2019 IEEE PES General Meeting

Panel session on "Experiences and insights on the use of the generic Distributed Energy Resource model (DER) in transient stability simulations" - Ref. 19PESGM2979

Dynamic model of an active distribution network derived from multiple large-disturbance simulations

Gilles Chaspierre Thierry Van Cutsem

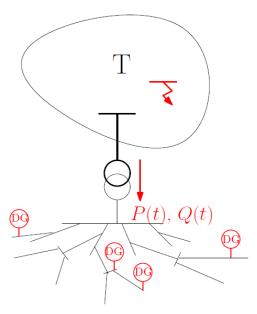
Guillaume Denis Patrick Panciatici

Dept. Electrical Eng. & Comp. Sc. University of Liège, Belgium

Research & Development Dept. RTE, Paris La Défense, France

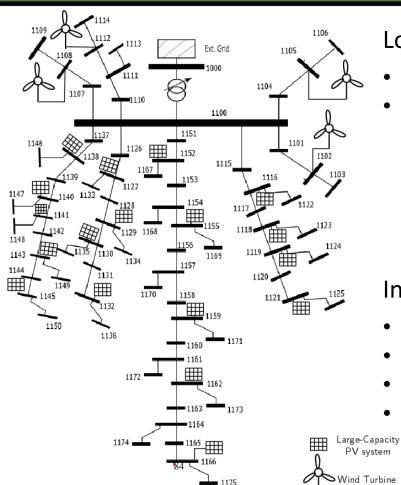
Context

- More and more Inverter-Based Generators connected to distribution grids
- distribution networks become active
- their influence on the whole power system dynamics increases
- it is increasingly important for TSOs to model those Active Distribution
 Networks (ADNs) in their dynamic simulations

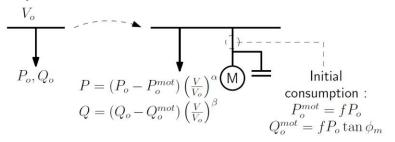

Why model reduction?

- Dynamic simulations of combined Transmission Distribution system are impractical
 - large computing times
 - heavy model maintenance
 - confidentiality issue
- DSOs process their own data and transmit to the TSO simplified, reducedorder models of their distribution systems : dynamic equivalents
 - to be attached to the transmission system model
 - no confidentiality issue

Desired features of ADN equivalent



- For use in simulation of large disturbances in the transmission system
- accurate in terms of P(t) and Q(t) power flows in the distribution transformer
- accounting for discrete controls of dispersed units
 - dynamic voltage support, undervoltage tripping, etc.
- compatible with TSO dynamic simulation software
- physically intuitive → "grey-box" model
 - includes "physical" components with known models
 - but unknown parameters
- easily updated when operating point changes.



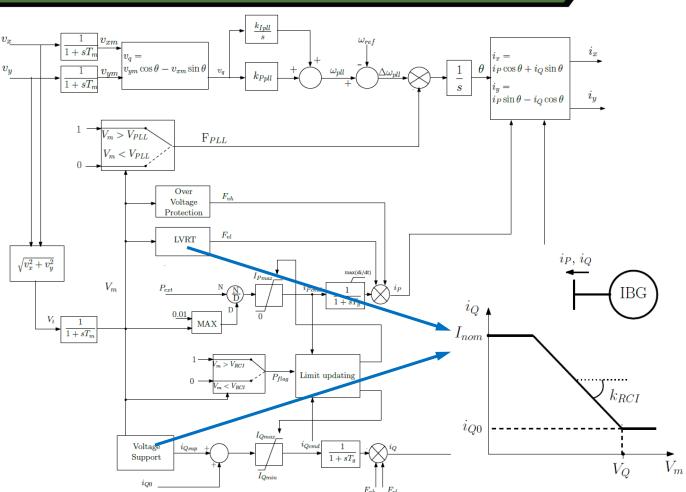
Unreduced system modeling

Loads:

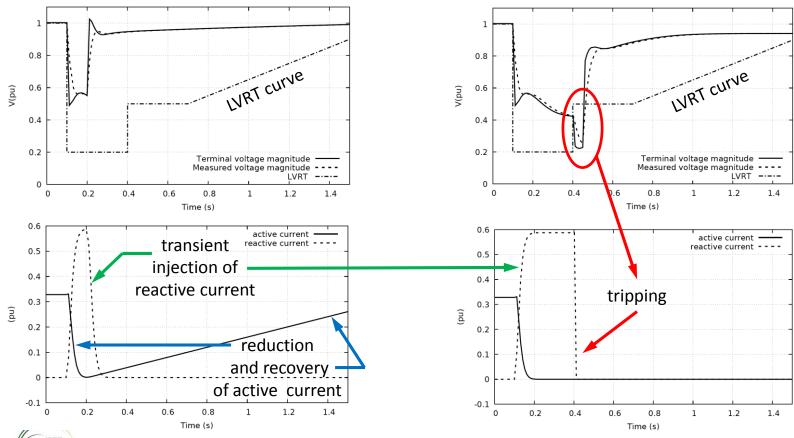
- static part : exponential model
- dynamic part: 3rd-order induction motor model

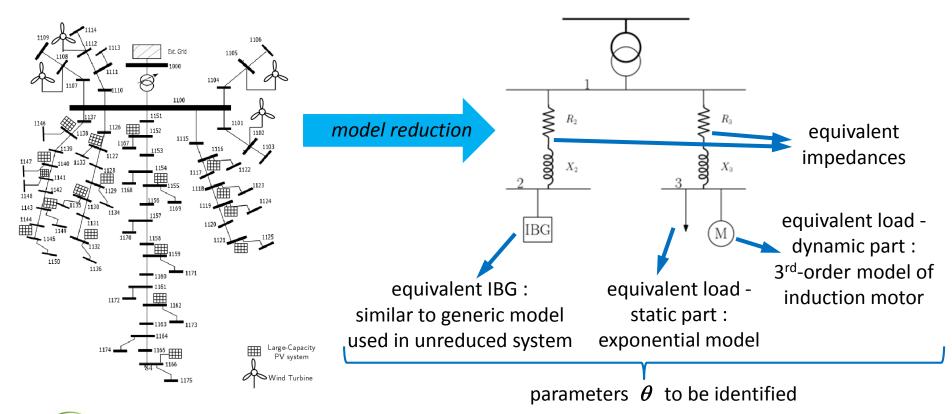
Inverter-Based Generators (IBGs):

- Phase Locked-Loop (PLL)
- Low Voltage Ride-Through (LVRT)
- dynamic volt. support by reactive current injection
- limited rate of active current recovery after limitation

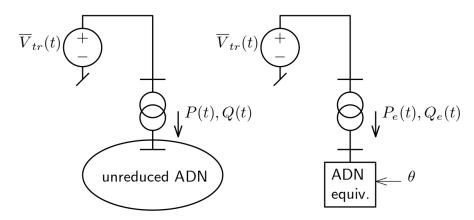

IBG modeling

IBG generic model reproducing the response to voltage variations required by most grid codes


- NC RfG (ENTSO-e)
- VDE AR N 4105/ BDEW MV (Germany)
- IEEE 1547
- etc.



Example of IBG response to voltage dips


ADN dynamic equivalent : grey-box model

Identifying the ADN equivalent from simulations

- Measurements not available...
- transmission system replaced by voltage source $ar{V}_{tr}(t)$ imposing various disturbances
 - voltage magnitude, phase angle, frequency
- parameters heta of the ADN equivalent tuned so that $(P_e$, $Q_e)$ approaches (P,Q) of unreduced system

Weighted Least Square (WLS) identification of heta

derivative-free, metaheuristic optimization:

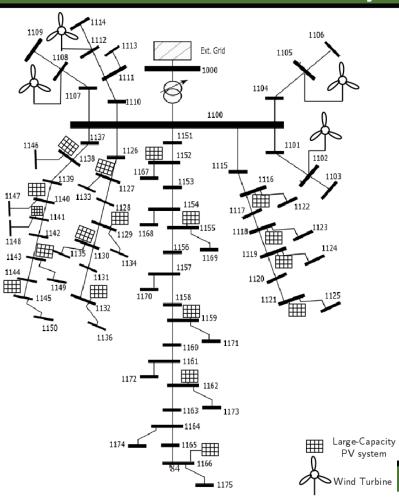
Differential Evolution algorithm

$$\min_{\boldsymbol{\theta}} F(\boldsymbol{\theta}) = \frac{1}{d} \sum_{j=1}^{d} [F_P(\boldsymbol{\theta}, j) + F_Q(\boldsymbol{\theta}, j)]$$
 response of equivalent fitted to reference (from unreduced model)
$$F_P(\boldsymbol{\theta}, j) = \frac{1}{N} \sum_{k=1}^{N} \left[\frac{P_e(\boldsymbol{\theta}, j, k) - \mu_P(j, k)}{\sigma_P(j, k)} \right]^2$$
 varying weights
$$F_Q(\boldsymbol{\theta}, j) = \frac{1}{N} \sum_{k=1}^{N} \left[\frac{Q_e(\boldsymbol{\theta}, j, k) - \mu_Q(j, k)}{\sigma_Q(j, k)} \right]^2$$
 varying weights

d: number of "training" disturbances

N : number of discrete times of simulation

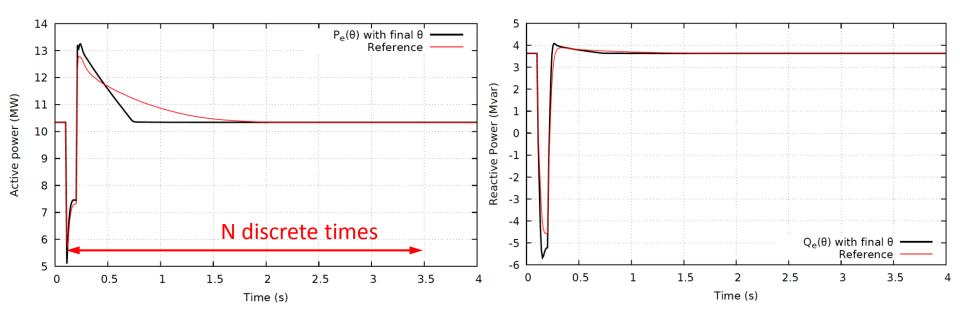
 $\mu_P(j,k)$: median of distribution of P at time k for the j-th disturbance


 $\sigma_P(j,k)$: corresponding standard deviation

 $\mu_Q(j,k)$ and $\sigma_Q(j,k)$: same for Q

Simulation results: test system

75 buses 53 loads 22 IBGs


	MW	Mvar
Consumption of loads	19.95	2.83
Production of IBGs	9.80	0
Power flow in transformer	10.33	2.96

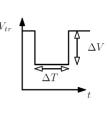
- Nb of differential-algebraic equations :
 - unreduced model: 3297
 - equivalent: 117
- Nb of components in $oldsymbol{ heta}$:
 - 17 initially tested
 - 7 removed : negligible impact identified

Simulation results: fitting of equivalent

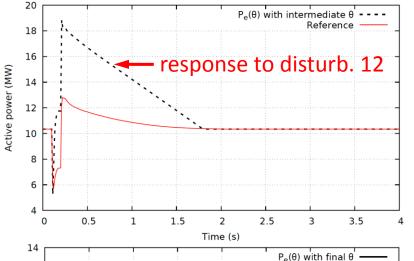
Responses to a transmission voltage dip of 0.3 pu during 100 ms

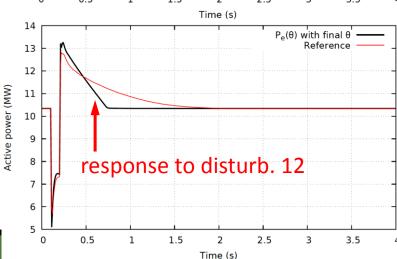
Training the equivalent with multiple disturbances

- Make the equivalent valid for multiple disturbances don't overfit one of them
- starting from a set of candidate disturbances
 - include them progressively in the training set (i.e. add them in WLS objective F)
 - stop as soon as the obtained equivalent is accurate for the *non-trained* disturbances


Recursive procedure

- 1. Select a small subset of d_o training disturbances; $d \coloneqq d_o$
- 2. Obtain $\widehat{\boldsymbol{\theta}}$
- 3. Compute $F_P(\widehat{\boldsymbol{\theta}}, i) + F_O(\widehat{\boldsymbol{\theta}}, i)$ for each <u>non</u>-trained disturbance i
- 4. If $\max_{i} F_{P}(\widehat{\boldsymbol{\theta}}, i) + F_{Q}(\widehat{\boldsymbol{\theta}}, i) < F_{max}$ then stop
 - **else** add the disturbance with the largest $F_P(\widehat{\theta}, i) + F_Q(\widehat{\theta}, i)$ to the training set;
 - $d \coloneqq d + 1$; **go to** Step 2.

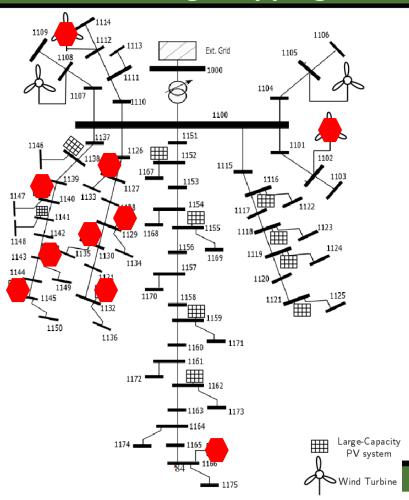



Simulation results: recursive training

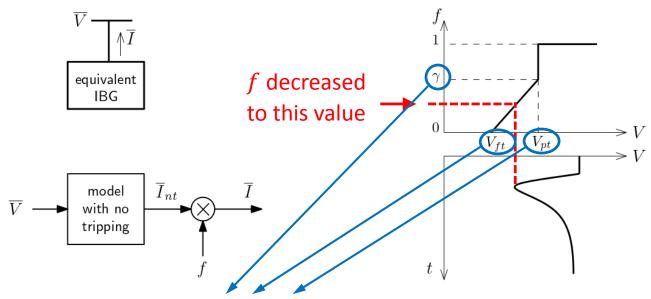
Candidate disturbances

disturb. No	ΔV (pu)	ΔT (s)
1	0.2	0.10
2	0.2	0.25
3	0.3	0.10
4	0.3	0.25
5	0.4	0.10
6	0.4	0.25
7	0.5	0.10
8	0.5	0.25
9	0.6	0.10
10	0.6	0.25
11	0.7	0.10
12	0.7	0.25
13	0.8	0.1
14	0.8	0.25

Intermediate $\widehat{\boldsymbol{\theta}}$: trained on disturbances 7, 8 and 4


Final $\widehat{\boldsymbol{\theta}}$: trained on disturbances 7, 8, 4, 12, 11 and 9

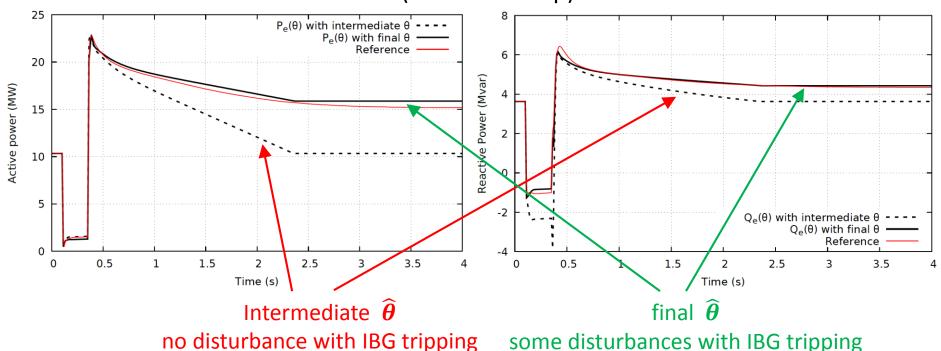
Undervoltage tripping of IBGs


- If the transmission voltage drop is deep enough, some IBGs may disconnect
 - voltage falls below LVRT curve

 Example: transmission voltage drop of 0.8 pu lasting 250 ms

Tripping accounted in the equivalent

by reducing the current injected by the equivalent IBG



- V_{pt} , V_{ft} , γ are adjusted by weighted least squares
 - ullet after dealing with the other components of $oldsymbol{ heta}$

Training on disturbances with tripping

Responses to a transmission voltage dip of 0.8 pu during 250 ms (some IBGs trip)

in training set

in training set

Summary

- ADN equivalent for simulation of large disturbances at transmission level
- grey-box model
- equivalent significantly smaller than unreduced system
- strong nonlinearities and discontinuities considered
 - in particular, partial tripping of IBGs
- weighted-least square identification
 - fitting an reference response + weighting factors
- equivalent trained with multiple disturbances
 - including partial tripping of IBGs
 - recursive procedure to reduce computational effort
- good results on a test system with high penetration of renewable energy sources.

