model
built on the computational model,

» Confidence regions allow to draw risk-assessment maps.
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