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• More and more Inverter-Based Generators connected to distribution grids

• distribution networks become active

• their influence on the whole power system dynamics increases

• it is increasingly important for TSOs to model those Active Distribution 
Networks (ADNs) in their dynamic simulations

Context



3Why model reduction ?

• Dynamic simulations of combined Transmission – Distribution system are 
impractical

• large computing times
• heavy model maintenance
• confidentiality issue

• DSOs process their own data and transmit to the TSO simplified, reduced-
order models of their distribution systems : dynamic equivalents

• to be attached to the transmission system model
• no confidentiality issue
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• For use in simulation of large disturbances in the 
transmission system

• accurate in terms of  P(t)  and  Q(t)  power flows in the 
distribution transformer

• accounting for discrete controls of dispersed units

• dynamic voltage support, undervoltage tripping, etc.

• compatible with TSO dynamic simulation software

• physically intuitive  “grey-box” model

• includes “physical” components with known models
• but unknown parameters

• easily updated when operating point changes.

Desired features of ADN equivalent



5Unreduced system modeling

Loads :

• static part : exponential model
• dynamic part : 3rd-order induction motor model

Inverter-Based Generators (IBGs) :

• Phase Locked-Loop (PLL)
• Low Voltage Ride-Through (LVRT)
• dynamic volt. support by reactive current injection
• limited rate of active current recovery after limitation



6IBG modeling

IBG generic model 
reproducing the 

response to voltage 
variations required 
by most grid codes 

• NC RfG (ENTSO-e)
• VDE AR N 4105/ BDEW 

MV (Germany)
• IEEE 1547
• etc.



7Example of IBG response to voltage dips

transient 
injection of 

reactive current

reduction
and recovery 

of active  current

tripping



8ADN dynamic equivalent : grey-box model

equivalent 
impedances

equivalent load -
static part :

exponential model

equivalent load -
dynamic part : 

3rd-order model of 
induction motorequivalent IBG :

similar to generic model 
used in unreduced system

model reduction

parameters   to be identified
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Identifying the ADN equivalent from simulations 

• Measurements not available…
• transmission system replaced by voltage source   𝑉𝑡𝑟 𝑡 imposing various 

disturbances

• voltage magnitude, phase angle, frequency

• parameters  of the ADN equivalent tuned so that (𝑃𝑒 , 𝑄𝑒) approaches 
𝑃, 𝑄 of unreduced system
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Dealing with parameter uncertainty

• Dynamic models involve parameters not known accurately

• loads :  models are already simplified equivalents
• IBGs :  grid codes leave freedom on some parameters

• Impact assessed through Monte-Carlo simulations

• at a given initial operating point, a disturbance is simulated for 𝑠 instances of the 
same model corresponding to randomly drawn parameter vectors  𝒑1, … , 𝒑𝑠. 

• 𝑠 randomized dynamic responses to the disturbance

• statistics computed at each point in time
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Simulation results : test system

• 75 buses         53 loads          22 IBGs

• Nb of differential-algebraic equations :

• unreduced model :  3297
• equivalent :    117

• Nb of components in  :

• 17 initially tested
• 7 removed : negligible impact identified

MW Mvar

Consumption of loads 19.95 2.83

Production of IBGs 9.80 0

Power flow in transformer 10.33 2.96
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Example of Monte-Carlo simulations

Responses of 
active power 

to a transmission 
voltage dip of 

0.5 pu during 250 ms

median 𝜇𝑃 standard
deviation 𝜎𝑃
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median 𝜇𝑄

standard
deviation 𝜎𝑄

Responses of 
reactive power 

to a transmission 
voltage dip of 

0.5 pu during 250 ms

Example of Monte-Carlo simulations
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Weighted Least Square (WLS) identification of 

𝑑 : number of “training” disturbances               𝑁 : number of discrete times of simulation

𝜇𝑃(𝑗, 𝑘) : median of distribution of  𝑃 at time 𝑘 for the 𝑗-th disturbance

𝜎𝑃(𝑗, 𝑘) : corresponding standard deviation

𝜇𝑄 𝑗, 𝑘 and 𝜎𝑄(𝑗, 𝑘) : same for  𝑄

response of 
equivalent fitted

to the median

lower weight if 

larger dispersion

derivative-free, 
metaheuristic 
optimization :

Differential 
Evolution
algorithm
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95th percentile

Simulation results : fitting of equivalent 

5th percentile

median

N discrete times 

Responses to a transmission voltage dip of 0.3 pu during 100 ms
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Keeping the dimension of  as small as possible 

• To make the reduced model :
• easier to optimize (faster convergence of DE)
• more consistent from one case to another
• easier to interpret

• variant of  Least Absolute Shrinkage and Selection Operator (LASSO) method

7 parameters 
removed from 

final 

X X X X X X X



17Undervoltage tripping of IBGs

• If the transmission voltage drop is deep 
enough, some IBGs may disconnect

• voltage falls below LVRT curve

• Example :  transmission voltage drop     
of 0.8 pu lasting 250 ms



18Monte-Carlo simulations with randomized tripping

• IBGs with voltage falling below the LVRT curve may trip

• responses with tripping randomized, together with other parameters

Responses to a transmission voltage dip of 0.8 pu during 250 ms

initial and final 
operating points differ

initial and final 
operating points differ



• by reducing the current injected by the equivalent IBG

• 𝑉𝑝𝑡 , 𝑉𝑓𝑡 ,  are adjusted by weighted least squares

• after dealing with the other components of  

19Tripping accounted in the equivalent

𝑓 decreased 

to this value



20Response of equivalent with tripping of some IBGs

Responses to a transmission voltage dip of 0.8 pu during 250 ms
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• ADN equivalent for simulation of large disturbances at transmission level

• grey-box model

• equivalent significantly smaller than unreduced system

• strong nonlinearities and discontinuities considered
• in particular, partial tripping of IBGs

• weighted-least square identification
• number of parameters to identify : as small as possible (LASSO)

• impact of model uncertainties identified from Monte-Carlo simulations

• fitting the “average” response + weighting factors to reflect dispersion

• equivalent trained with multiple disturbances

• good results on a test system with high penetration of renewable energy sources.


