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Introduction

� Motivation: Building risk-assessment maps for the projected retreat of the Antarctic ice
sheet in the presence of uncertainties.

� Challenges:

I How to quantify the uncertainty in the retreat of the Antarctic ice sheet: excursion sets of
spatially non-homogeneous random fields.

I Computational ice-sheet models have generally a high computational cost.

I Ice sheets can exhibit abrupt and irreversible retreats (risk of instabilities).
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Problem setting

� Let {Y (x), x ∈ D} be a random field defined on a probability space (Θ,U,P), indexed
by D ⊂ Rd (d ≥ 1), with values in R and with continuous paths almost surely.

� Positive excursion set:

E+
u : Θ→ F; θ 7→ E+

u = {x ∈ D : Y (x) ≥ u} ,
where u is a threshold of interest. The set E+

u defines a random closed set in Rd .

� Objective: Characterise the variability/uncertainty in the random closed set E+
u .
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Confidence regions for excursion sets

� The uncertainty in random sets may be characterised using the concept of confidence
regions [Bolin and Lindgren, 2015; French and Hoeting, 2015].

� A closed set C out
α ∈ F is an outer confidence region for E+

u with probability at least α if

P
(
E+
u ⊆ C out

α

)
≥ α.

� An open set C in
α ∈ L is an inner confidence region for E+

u with probability at least α if

P
(
C in
α ⊂ E+

u

)
≥ α.

E+u ⊂ Cout
α ,C in

α ⊂ E+u E+u 6⊂ Cout
α ,C in

α ⊂ E+u E+u ⊂ Cout
α ,C in

α 6⊂ E+u
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Parametric family of sets

� Interest is directed towards finding the largest inner confidence region:

C in
α = arg max

S∈L
|S | subject to P(S ⊂ E+

u ) ≥ α.

This optimisation problem does not in general have a unique solution.
� The family of sets L is restricted to a parametric family of nested sets

Tρ = {x ∈ D : T (x) > ρ, ρ ∈ (0, 1)} ,
where T : D → [0, 1] is referred to as a membership function.
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Evaluation of a confidence region in a parametric family of sets

1) Determine a membership function T for the random field:

I T should (1) quantify the difference between the random field and the threshold u and (2)
account for the uncertainty in the random field [French and Hoeting, 2015].

I Examples for T based on first-order statistical descriptors of the random field:

T1(x) = P(Y (x) ≥ u),T2(x) =
1

2

(
1 + erf

(
E[Y (x)] − u√

2V[Y (x)]

))
,T3(x) =

1

2

1 +
E[Y (x)] − u√
E[(Y (x) − u)2]

 .

2) Solve an optimisation problem:

I The optimal threshold ρ∗ satisfies

ρ∗ = inf
ρ∈(0,1)

ρ subject to P(Tρ ⊂ E+
u ) ≥ α.

I The evaluation of the inclusion probability can be computationally expensive unless the
problem is restricted to simple random fields.
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Estimating confidence regions as a problem of quantile estimation

� We recast the optimisation problem

ρ∗ = inf
ρ∈(0,1)

ρ subject to P(Tρ ⊂ E+
u ) ≥ α

as an equivalent generalised problem of quantile estimation:

ρ∗ = inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} ≡ qχ(α),

where Fχ is the cdf and qχ the generalised quantile function of the random variable

χ = sup
x∈(E+

u )
c
T (x).

� Proof:

P
(
Tρ ⊂ E+

u

)
≥ α

P
((
E+
u

)c ⊂ (Tρ)c
)
≥ α

P(T (x) ≤ ρ, x ∈
(
E+
u

)c
) ≥ α

P( sup
x∈(E+

u )
c
T (x) ≤ ρ) ≥ α.
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Evaluation of confidence regions: Computational aspects

� Let {Y (x), x ∈ D} be the response of a stochastic computational model that depends
on an Rn-valued random vector ξ = (ξ1, . . . , ξn).

� Evaluation of a first-order statistical descriptor T of the random field:

I For each x ∈ D, build an approximation T̂ (x) of T (x) using standard nonintrusive methods
for uncertainty quantification (Monte Carlo sampling, spectral expansions, kriging, . . . ).

� Estimation of the α-quantile of the random variable χ:

I Monte Carlo sampling method:

q̂νχ(α) = inf a : F̂ νχ (a) ≥ α,
where

F̂ νχ (a) =
1

ν

ν∑

l=1

I (χ(l) ≤ a)

is the sample distribution function built on the i.i.d. samples
{
χ(l), 1 ≤ l ≤ ν

}
.

I Monte Carlo sampling may be intractable for computational models with a high
computational cost and extreme quantiles.
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Quantile estimation based on a surrogate model

a) Polynomial chaos expansion of the response of the stochastic model:
1) Polynomial chaos representation of the random field:

Y (x, ξ) ≈ Y p(x, ξ) =

p∑

|α|=0

yp
α(x)ψα(ξ).

2) Estimation of the excursion set:

E+
u ≈ E+,p

u = {x ∈ D : Y p(x) ≥ 0} .
3) Surrogate model for χ:

χ(ξ) ≈ sup
x∈(E+,p

u )c
T (x).

b) Polynomial chaos expansion of the random variable χ:

χ(ξ) = sup
x∈(E+

u )
c
T (x) ≈ χp(ξ) =

p∑

|α|=0

χp
α ψα(ξ).

I This approach is enabled by the reformulation of the optimisation problem for confidence
regions as a problem of quantile estimation of a random variable.
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Quantile estimation based on a surrogate model: Approximation error

a

Fχ

Fχ̃α ξ

χ(ξ)

χ̃(ξ)

ρξ

ξ
• The error bound depends on the local

approximation error between χ and χ̃ in
the vicinity of qχ(α).

• A low error bound requires χ̃ to be locally
accurate in the vicinity of qχ(α).

• Surrogate models with a low global
approximation error do not necessarily
achieve a low local approximation error.
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Quantile estimation based on a hybrid approach

� Following Li and Xiu (2010), we build a hybrid surrogate model χ̃h by correcting the
surrogate model χ̃ with χ in the vicinity of qχ(α):

χ̃h(ξ) = χ̃(ξ)I (|χ̃(ξ)− qχ(α)| > γ) + χ(ξ)I (|χ̃(ξ)− qχ(α)| ≤ γ) .

Let χ : Rn → R be a measurable continuous function, χ̃ be a surrogate model of χ
and χ̃h be a hybrid surrogate model with γ that satisfies

P (|χ̃− χ| > γ) ≤ ε

for some ε ≥ 0. Then, the quantile function qχ̃h satisfies

|qχ̃h(α)− qχ(α)| = O(ε).

� The threshold γ to achieve an error control of ε is given by γ = 1
ε1/p ‖χ− χ̃‖Lp .

� Algorithm: Evaluate iteratively χ at a set of new points around the estimated quantile in
the parameter space until a desired level of accuracy is achieved.
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Ice-sheet simulation: Problem setting

Forcing

as(ξ1), aw (ξ1, ξ2)

ξ1 ∼ U(0, 1)
ξ2 ∼ U(0, 1)

Ice-sheet model{
Y (x) = h(x, ξ) + ρw

ρi
b(x, ξ), x ∈ D

} Excursion set

E+0 = {x ∈ D : Y (x) ≥ 0}

0

0

ξ1 = 0
ξ2 = 0

ξ1 = 1
ξ2 = 1
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Reference solution with Monte Carlo sampling

� We build a reference solution using ν = 5000 Monte Carlo samples.

� Membership function:

T̂ (x) =
1

ν

ν∑

l=1

I (Y (x) ≥ 0).

� Quantile estimation:
q̂νχ(α) = inf a : F̂ νχ (a) ≥ α.

Membership function Confidence regions
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Polynomial chaos expansion of the response of the stochastic model

� The local response may exhibit a sharp discontinuity in the presence of instability.

� A polynomial chaos approximation leads to a poor approximation of the response.
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Polynomial chaos expansion of the random variable χ

� The random variable χ exhibits a smoother behaviour than the random field (global
averaging).

� A polynomial chaos approximation of χ provides a more accurate surrogate model.
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Hybrid approach: validation test

� The efficiency of the hybrid method is measured as the percentage of evaluations of the
computational model required to determine the reference quantile.

� The efficiency of the hybrid method is improved for a surrogate model based on a
polynomial chaos expansion of χ.
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Risk-assessment map

� We build a risk-assessment map for the retreat of the Antarctic ice sheet by
superimposing confidence regions with different levels of probability.

� Confidence regions give insight into the most vulnerable regions to instabilities and the
impact of uncertainties on the retreat of the Antarctic ice sheet.
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Conclusion

� Uncertainty in excursion sets:

I Confidence regions provide a useful way to represent the uncertainty in excursion sets;

I Confidence regions are estimated in a parametric family of nested sets;

I Estimating a confidence region may be recast as a problem of quantile estimation.

� Implementation:

I Quantile estimation based on a surrogate model requires the surrogate model to be locally
accurate in the vicinity of the quantile;

I We used a multifidelity approach in which the computational model is only evaluated in the
vicinity of the quantile.

� Application:

I Surrogate models based on a polynomial chaos expansion of the computational model
perform poorly in the presence of instability and abrupt behaviours;

I A surrogate model for the random variable χ may perform better than a surrogate model
built on the computational model;

I Confidence regions allow to draw risk-assessment maps.
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