Panel session on "Handling Uncertainties and Use of Equivalents in Dynamic Security Assessment" Ref. 19PESGM2190

Model Reduction of Active Distribution Networks under Uncertainty

Gilles Chaspierre Thierry Van Cutsem

Dept. Electrical Eng. & Comp. Sc. University of Liège, Belgium

T. Van Cutsem, IEEE PES GM, Aug. 2019

Guillaume Denis Patrick Panciatici

Research & Development Dept. RTE, Paris La Défense, France

- More and more Inverter-Based Generators connected to distribution grids
- distribution networks become active
- their influence on the whole power system dynamics increases
- it is increasingly important for TSOs to model those Active Distribution Networks (ADNs) in their dynamic simulations

- Dynamic simulations of combined Transmission Distribution system are impractical
 - large computing times
 - heavy model maintenance
 - confidentiality issue
- DSOs process their own data and transmit to the TSO simplified, reducedorder models of their distribution systems : dynamic equivalents
 - to be attached to the transmission system model
 - no confidentiality issue

3

- For use in simulation of large disturbances in the transmission system
- accurate in terms of *P*(*t*) and *Q*(*t*) power flows in the distribution transformer
- accounting for discrete controls of dispersed units
 - dynamic voltage support, undervoltage tripping, etc.
- compatible with TSO dynamic simulation software
- physically intuitive \rightarrow "grey-box" model
 - includes "physical" components with known models
 - but unknown parameters

easily updated when operating point changes.

P(t), Q(t)

Unreduced system modeling

Loads :

- static part : exponential model
- dynamic part : 3rd-order induction motor model

Inverter-Based Generators (IBGs) :

- Phase Locked-Loop (PLL)
- Low Voltage Ride-Through (LVRT)
- dynamic volt. support by reactive current injection
- limited rate of active current recovery after limitation

IBG modeling

IBG generic model reproducing the response to voltage variations required by most grid codes

- NC RfG (ENTSO-e)
- VDE AR N 4105/ BDEW MV (Germany)
- IEEE 1547
- etc.

Example of IBG response to voltage dips

EEE

ADN dynamic equivalent : grey-box model

Identifying the ADN equivalent from simulations

- Measurements not available...
- transmission system replaced by voltage source $\overline{V}_{tr}(t)$ imposing various disturbances
 - voltage magnitude, phase angle, frequency
- parameters θ of the ADN equivalent tuned so that (P_e, Q_e) approaches (P, Q) of unreduced system

- Dynamic models involve parameters not known accurately
 - loads : models are already simplified equivalents
 - IBGs : grid codes leave freedom on some parameters
- Impact assessed through Monte-Carlo simulations
 - at a given initial operating point, a disturbance is simulated for s instances of the same model corresponding to randomly drawn parameter vectors $p_1, ..., p_s$.
 - *s* randomized dynamic responses to the disturbance
 - statistics computed at each point in time

Simulation results : test system

75 buses	53 loads	22 IBGs	
		MW	Mvar
Consumption of loads		19.95	2.83
Production of IBGs		9.80	0
Power flow in transformer		10.33	2.96

- Nb of differential-algebraic equations :
 - unreduced model : 3297
 - equivalent : 117
- Nb of components in θ :
 - 17 initially tested
 - 7 removed : negligible impact identified

Example of Monte-Carlo simulations

Responses of active power to a transmission voltage dip of 0.5 pu during 250 ms

Example of Monte-Carlo simulations

Responses of reactive power to a transmission voltage dip of 0.5 pu during 250 ms

Weighted Least Square (WLS) identification of heta

derivative-free, metaheuristic optimization : Differential Evolution algorithm $\min_{\theta} F(\theta) = \frac{1}{d} \sum_{j=1}^{d} [F_P(\theta, j) + F_Q(\theta, j)]$ $= \frac{1}{N} \sum_{k=1}^{N} \left[\frac{P_e(\theta, j, k) - \mu_P(j, k)}{\sigma_P(j, k)} \right]^2$ $F_Q(\theta, j) = \frac{1}{N} \sum_{k=1}^{N} \left[\frac{Q_e(\theta, j, k) - \mu_Q(j, k)}{\sigma_Q(j, k)} \right]^2$ $= \frac{1}{N} \sum_{k=1}^{N} \left[\frac{Q_e(\theta, j, k) - \mu_Q(j, k)}{\sigma_Q(j, k)} \right]^2$ $= \frac{1}{N} \sum_{k=1}^{N} \left[\frac{Q_e(\theta, j, k) - \mu_Q(j, k)}{\sigma_Q(j, k)} \right]^2$

d: number of "training" disturbances N: number of discrete times of simulation $\mu_P(j,k)$: median of distribution of P at time k for the j-th disturbance $\sigma_P(j,k)$: corresponding standard deviation $\mu_Q(j,k)$ and $\sigma_Q(j,k)$: same for Q

Simulation results : fitting of equivalent

Responses to a transmission voltage dip of 0.3 pu during 100 ms

Keeping the dimension of θ as small as possible

- To make the reduced model :
 - easier to optimize (faster convergence of DE)
 - more consistent from one case to another
 - easier to interpret
- variant of Least Absolute Shrinkage and Selection Operator (LASSO) method

Undervoltage tripping of IBGs

- If the transmission voltage drop is deep enough, some IBGs may disconnect
 - voltage falls below LVRT curve
- Example : transmission voltage drop of 0.8 pu lasting 250 ms

Monte-Carlo simulations with randomized tripping

• IBGs with voltage falling below the LVRT curve may trip

responses with tripping randomized, together with other parameters

• by reducing the current injected by the equivalent IBG

- V_{pt} , V_{ft} , γ are adjusted by weighted least squares
 - after dealing with the other components of $\, heta \,$

Response of equivalent with tripping of some IBGs

Responses to a transmission voltage dip of 0.8 pu during 250 ms

- ADN equivalent for simulation of large disturbances at transmission level
- grey-box model
- equivalent significantly smaller than unreduced system
- strong nonlinearities and discontinuities considered
 - in particular, partial tripping of IBGs
- weighted-least square identification
 - number of parameters to identify : as small as possible (LASSO)
- impact of model uncertainties identified from Monte-Carlo simulations
 - fitting the "average" response + weighting factors to reflect dispersion
- equivalent trained with multiple disturbances
- good results on a test system with high penetration of renewable energy sources.

