

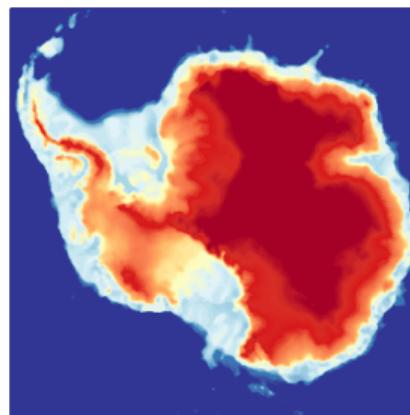
Kevin Bulthuis^{1,2}, F. Pattyn², and M. Arnst¹

¹ Computational and Stochastic Modeling, Université de Liège, Belgium

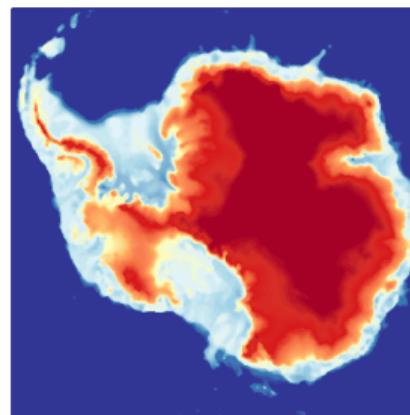
²Laboratory of Glaciology, Université Libre de Bruxelles, Belgium

Introduction

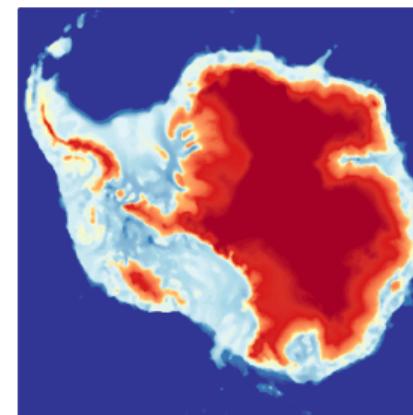
- **Motivation:** Building risk-assessment maps for the projected retreat of the Antarctic ice sheet in the presence of uncertainties.
- **Challenges:**
 - ▶ How to quantify the uncertainty in the retreat of the Antarctic ice sheet: excursion sets of spatially non-homogeneous random fields.
 - ▶ Computational ice-sheet models have generally a high computational cost.
 - ▶ Ice sheets can exhibit abrupt and irreversible retreats (risk of instabilities).



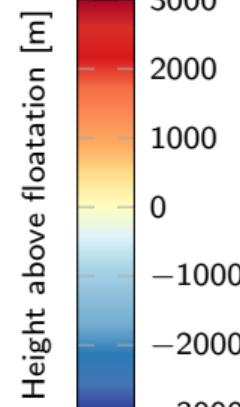
Projection 1



Projection 2



Projection 3



Height above flotation [m]

Outline

- (1) Introduction
- (2) Confidence regions for excursion sets
- (3) Implementation of the problem of quantile estimation for confidence regions
- (4) Application: Uncertainty quantification in the retreat of the Antarctic ice sheet
- (5) Conclusion

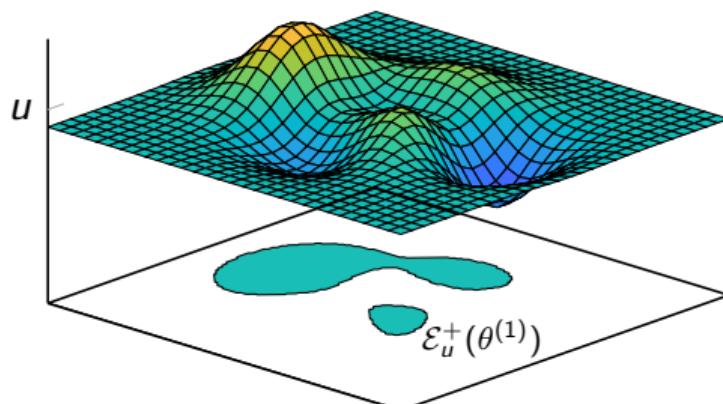
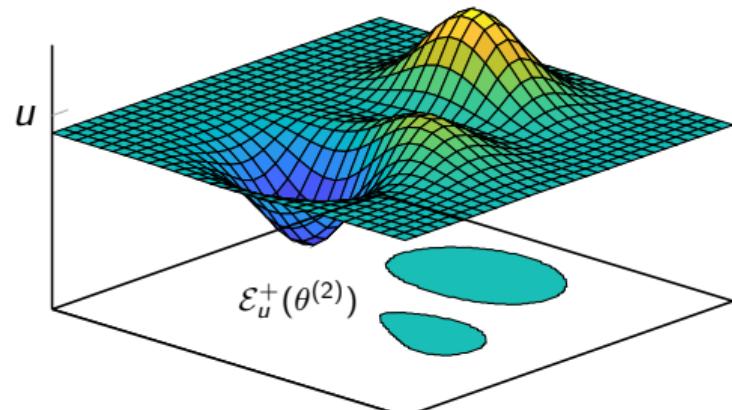
Problem setting

- Let $\{Y(\mathbf{x}), \mathbf{x} \in D\}$ be a random field defined on a probability space $(\Theta, \mathfrak{U}, \mathbb{P})$, indexed by $D \subset \mathbb{R}^d$ ($d \geq 1$), with values in \mathbb{R} and with continuous paths almost surely.
- Positive excursion set:

$$\mathcal{E}_u^+ : \Theta \rightarrow \mathfrak{F}; \theta \mapsto \mathcal{E}_u^+ = \{\mathbf{x} \in D : Y(\mathbf{x}) \geq u\},$$

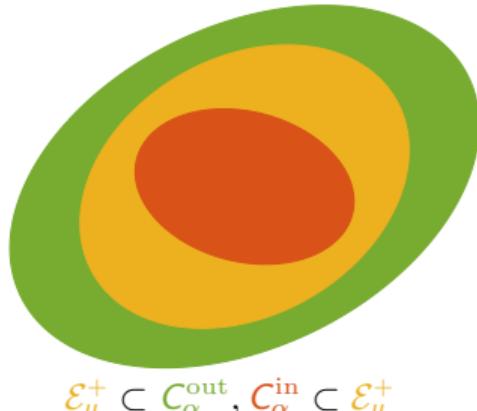
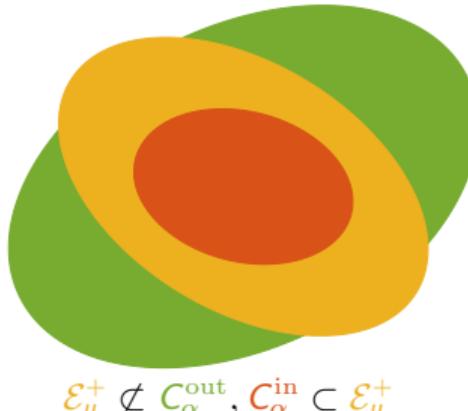
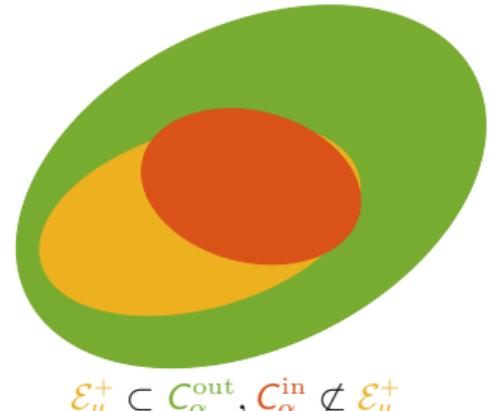
where u is a threshold of interest. The set \mathcal{E}_u^+ defines a [random closed set](#) in \mathbb{R}^d .

- Objective: Characterise the variability/uncertainty in the random closed set \mathcal{E}_u^+ .



Confidence regions for excursion sets

- The uncertainty in random sets may be characterised using the concept of **confidence regions** [Bolin and Lindgren, 2015; French and Hoeting, 2015].
- A closed set $C_\alpha^{\text{out}} \in \mathfrak{F}$ is an **outer confidence region** for \mathcal{E}_u^+ with probability at least α if
$$\mathbb{P}(\mathcal{E}_u^+ \subseteq C_\alpha^{\text{out}}) \geq \alpha.$$
- An open set $C_\alpha^{\text{in}} \in \mathfrak{L}$ is an **inner confidence region** for \mathcal{E}_u^+ with probability at least α if
$$\mathbb{P}(C_\alpha^{\text{in}} \subset \mathcal{E}_u^+) \geq \alpha.$$



Parametric family of sets

- Interest is directed towards finding the largest inner confidence region:

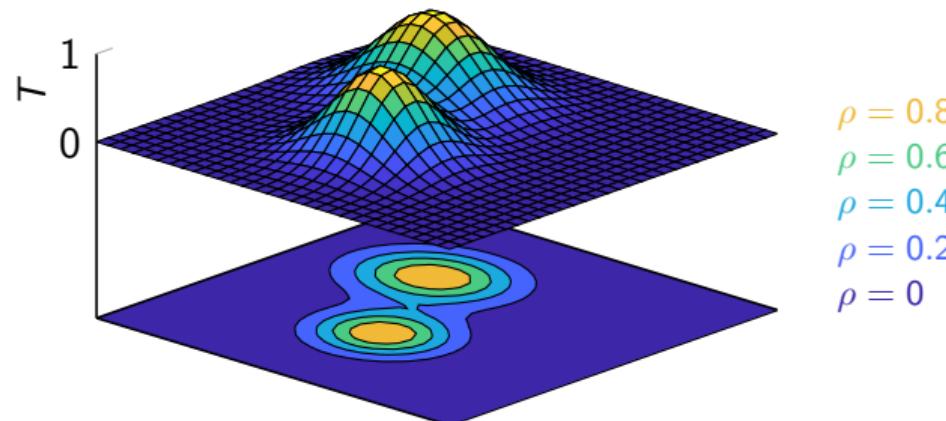
$$C_{\alpha}^{\text{in}} = \arg \max_{S \in \mathcal{L}} |S| \text{ subject to } \mathbb{P}(S \subset \mathcal{E}_u^+) \geq \alpha.$$

This optimisation problem does not in general have a unique solution.

- The family of sets \mathcal{L} is restricted to a parametric family of nested sets

$$T_{\rho} = \{x \in D : T(x) > \rho, \rho \in (0, 1)\},$$

where $T : D \rightarrow [0, 1]$ is referred to as a membership function.



Evaluation of a confidence region in a parametric family of sets

1) Determine a membership function T for the random field:

- ▶ T should (1) quantify the difference between the random field and the threshold u and (2) account for the uncertainty in the random field [French and Hoeting, 2015].
- ▶ Examples for T based on first-order statistical descriptors of the random field:

$$T_1(\mathbf{x}) = \mathbb{P}(Y(\mathbf{x}) \geq u), T_2(\mathbf{x}) = \frac{1}{2} \left(1 + \text{erf} \left(\frac{\mathbb{E}[Y(\mathbf{x})] - u}{\sqrt{2\mathbb{V}[Y(\mathbf{x})]}} \right) \right), T_3(\mathbf{x}) = \frac{1}{2} \left(1 + \frac{\mathbb{E}[Y(\mathbf{x})] - u}{\sqrt{\mathbb{E}[(Y(\mathbf{x}) - u)^2]}} \right).$$

2) Solve an optimisation problem:

- ▶ The optimal threshold ρ^* satisfies

$$\rho^* = \inf_{\rho \in (0,1)} \rho \text{ subject to } \mathbb{P}(T_\rho \subset \mathcal{E}_u^+) \geq \alpha.$$

- ▶ The evaluation of the inclusion probability can be computationally expensive unless the problem is restricted to simple random fields.

Estimating confidence regions as a problem of quantile estimation

- We recast the optimisation problem

$$\rho^* = \inf_{\rho \in (0,1)} \rho \text{ subject to } \mathbb{P}(T_\rho \subset \mathcal{E}_u^+) \geq \alpha$$

as an equivalent **generalised problem of quantile estimation**:

$$\rho^* = \inf \{\rho \in (0, 1) : F_\chi(\rho) \geq \alpha\} \equiv q_\chi(\alpha),$$

where F_χ is the cdf and q_χ the generalised quantile function of the random variable

$$\chi = \sup_{\mathbf{x} \in (\mathcal{E}_u^+)^c} T(\mathbf{x}).$$

- Proof:

$$\mathbb{P}(T_\rho \subset \mathcal{E}_u^+) \geq \alpha$$

$$\mathbb{P}((\mathcal{E}_u^+)^c \subset (T_\rho)^c) \geq \alpha$$

$$\mathbb{P}(T(\mathbf{x}) \leq \rho, \mathbf{x} \in (\mathcal{E}_u^+)^c) \geq \alpha$$

$$\mathbb{P}(\sup_{\mathbf{x} \in (\mathcal{E}_u^+)^c} T(\mathbf{x}) \leq \rho) \geq \alpha.$$

Outline

- (1) Introduction
- (2) Confidence regions for excursion sets
- (3) Implementation of the problem of quantile estimation for confidence regions**
- (4) Application: Uncertainty quantification in the retreat of the Antarctic ice sheet
- (5) Conclusion

Evaluation of confidence regions: Computational aspects

- Let $\{Y(\mathbf{x}), \mathbf{x} \in D\}$ be the response of a stochastic computational model that depends on an \mathbb{R}^n -valued random vector $\xi = (\xi_1, \dots, \xi_n)$.
- Evaluation of a first-order statistical descriptor T of the random field:
 - For each $\mathbf{x} \in D$, build an approximation $\hat{T}(\mathbf{x})$ of $T(\mathbf{x})$ using standard nonintrusive methods for uncertainty quantification (Monte Carlo sampling, spectral expansions, kriging, ...).
- Estimation of the α -quantile of the random variable χ :
 - Monte Carlo sampling method:

$$\hat{q}_\chi^\nu(\alpha) = \inf a : \hat{F}_\chi^\nu(a) \geq \alpha,$$

where

$$\hat{F}_\chi^\nu(a) = \frac{1}{\nu} \sum_{l=1}^{\nu} I(\chi^{(l)} \leq a)$$

is the sample distribution function built on the i.i.d. samples $\{\chi^{(l)}, 1 \leq l \leq \nu\}$.

- Monte Carlo sampling may be intractable for computational models with a high computational cost and extreme quantiles.

Quantile estimation based on a surrogate model

a) Polynomial chaos expansion of the response of the stochastic model:

1) Polynomial chaos representation of the random field:

$$Y(\mathbf{x}, \xi) \approx Y^p(\mathbf{x}, \xi) = \sum_{|\alpha|=0}^p y_\alpha^p(\mathbf{x}) \psi_\alpha(\xi).$$

2) Estimation of the excursion set:

$$\mathcal{E}_u^+ \approx \mathcal{E}_u^{+,p} = \{\mathbf{x} \in D : Y^p(\mathbf{x}) \geq 0\}.$$

3) Surrogate model for χ :

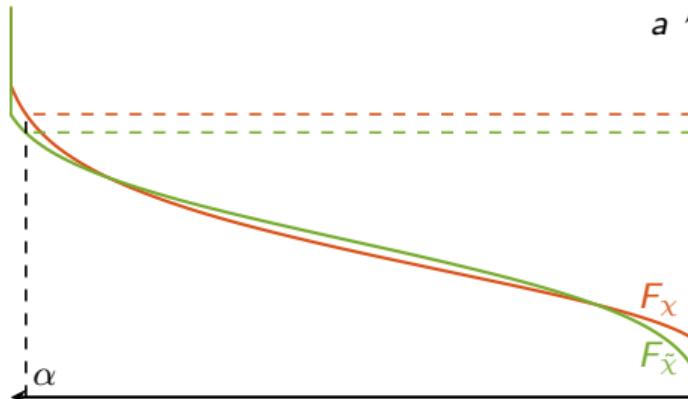
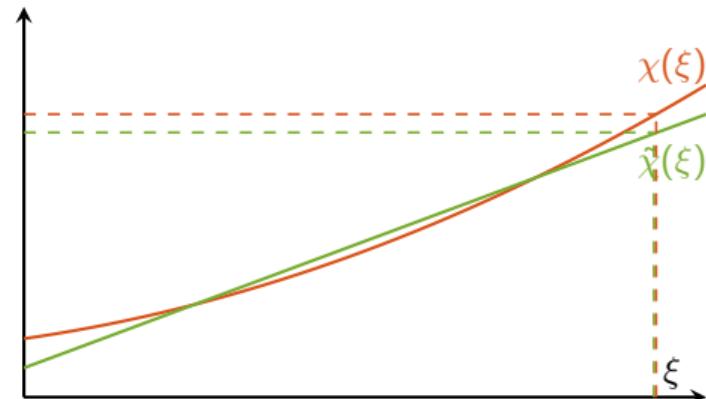
$$\chi(\xi) \approx \sup_{\mathbf{x} \in (\mathcal{E}_u^{+,p})^c} T(\mathbf{x}).$$

b) Polynomial chaos expansion of the random variable χ :

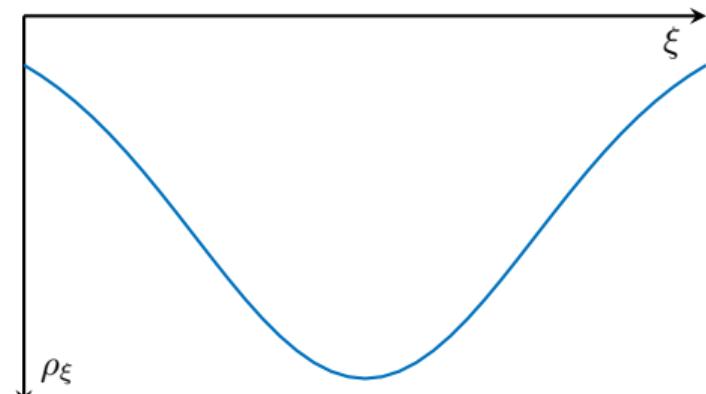
$$\chi(\xi) = \sup_{\mathbf{x} \in (\mathcal{E}_u^+)^c} T(\mathbf{x}) \approx \chi^p(\xi) = \sum_{|\alpha|=0}^p \chi_\alpha^p \psi_\alpha(\xi).$$

- ▶ This approach is enabled by the reformulation of the optimisation problem for confidence regions as a problem of quantile estimation of a random variable.

Quantile estimation based on a surrogate model: Approximation error



- The error bound depends on the local approximation error between χ and $\tilde{\chi}$ in the vicinity of $q_\chi(\alpha)$.
- A low error bound requires $\tilde{\chi}$ to be locally accurate in the vicinity of $q_\chi(\alpha)$.
- Surrogate models with a low global approximation error do not necessarily achieve a low local approximation error.



Quantile estimation based on a hybrid approach

- Following Li and Xiu (2010), we build a hybrid surrogate model $\tilde{\chi}^h$ by correcting the surrogate model $\tilde{\chi}$ with χ in the vicinity of $q_\chi(\alpha)$:

$$\tilde{\chi}^h(\xi) = \tilde{\chi}(\xi) I(|\tilde{\chi}(\xi) - q_\chi(\alpha)| > \gamma) + \chi(\xi) I(|\tilde{\chi}(\xi) - q_\chi(\alpha)| \leq \gamma).$$

Let $\chi : \mathbb{R}^n \rightarrow \mathbb{R}$ be a measurable continuous function, $\tilde{\chi}$ be a surrogate model of χ and $\tilde{\chi}^h$ be a hybrid surrogate model with γ that satisfies

$$\mathbb{P}(|\tilde{\chi} - \chi| > \gamma) \leq \epsilon$$

for some $\epsilon \geq 0$. Then, the quantile function $q_{\tilde{\chi}^h}$ satisfies

$$|q_{\tilde{\chi}^h}(\alpha) - q_\chi(\alpha)| = \mathcal{O}(\epsilon).$$

- The threshold γ to achieve an error control of ϵ is given by $\gamma = \frac{1}{\epsilon^{1/p}} \|\chi - \tilde{\chi}\|_{\mathbb{L}^p}$.
- Algorithm:** Evaluate iteratively χ at a set of new points around the estimated quantile in the parameter space until a desired level of accuracy is achieved.

Outline

- (1) Introduction
- (2) Confidence regions for excursion sets
- (3) Implementation of the problem of quantile estimation for confidence regions
- (4) Application: Uncertainty quantification in the retreat of the Antarctic ice sheet**
- (5) Conclusion

Ice-sheet simulation: Problem setting

Forcing

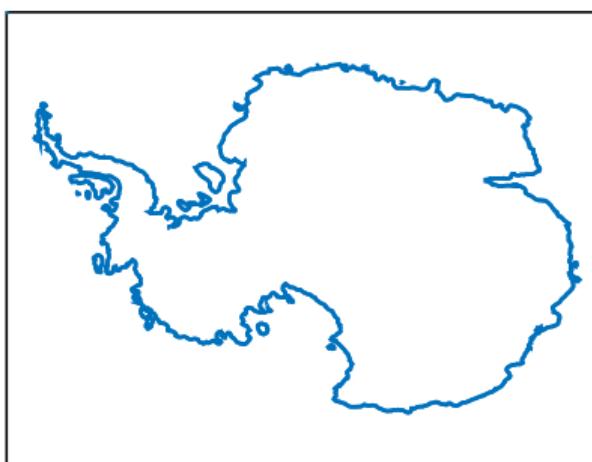
$$a_s(\xi_1), a_w(\xi_1, \xi_2)$$

Ice-sheet model

$$\left\{ Y(\mathbf{x}) = h(\mathbf{x}, \xi) + \frac{\rho_w}{\rho_i} b(\mathbf{x}, \xi), \mathbf{x} \in D \right\}$$

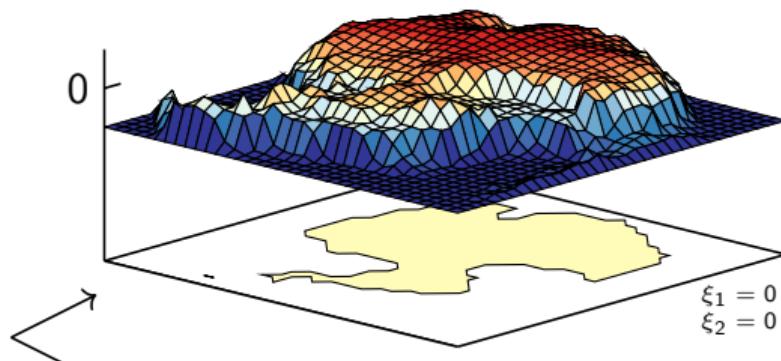
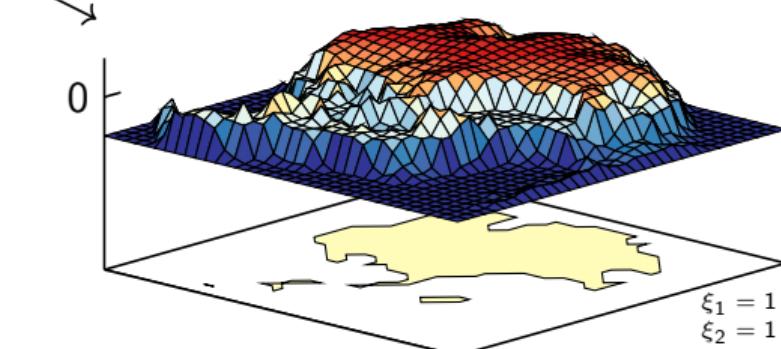
$$\xi_1 \sim \mathcal{U}(0, 1)$$

$$\xi_2 \sim \mathcal{U}(0, 1)$$



Excursion set

$$\mathcal{E}_0^+ = \{ \mathbf{x} \in D : Y(\mathbf{x}) \geq 0 \}$$



Reference solution with Monte Carlo sampling

- We build a reference solution using $\nu = 5000$ Monte Carlo samples.
- Membership function:

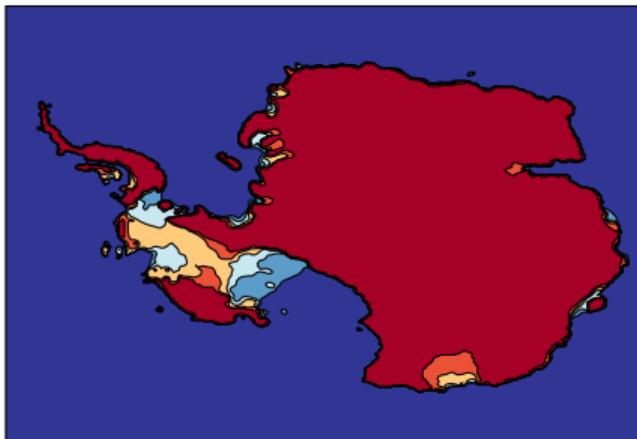
$$\hat{T}(\mathbf{x}) = \frac{1}{\nu} \sum_{l=1}^{\nu} I(Y(\mathbf{x}) \geq 0).$$

- Quantile estimation:

$$\hat{q}_{\chi}^{\nu}(\alpha) = \inf a : \hat{F}_{\chi}^{\nu}(a) \geq \alpha.$$

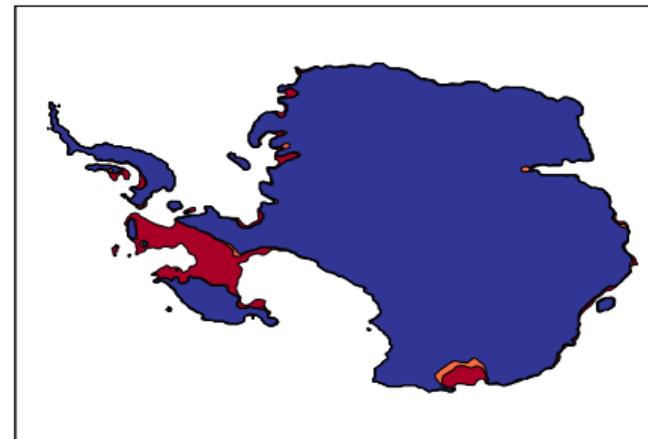
Membership function

$\rho = 0$
 $\rho = 0.2$
 $\rho = 0.4$
 $\rho = 0.6$
 $\rho = 0.8$
 $\rho = 1$



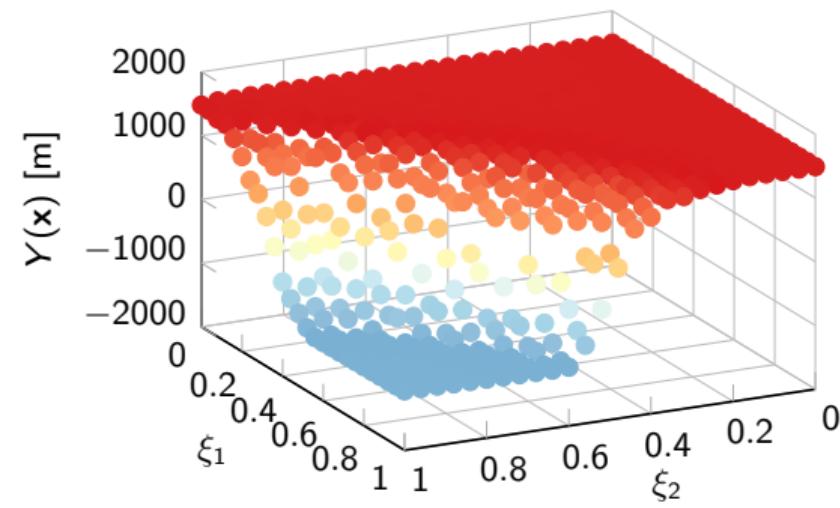
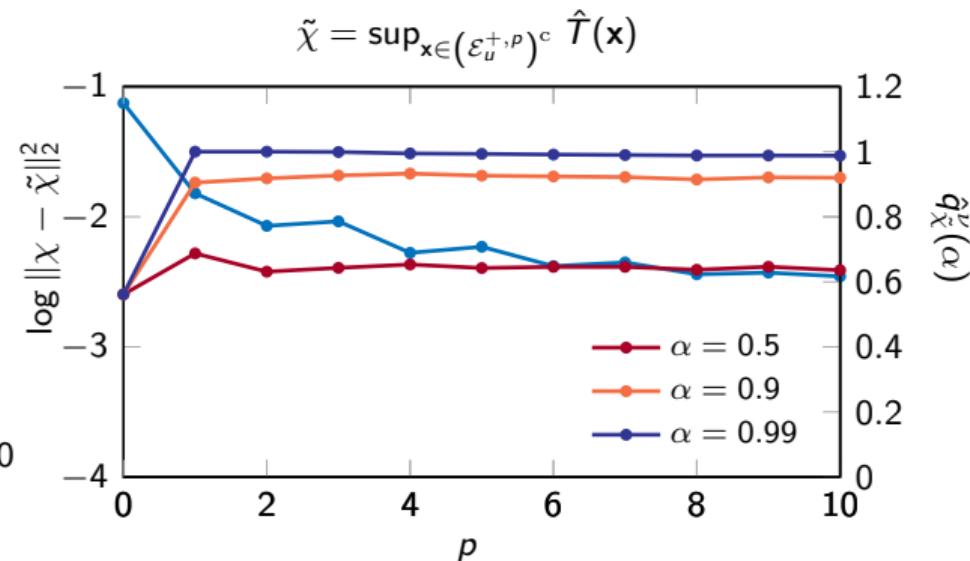
Confidence regions

$\alpha = 0.50$
 $(\rho = 0.60)$
 $\alpha = 0.90$
 $(\rho = 0.93)$
 $\alpha = 0.99$
 $(\rho = 0.99)$



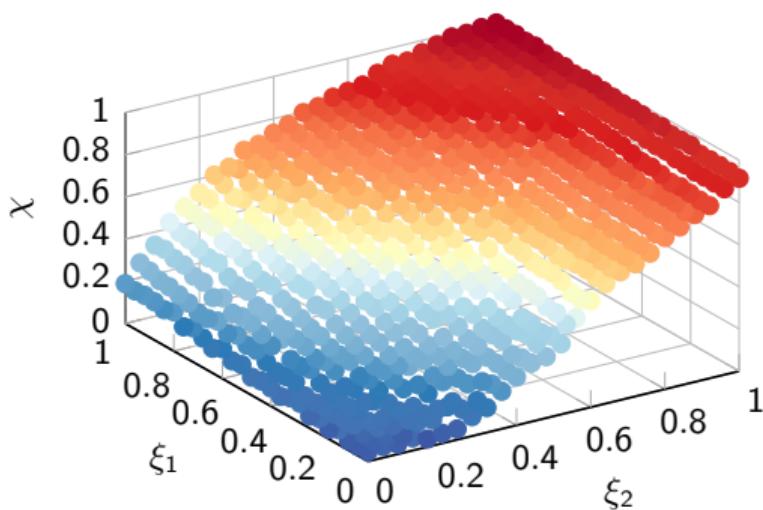
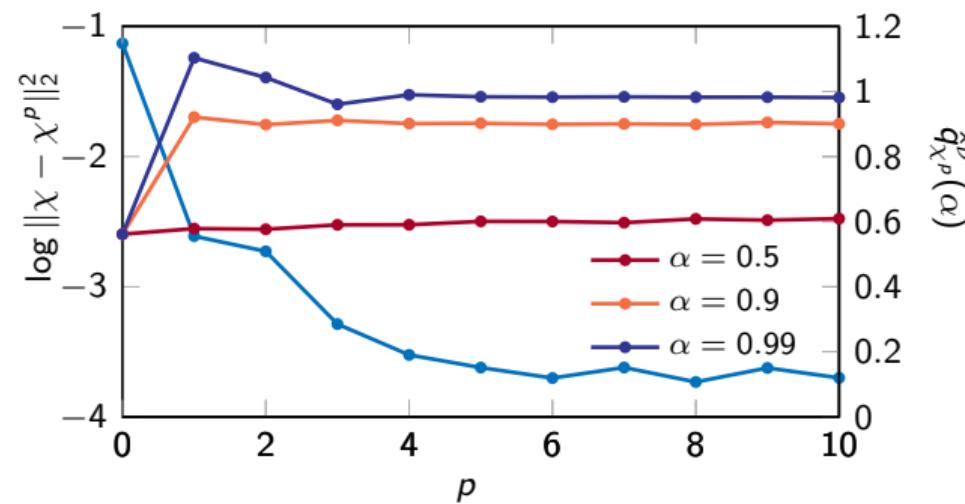
Polynomial chaos expansion of the response of the stochastic model

- The local response may exhibit a sharp discontinuity in the presence of instability.
- A polynomial chaos approximation leads to a poor approximation of the response.



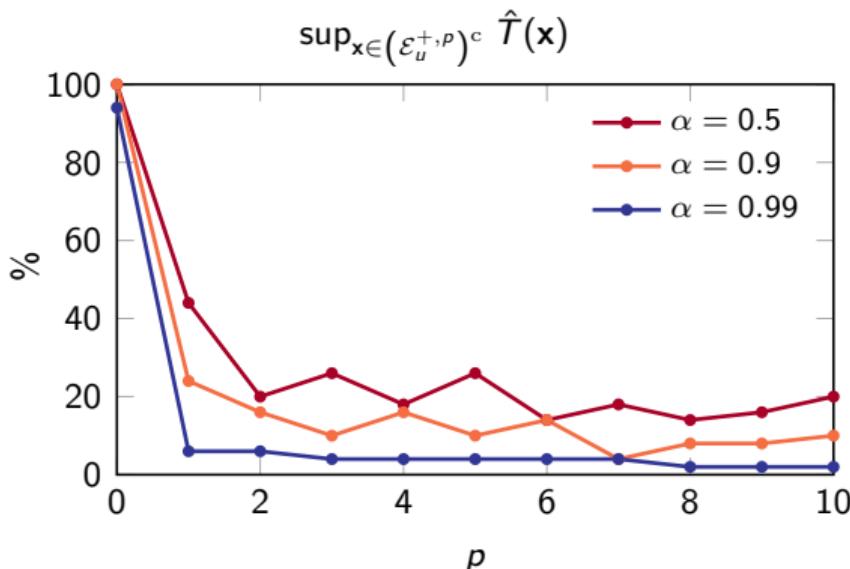
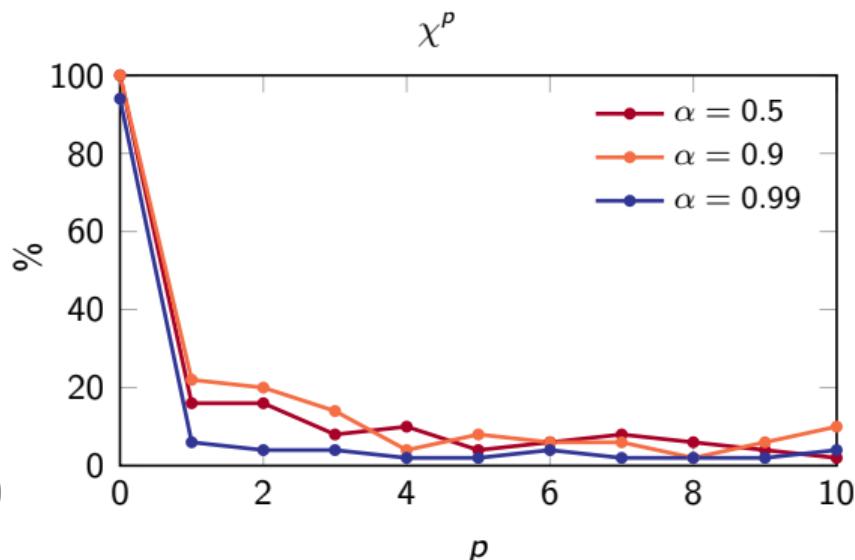
Polynomial chaos expansion of the random variable χ

- The random variable χ exhibits a smoother behaviour than the random field (global averaging).
- A polynomial chaos approximation of χ provides a more accurate surrogate model.



Hybrid approach: validation test

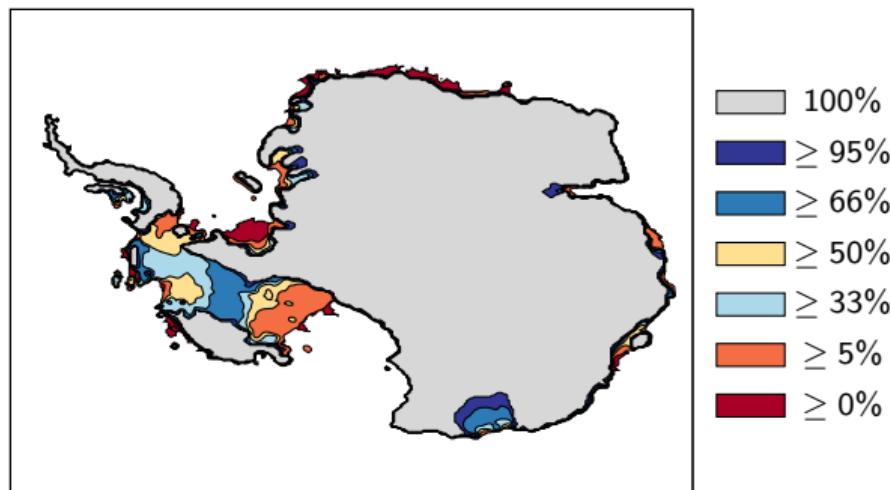
- The efficiency of the hybrid method is measured as the percentage of evaluations of the computational model required to determine the reference quantile.
- The efficiency of the hybrid method is improved for a surrogate model based on a polynomial chaos expansion of χ .



Risk-assessment map

- We build a risk-assessment map for the retreat of the Antarctic ice sheet by superimposing confidence regions with different levels of probability.
- Confidence regions give insight into the most vulnerable regions to instabilities and the impact of uncertainties on the retreat of the Antarctic ice sheet.

Probability to remain grounded



Outline

- (1) Introduction
- (2) Confidence regions for excursion sets
- (3) Implementation of the problem of quantile estimation for confidence regions
- (4) Application: Uncertainty quantification in the retreat of the Antarctic ice sheet
- (5) Conclusion

Conclusion

■ Uncertainty in excursion sets:

- ▶ Confidence regions provide a useful way to represent the uncertainty in excursion sets;
- ▶ Confidence regions are estimated in a parametric family of nested sets;
- ▶ Estimating a confidence region may be recast as a problem of quantile estimation.

■ Implementation:

- ▶ Quantile estimation based on a surrogate model requires the surrogate model to be locally accurate in the vicinity of the quantile;
- ▶ We used a multifidelity approach in which the computational model is only evaluated in the vicinity of the quantile.

■ Application:

- ▶ Surrogate models based on a polynomial chaos expansion of the computational model perform poorly in the presence of instability and abrupt behaviours;
- ▶ A surrogate model for the random variable χ may perform better than a surrogate model built on the computational model;
- ▶ Confidence regions allow to draw risk-assessment maps.

Kevin Bulthuis^{1,2}, F. Pattyn², and M. Arnst¹

¹ Computational and Stochastic Modeling, Université de Liège, Belgium

²Laboratory of Glaciology, Université Libre de Bruxelles, Belgium

References

- R. Adler and J. Taylor. Random Fields and Geometry. Springer Monographs in Mathematics, 2007.
- D. Bolin and F. Lindgren. Excursion and contour uncertainty regions for latent Gaussian models. *Journal of the Royal Statistical Society: Series B*, 2015.
- K. Bulthuis et al. Uncertainty quantification of the multi-centennial response of the Antarctic Ice Sheet to climate change. *The Cryosphere*, 2019.
- G. Enss et al. Nonparametric quantile estimation based on surrogate models, *IEEE Transactions on Information Theory*, 2016.
- J. French and J. Hoeting. Credible regions for exceedance sets of geostatistical data. *Environmetrics*, 2015.
- J. Li and D. Xiu. Evaluation of failure probability via surrogate models. *Journal of Computational Physics*, 2010.
- I. Molchanov. Theory of Random Sets. Springer London, 2017,
- F. Pattyn. Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). *The Cryosphere*, 2017.

Acknowledgement

The first author, Kevin Bulthuis, would like to acknowledge the Belgian National Fund for Scientific Research (F.R.S.-FNRS) for its financial support (F.R.S.-FNRS Research Fellowship).

