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Abstract. Two finite words are k-binomially equivalent whenever they
share the same subwords, i.e., subsequences, of length at most k with
the same multiplicities. This is a refinement of both abelian equivalence
and the Simon congruence. The k-binomial complexity of an infinite
word x maps the integer n to the number of classes in the quotient,
by this k-binomial equivalence relation, of the set of factors of length
n occurring in x. This complexity measure has not been investigated
very much. In this paper, we characterize the k-binomial complexity of
the Thue–Morse word. The result is striking, compared to more familiar
complexity functions. Although the Thue–Morse word is aperiodic, its k-
binomial complexity eventually takes only two values. In this paper, we
first express the number of occurrences of subwords appearing in iterates
of the form Ψ `(w) for an arbitrary morphism Ψ . We also thoroughly
describe the factors of the Thue–Morse word by introducing a relevant
new equivalence relation.

1 Introduction

The Thue–Morse word t = 011010011001 · · · is ubiquitous in combinatorics on
words [1,20,27]. It is an archetypal example of a 2-automatic sequence: it is the
fixed point of the morphism 0 7→ 01, 1 7→ 10. See, for instance, [2]. Its most
prominent property is that it avoids overlaps, i.e., it does not contain any factor
of the form auaua where u is a word and a a symbol. Consequently it also avoids
cubes, i.e., words of the form uuu, and is aperiodic.

Various measures of complexity of infinite words have been considered in the
literature. The most usual one is the factor complexity that one can, for instance,
relate to the topological entropy of a symbolic dynamical system. The factor
complexity of an infinite word x simply counts the number px(n) = # Facn(x)
of factors of length n occurring in x. One can also consider other measures
such as abelian complexity or k-abelian complexity [10]. For instance, in the
sixties, Erdős raised the question whether abelian squares can be avoided by an
infinite word over an alphabet of size 4. In an attempt to generalize Parikh’s
theorem on context-free languages, k-abelian complexity counts the number
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of equivalence classes partitioning the set of factors of length n for the so-
called k-abelian equivalence. Two finite words u and v are k-abelian equivalent if
|u|x = |v|x, for all words x of length at most k, and where |u|x denotes the
number of occurrences of x as a factor of u.

The celebrated theorem of Morse–Hedlund characterizes ultimately periodic
words in terms of a bounded factor complexity function; for a reference, see [2,16]
or [4, Section 4.3]. Hence, aperiodic words with the lowest factor complexity are
exactly the Sturmian words characterized by px(n) = n + 1. It is also a well-
known result of Cobham that a k-automatic sequence has factor complexity in
O(n). The factor complexity of the Thue–Morse word is in Θ(n) and is recalled
in Proposition 6.

For many complexity measures, Sturmian words have the lowest complexity
among aperiodic words, and variations of the Morse–Hedlund theorem notably
exist for k-abelian complexity [11].

Binomial coefficients of words have been extensively studied [15]:
(
u
x

)
de-

notes the number of occurrences of x as a subword, i.e., a subsequence, of u.
They have been successfully used in several applications: p-adic topology [3],
non-commutative extension of Mahler’s theorem on interpolation series [19], for-
mal language theory [9], Parikh matrices, and a generalization of Sierpiński’s
triangle [14].

Binomial complexity of infinite words has been recently investigated [21,23].
The definition is parallel to that of k-abelian complexity. Two finite words u and
v are k-binomially equivalent if

(
u
x

)
=
(
v
x

)
, for all words x of length at most k.

This relation is a refinement of abelian equivalence and Simon’s congruence. We
thus take the quotient of the set of factors of length n by this new equivalence
relation. For all k ≥ 2, Sturmian words have k-binomial complexity that is the
same as their factor complexity. However, the Thue–Morse word has bounded
k-binomial complexity [23]. So we have a striking difference with the usual com-
plexity measures. This phenomenon therefore has to be closely investigated. In
this paper, we compute the exact value of the k-binomial complexity bt,k(n)
of the Thue–Morse word t. To achieve this goal, we first obtain general results
computing the number of occurrences of a subword in the (iterated) image by a
morphism. This discussion is not restricted to the Thue–Morse morphism.

This paper is organized as follows. In Section 2, we recall basic results about
binomial coefficients, binomial equivalence and the Thue–Morse word. In Sec-
tion 3, we give an expression to compute the coefficient

(
Ψ(w)
u

)
for an arbitrary

morphism Ψ in terms of binomial coefficients for the preimage w. To that end,
we study factorizations of u of the form u = xΨ(u′)y.

In the second part of this paper, we specifically study the k-binomial com-
plexity of the Thue–Morse word. For k = 1, the abelian complexity of t is well
known and takes only the values 2 and 3. The case k = 2 is treated in Section 4.
In the last three sections, we consider the general case k ≥ 3. The precise state-
ment of our main result is given in Theorem 5. The principal tool to get our
result is a new equivalence relation discussed in Section 6. This relation is based
on particular factorizations of factors occurring in the Thue–Morse word.
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Due to space limitations for this 12-page version, we have omitted most of
the technical difficulties but tried to convey the main ideas and concepts. The
reader can find a comprehensive presentation in [13].

2 Basics

Let A = {0, 1}. Let ϕ : A∗ → A∗ be the classical Thue–Morse morphism defined
by ϕ(0) = 01 and ϕ(1) = 10. The complement of a word u ∈ A∗ is the image of
u under the involutive morphism mapping 0 to 1 and 1 to 0. It is denoted by u.
The length of the word u is denoted by |u|.

2.1 Binomial coefficients and binomial equivalence

The binomial coefficient
(
u
v

)
of two finite words u and v is the number of times v

occurs as a subsequence of u (meaning as a “scattered” subword). As an example,
we consider two particular words over {0, 1} and(

101001

101

)
= 6 .

For more on these binomial coefficients, see, for instance, [15, Chap. 6]. In
particular,

(
u
ε

)
= 1. In this paper, a factor of a word is made of consecutive

letters. However this is not necessarily the case for a subword of a word.

Definition 1 (Binomial equivalence). Let k ∈ N and u, v be two words over
A. We let A≤k denote the set of words of length at most k over A. We say that
u and v are k-binomially equivalent if(

u

x

)
=

(
v

x

)
, ∀x ∈ A≤k .

We simply write u ∼k v if u and v are k-binomially equivalent. The word u is
obtained as a permutation of the letters in v if and only if u ∼1 v. In that case,
we say that u and v are abelian equivalent. Note that, for all k ≥ 1, if u ∼k+1 v,
then u ∼k v.

Example 2. The four words 0101110, 0110101, 1001101 and 1010011 are 2-binomially
equivalent. Let u be any of these four words. We have(

u

0

)
= 3,

(
u

1

)
= 4,

(
u

00

)
= 3,

(
u

01

)
= 7,

(
u

10

)
= 5,

(
u

11

)
= 6 .

For instance, the word 0001111 is abelian equivalent to 0101110 but these two
words are not 2-binomially equivalent. To see this, simply compute the number
of occurrences of the subword 10 in each.
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Many classical questions in combinatorics on words can be considered in this
binomial context [22,24]. Avoiding binomial squares and cubes is considered in
[21]. The problem of testing whether two words are k-binomially equivalent or
not is discussed in [7]. In particular, one can introduce the k-binomial complexity
function.

Definition 3 (Binomial complexity). Let x be an infinite word. The k-
binomial complexity function of x is defined as

bx,k : N→ N, n 7→ # (Facn(x)/∼k)

where Facn(x) is the set of factors of length n occurring in x.

2.2 Context of this Paper

The Thue–Morse word denoted by t is the fixed point starting with 0 of the
morphism ϕ. In [23, Thm. 13], it is shown that t has a bounded k-binomial
complexity. Actually, this behavior occurs for all morphisms where images of
letters are permutations of the same word.

Theorem 4. [23] Let k ≥ 1. There exists Ck > 0 such that the k-binomial
complexity of the Thue–Morse word satisfies bt,k(n) ≤ Ck for all n ≥ 0.

Our contribution is the exact characterization of bt,k(n).

Theorem 5. Let k be a positive integer. For all n ≤ 2k − 1, we have

bt,k(n) = pt(n).

For all n ≥ 2k, we have

bt,k(n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Observe that 3 · 2k − 4 is exactly the number of words of length 2k − 1 in t, for
k 6= 2. Indeed, the factor complexity of t is well known [4, Corollary 4.10.7].

Proposition 6. [4,5,6] The factor complexity pt of the Thue–Morse word is
given by pt(0) = 1, pt(1) = 2, pt(2) = 4 and for n ≥ 3,

pt(n) =

{
4n− 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m;
2n+ 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m.

There are 2 factors of length 1 = 21 − 1 and 6 factors of length 3 = 22 − 1. The
number of factors of t of length 2k−1 for k ≥ 3 is given by 2(2k−1)+4·2k−2−2 =
3 · 2k − 4,

(pt(2
k − 1))k≥0 = 1, 2, 6, 20, 44, 92, 188, 380, 764, 1532, . . .

which is exactly one of two values stated in our main result, Theorem 5.
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3 Occurrences of Subwords in Images by ϕ

The aim of this section is to obtain an expression for coefficients of the form(
ϕ(w)
u

)
. Even though we are mainly interested in the Thue–Morse word, our

observations can be applied to any non-erasing morphism as summarized by
Theorem 15.

A multiset is just a set where elements can be repeated with a (finite) integer
multiplicity. If x belongs to a multiset M , its multiplicity is denoted by mM (x)
or simply m(x). If x 6∈ M , then mM (x) = 0. If we enumerate the elements of
a multiset, we adopt the convention to write multiplicities with indices. The
multiset sum M ]N of two multisets M,N is the union of the two multisets and
the multiplicity of an element is equal to the sum of the respective multiplicities.

Let us start with an introductory example. We hope that this example will
forge the intuition of the reader about the general scheme.

Example 7. We want to compute(
ϕ(01100)

u

)
with u = 011.

The word w = ϕ(01100) belongs to {01, 10}∗. It can be factorized with consec-
utive blocks b1b2 · · · b5 of length 2. To count the number of occurrences of the
subword u in the image by ϕ of a word, two cases need to be taken into account:

– the three symbols of u appear in pairwise distinct 2-blocks of w (each 2-block
contains both 0 and 1 exactly once), and there are(

|w|/2
|u|

)
=

(
5

3

)
such choices, or;

– the prefix 01 of u is one of the 2-blocks bi of w and the last symbol of u
appears in subsequent distinct 2-block bj , j > i. Since ϕ(0) = 01, we have to
count the number of occurrences of the subword 0z, for all words z of length
1, in the preimage of w. There are∑

z∈A

(
01100

0z

)
= 4 + 1 = 5

such choices.

The general scheme behind this computation is expressed by Theorem 12 given
below. The reader can already feel that we need to take into account particular
factorizations of u with respect to occurrences of a factor ϕ(0) or ϕ(1). The two
cases discussed in Example 7 correspond to the following factorizations of u:

011, ϕ(0)1.

We thus introduce the notion of a ϕ-factorization.
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Definition 8 (ϕ-factorization). If a word u ∈ A∗ contains a factor 01 or 10,
then it can be factorized as

u = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk (1)

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗ (some of these words are
possibly empty). We call this factorization, a ϕ-factorization of u. It is coded by
the k-tuple of positions where the ϕ(ai)’s occurs:

κ = (|w0|, |w0ϕ(a1)w1|, |w0ϕ(a1)w1ϕ(a2)w2|, . . . , |w0ϕ(a1)w1ϕ(a2)w2 · · ·wk−1|) .

The set of all the ϕ-factorizations of u is denoted by ϕ-Fac(u).

Since |ϕ(a)| = 2, for all a ∈ A, observe that if (i1, . . . , ik) codes a ϕ-
factorization, then ij+1 − ij ≥ 2 for all j. Note that u starts with a prefix
01 or 10 if and only if there are ϕ-factorizations of u coded by tuples starting
with 0.

We define a map f from A∗ to the set of finite multisets of words over A∗.
This map is defined as follows.

Definition 9. If u ∈ 0∗ ∪ 1∗, then f(u) = ∅ (the meaning for this choice will be
clear with Theorem 12). If u is not of this form, it contains a factor 01 or 10.
With every ϕ-factorization κ ∈ ϕ-Fac(u) of u of the form (1)

u = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗, we define the language

L(u, κ) := A|w0| a1A
|w1| · · ·A|wk−1|akA

|wk|

of words of length |u| − k (there are 2|u|−2k of these words3). Such a language
is considered as a multiset whose elements have multiplicities equal to 1. Now,
f(u) is defined as the multiset sum (i.e., we sum the multiplicities) of the above
languages for all ϕ-factorizations of u, i.e.,

f(u) :=
⊎

κ∈ϕ-Fac(u)

L(u, κ) .

Definition 10. Now that f is defined over A∗, we can extend it to any finite
multiset M of words over A. It is the multiset sum of the f(v)’s, for all v ∈M ,
repeated with their multiplicities.

Remark 11. If u does not belong to 0∗∪1∗, then f |u|−2(u) contains only elements
in {0, 1, 00, 01, 10, 11} and f |u|−1(u) contains only elements in {0, 1}. For n ≥ |u|,
fn(u) is empty.

3 We have all the words of length |u| − k where in k positions the occurring symbol is
given.
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Recall that f(u) is a multiset. Hence mf(u)(v) denotes the multiplicity of v
as element of f(u).

Theorem 12. With the above notation, for all words u,w, we have(
ϕ(w)

u

)
=

(
|w|
|u|

)
+

∑
κ∈ϕ-Fac(u)
v∈L(u,κ)

(
w

v

)
=

(
|w|
|u|

)
+
∑

v∈f(u)

mf(u)(v)

(
w

v

)
.

We can then establish the following result.

Corollary 13. Let k ≥ 1. For all words u, v, we have

u ∼k v ⇒ ϕ(u) ∼k+1 ϕ(v) .

In particular, ϕk(0) ∼k ϕk(1) for all k ≥ 1.

Theorem 12 can be extended to iterates of ϕ.

Corollary 14. With the above notation, for ` ≥ 1 and all words u,w, we have(
ϕ`(w)

u

)
=

`−1∑
i=0

∑
v∈fi(u)

mfi(u)(v)

(
|ϕ`−i−1(w)|
|v|

)
+

∑
x∈f`(u)

mf`(u)(x)

(
w

x

)
.

The reader should be convinced that the following general statement holds.

Theorem 15. Let Ψ : A∗ → B∗ be a non-erasing morphism and u ∈ B+,
w ∈ A+ be two words. We have(

Ψ(w)

u

)
=

|u|∑
k=1

∑
u1,...,uk∈B+

u=u1···uk

∑
a1,...,ak∈A

(
Ψ(a1)

u1

)
· · ·
(
Ψ(ak)

uk

)(
w

a1 · · · ak

)
.

The word u occurs as a subword of Ψ(w) if and only if there exists k ≥ 1 such
that u can be factorized into u1 · · ·uk where, for all i, ui is a non-empty subword
occurring in Ψ(ai) for some letter ai and such that a1 · · · ak is a subword of w.

4 Computing bt,2(n)

In this section we compute the value of bt,2(n). First of all, the next proposition
ensures us that all the words we will consider in the proof of Theorem 17 really
appear as factors of t.

Proposition 16 (folklore). Let k,m ∈ N and a, b ∈ {0, 1}. Let pu be a suffix of
ϕk(a) and su be a prefix of ϕk(b). There exists z ∈ {0, 1}m such that puϕk(z)su
is a factor of t.

Using this result, we can compute the values of bt,2.
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Theorem 17. [12, Thm. 3.3.6] We have bt,2(0) = 1, bt,2(1) = 2, bt,2(2) = 4,
bt,2(3) = 6 and for all n ≥ 4,

bt,2(n) =

{
9, if n ≡ 0 (mod 4);
8, otherwise.

Proof. Assume n ≥ 4.
We have to consider four cases depending on the value of λ ∈ {0, 1, 2, 3} such

that λ = n mod 4. For every one of them, we want to compute

bt,2(n) = #

{((
u

0

)
,

(
u

01

))
∈ N× N : u ∈ Facn(t)

}
.

Since t is the fixed point of the morphism ϕ, we know that every factor u
of length n of t can be written puϕ

2(z)su for some z ∈ A∗ and pu (resp., su)
suffix (resp., prefix) of a word in {ϕ2(0), ϕ2(1)}. From the previous proposition,
we also know that every word of that form occurs at least once in t. Moreover,
we have |pu| + |su| ∈ {λ, λ + 4} and, as a consequence, |z| =

⌊
n
4

⌋
= n−λ

4 or
|z| =

⌊
n
4

⌋
− 1. Set ` = n−λ

4 .
Let us first consider the case λ = 0. We have

Facn(t) = {ϕ2(az), 0ϕ2(z)011, 0ϕ2(z)100, 1ϕ2(z)011, 1ϕ2(z)100,

01ϕ2(z)01, 01ϕ2(z)10, 10ϕ2(z)01, 10ϕ2(z)10,

110ϕ2(z)0, 110ϕ2(z)1, 001ϕ2(z)0, 001ϕ2(z)1 : z ∈ A`−1, a ∈ A, az ∈ Fac(t)}.

Let us illustrate the computation of
((
u
0

)
,
(
u
01

))
on u = 0ϕ2(z)011 ∈ Facn(t).

Firstly, (
u

0

)
=

(
0

0

)
+

(
ϕ2(z)

0

)
+

(
011

0

)
= 2 + 2|z| = 2`

since |z| = `− 1. Similarly, we have(
u

01

)
=

(
0

01

)
+

(
ϕ2(z)

01

)
+

(
011

01

)
+

(
0

0

)(
ϕ2(z)

1

)
+

(
0

0

)(
011

1

)
+

(
ϕ2(z)

0

)(
011

1

)
=

(
|ϕ(z)|

2

)
+

(
ϕ(z)

0

)
+ 2 + |ϕ(z)|+ 2 + 2|ϕ(z)|

= |z|(2|z| − 1) + |z|+ 6|z|+ 4 = 2`2 + 2`.

All the computations are summarized in the table below. We give the form
of the factors and respective values for the pairs

((
u
0

)
,
(
u
01

))
.

Case ϕ2(az) 0ϕ2(z)011 1ϕ2(z)100 0ϕ2(z)100 001ϕ2(z)0
01ϕ2(z)10 001ϕ2(z)1 110ϕ2(z)0
10ϕ2(z)01(

u
0

)
2` 2` 2` 2`+ 1 2`+ 1(

u
01

)
2`2 2`2 + 2` 2`2 − 2` 2`2 − 1 2`2

Case 1ϕ2(z)011 110ϕ2(z)1 01ϕ2(z)01 10ϕ2(z)10(
u
0

)
2`− 1 2`− 1 2` 2`(

u
01

)
2`2 2`2 + 1 2`2 + 1 2`2 − 1



Computing the k-binomial complexity of the Thue–Morse word 9

This is thus clear that if n ≡ 0 (mod 4), we have bt,2(n) = 9.
The same type of computations can be carried out in cases where λ 6= 0, and

give 8 equivalence classes. The obtained values can be found in [13].

5 How to Cut Factors of the Thue–Morse Word

Computing bt,k(n), for all k ≥ 3, will require much more knowledge about the
factors of t. This section is concerned about particular factorizations of factors
occurring in t. Similar ideas first appeared in [25,26].

Since t is a fixed point of ϕ, it is very often convenient to view t as a concate-
nation of blocks belonging to {ϕk(0), ϕk(1)}. Hence, we first define a function
bark that roughly plays the role of a ruler marking the positions where a new
block of length 2k occurs (these positions are called cutting bars of order k). For
all k ≥ 1, let us consider the function bark : N→ N defined by

bark(n) = |ϕk(t[0,n))| = n · 2k,

where t[0,n) is the prefix of length n of t.
Given a factor u of t, we are interested in the relative positions of bark(N)

in u: we look at all the occurrences of u in t and see what configurations can be
achieved, that is how an interval I such that tI = u can intersect bark(N).

Definition 18 (Cutting set). For all k ≥ 1, we define the set Cutk(u) of
non-empty sets of relative positions of cutting bars

Cutk(u) :=

{(
[i, i+ |u|] ∩ bark(N)

)
− i | i ∈ N, u = t[i,i+|u|)

}
.

A cutting set of order k is an element of Cutk(u). Observe that we consider the
closed interval [i, i+ |u|] because we are also interested in knowing if the end of
u coincide with a cutting bar.

Example 19. The word u = 01001 is the factor t[3,8) so the set {1, 3, 5} which is
equal to ([3, 8]∩2N)−3 is a cutting set of order 1 of u. Observing that the factor
00 can only occur as a factor of ϕ(10), one easily deduces that it is the unique
cutting set of order 1 of u. On the opposite, we have 010 = t[3,6) = t[10,13), so
that Cut1(010) contains both {1, 3} and {0, 2}.

Remark 20. Let u be a factor of t. Observe that, for all ` ≥ 1, Cut`(u) 6= ∅. It
results from the following three observations.

Obviously, bark(N) ⊂ bark−1(N) and thus if Cutk(u) is non-empty, then
the same holds for Cutk−1(u). Next notice that if Cutk(u) contains a singleton,
then Cutk+1(u) contains a singleton. Finally, there exists a unique k such that
2k−1 ≤ |u| ≤ 2k − 1. There also exists i such that u = t[i,i+|u|). Simply notice
that either [i, i + |u|] ∩ bark(N) is a singleton or, [i, i + |u|] ∩ bark−1(N) is a
singleton.
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Observe that for any word u and any set C ∈ Cutk(u), there is a unique
integer r ∈ {0, 1, . . . , 2k − 1} such that C ⊂ 2kN + r.

Lemma 21. Let k be a positive integer and u be a factor of t. Let C be a set
{i1 < i2 < · · · < in} in Cutk(u). There is a unique factor v of t of length n− 1
such that u = pϕk(v)s, with |p| = i1. Furthermore, if i1 > 0 (resp., in < |u|),
there is a unique letter a such that p (resp., s) is a proper suffix (resp., prefix)
of ϕk(a).

Definition 22 (Factorization of order k). Let u be a factor of t and C a
cutting set in Cutk(u). By Lemma 21, we can associate with C a unique pair
(p, s) ∈ A∗ × A∗ and a unique triple (a, v, b) ∈ (A ∪ {ε})× A∗ × (A ∪ {ε}) such
that u = pϕk(v)s, where either a = p = ε (resp., b = s = ε), or a 6= ε and
p is a proper suffix of ϕk(a) (resp., b 6= ε and s is a proper prefix of ϕk(b)).
In particular, we have a = p = ε exactly when min(C) = 0 and b = s = ε
exactly when max(C) = |u|. The triple (a, v, b) is called the desubstitution of u
associated with C and the pair (p, s) is called the factorization of u associated
with C. If C ∈ Cutk(u), then (a, v, b) and (p, s) are respectively desubstitutions
and factorizations of order k.

Pursuing the reasoning of Example 19, one could easily show that for any
factor u of t of length at least 4, Cut1(u) contains a single set. Furthermore,
the substitution ϕ being primitive and t being aperiodic, Mossé’s recognizability
theorem ensures that the substitution ϕk is bilaterally recognizable [17,18] for all
k ≥ 1, i.e., any sufficiently long factor u of t can be uniquely desubstituted by ϕk
(up to a prefix and a suffix of bounded length). In the case of the Thue–Morse
substitution, we can make this result more precise. Similar results are considered
in [8] where the term (maximal extensible) reading frames is used.

Lemma 23. Let k ≥ 3 be an integer and u be a factor of t of length at least
2k−1. Then Cutk(u) is a not a singleton if and only if u is a factor of ϕk−1(010)
or of ϕk−1(101), in which case we have Cutk(u) = {C1, C2} and
|minC1 − minC2| = 2k−1. In this case, let (p1, s1), (p2, s2) be the two fac-
torizations of order k respectively associated with C1, C2 ∈ Cutk(u). Without
loss of generality, assume that |p1| < |p2|. Then, there exists a ∈ A such that
either

|p1|+ |s1| = |p2|+ |s2| and (p2, ϕ
k−1(a)s2) = (p1ϕ

k−1(a), s1)

or,

||p1|+ |s1| − (|p2|+ |s2|)| = 2k and (p2, s2) = (p1ϕ
k−1(ā), ϕk−1(a)s1).

Example 24. Let us consider u = 101001011. It is a factor of ϕ2(010). We
have Cut3(u) = {{2}, {6}}, which means that (p1, s1) = (10, 1001011) and
(p2, s2) = (101001, 011) are two factorisations of u of order 3. By taking a = 1,
we have (p2, ϕ

2(a)s2) = (101001, 1001011) = (p1ϕ
2(a), s1) as claimed in the

previous lemma.
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6 Types Associated with a Factor

Remark 25. All the following constructions rely on Lemma 23. Thus, in the
remaining of this paper, we will always assume that k ≥ 3.

Lemma 23 ensures us that whenever a word has two cutting sets, then their
associated factorizations are strongly related. We will now show that whenever
two factors u, v of the same length of t admit factorizations of order k that are
similarly related, then these two words are k-binomially equivalent.

To this aim, we introduce an equivalence relation ≡k on the set of pairs
(x, y) ∈ A<2k × A<2k . The core result of this section is given by Theorem 31
stating that two words are k-binomially equivalent if and only if their factoriza-
tions of order k are equivalent for this new relation ≡k. So, the computation of
bt,k(n) amounts to determining the number of equivalence classes for ≡k among
the factorizations of order k for words in Facn(t).

Definition 26. Two pairs (p1, s1) and (p2, s2) of A<2k × A<2k are equivalent
for ≡k whenever there exists a ∈ A such that one of the following situations
occurs:

1. |p1|+ |s1| = |p2|+ |s2| and
(a) (p1, s1) = (p2, s2);
(b) (p1, ϕ

k−1(a)s1) = (p2ϕ
k−1(a), s2);

(c) (p2, ϕ
k−1(a)s2) = (p1ϕ

k−1(a), s1);
(d) (p1, s1) = (s2, p2) = (ϕk−1(a), ϕk−1(ā));

2.
∣∣|p1|+ |s1| − (|p2|+ |s2|)

∣∣ = 2k and
(a) (p1, s1) = (p2ϕ

k−1(a), ϕk−1(ā)s2);
(b) (p2, s2) = (p1ϕ

k−1(a), ϕk−1(ā)s1).

Remark 27. Note that if (p1, s1) ≡k (p2, s2), then either |p1| = |p2| or,
||p1| − |p2|| = 2k−1. So (p1, s1) ≡k (p2, s2) implies that |p1| ≡ |p2| (mod 2k−1).

The next result is a direct consequence of Lemma 23.

Corollary 28. If a factor of t has two distinct factorizations of order k, then
these two are equivalent for ≡k.

Definition 29 (Type of order k). Given a factor u of t of length at least
2k−1, the type of order k of u is the equivalence class of a factorization of order k
of u. We also let (pu, su) denote the factorization of order k of u for which |pu|
is minimal (we assume that k is understood from the context). Therefore, two
words u and v have the same type of order k if and only if (pu, su) ≡k (pv, sv).

Example 30. Continuing Example 24, the word u has two factorizations of order
3 that verify case 1.(c) in Definition 26. Thus, (10, 1001011) ≡3 (101001, 011)
and the type of order 3 of u is {(10, 1001011), (101001, 011)}.

Theorem 31. Let u, v be factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv, sv).
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The proof that the condition is sufficient easily follows from Corollary 13
and [13, Lemma 31].

The proof that the condition is necessary is done in the extended version of
this paper [13]. First, we consider the case of words u, v that do not have any
non-empty common prefix or suffix and split the result into two lemmas: either
|pu| 6≡ |pv| (mod 2k−1) or, |pu| ≡ |pv| (mod 2k−1). We then add a lemma that
permits us to deal with factors having some common prefix or suffix.

7 k-binomial Complexity of the Thue–Morse Word

The first results of this section deal with small factors.

Proposition 32. Let u, v be two different factors of t of length n ≤ 2k − 1,
which do not have any common prefix or suffix. We have u 6∼k v.

Corollary 33. Let k ≥ 3. For all n ≤ 2k − 1, we have bt,k(n) = pt(n).

Proof. Let us take two different factors u and v of the same length n ≤ 2k − 1.
If u and v do not share any common prefix or suffix, u 6∼k v by the previous
proposition. Otherwise, there exist words x, y, u′, v′ such that u = xu′y and
v = xv′y, where u′ and v′ do not share any common prefix or suffix. We apply the
previous proposition to u′, v′ and conclude because u′ 6∼k v′ implies u 6∼k v [13,
Lemma 10].

Due to Theorem 31, the k-binomial complexity of t can be computed from

bt,k(n) = # (Facn(t)/∼k) = # ({(pu, su) : u ∈ Facn(t)}/≡k) .

The last theorem provides this quantity. The idea of the proof is just to
enumerate all the possible factorizations and count them. The proof can be
found in the extended version [13].

Theorem 34. For all k ≥ 3, n ≥ 2k, we have

# ({(pu, su) : u ∈ Facn(t)}/≡k) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

As a consequence of Corollary 33, Theorem 31 and Theorem 34, we get the
expected result stated in Theorem 5.
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