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Abstract

Nonlinear systems identification and modeling is a central topic in many engineering areas
since most real world devices may exhibit a nonlinear behavior. This thesis is devoted to the
emulation of the nonlinear devices present in a guitar signal chain. The emulation aims to
replace the hardware elements of the guitar signal chain in order to reduce its cost, its size, its
weight and to increase its versatility. The challenge consists in enabling an accurate nonlinear
emulation of the guitar signal chain while keeping the execution time of the model under the
real-time constraint. To do so, we have developed two methods.

The first method developed in this thesis is based on a subclass of the Volterra series where
only static nonlinearities are considered: the polynomial parallel cascade of Hammerstein
models. The resulting method is called the Hammerstein Kernels Identification by Sine Sweep
method (HKISS). According to the tests carried out in this thesis and to the results obtained,
the method enables an accurate emulation of nonlinear audio devices unless if the system to
model is too far from an ideal Hammerstein one.

The second method, based on neural networks, better generalizes to guitar signals and is
well adapted to the emulation of guitar signal chain (e.g., tube and transistor amplifiers). We
developed and compared eight models using different performance indexes including listening
tests. The accuracy obtained depends on the tested audio device and on the selected model but
we have shown that the probability for a listener to be able to hear a difference between the
target and the prediction could be less than 1%. This method could still be improved by training
the neural networks with an objective function that better corresponds to the objective of this
audio application, i.e., minimizing the audible difference between the target and the prediction.

Finally, it is shown that these two methods enable an accurate emulation of a guitar signal
chain while keeping a fast execution time which is required for real-time audio applications.





Résumé

L’identification et la modélisation des systèmes non linéaires sont des sujets majeurs dans
beaucoup de domaines de l’ingénieur. Cette thèse est dévouée à l’émulation des systèmes non
linéaires présents dans la chaîne de traitement du signal de la guitare. L’émulation a pour but
de remplacer les éléments matériels de la chaîne par leur équivalent numérique dans le but de
réduire son coût, sa taille, son poids et d’améliorer sa polyvalence. Le défi consiste à émuler
les éléments de la chaîne en temps réel en tenant compte de leur caractère non linéaire. Pour ce
faire, nous avons dévelopé deux méthodes.

La première méthode proposée est basée sur un sous-modèle de la série de Volterra où
seules les non-linéarités statiques sont considérées : la cascade de modèles d’Hammerstein mis
en parallèle. La méthode résultante que nous avons appelée Hammerstein Kernels Identification

by Sine Sweep (HKISS), rend possible l’émulation de systèmes audio non linéaires. Cette
méthode atteint ses limites quand le système à modéliser est trop différent du modèle idéal
d’Hammerstein. La variabilité des noyaux vis-à-vis de l’amplitude du signal d’entrée empêche
alors une émulation précise du signal.

La seconde méthode proposée est basée sur l’utilisation de réseaux de neurones. La
méthode est plus appropriée aux signaux de guitare et s’adapte bien aux différents systèmes
nonlinéaires testés (circuits de distorsion, amplificateurs à tubes et à transistors). Nous avons
développé et comparé huit modèles de réseaux de neurones en utilisant différents indices de
performances incluant des tests d’écoutes. La précision obtenue dépend du modèle choisi et de
l’élément émulé mais nous avons montré que la probabilité qu’une personne puisse discerner
une différence entre le son de l’appareil testé et son émulation pouvait être inférieure à 1%.
Selon notre opinion, cette méthode pourrait encore être améliorée en entrainant les réseaux
de neurones avec une fonction-objectif qui correspond mieux à l’objectif de cette application
audio, à savoir, minimiser la différence audible entre le son de l’appareil testé et son émulation.

Ces deux méthodes permettent l’émulation fidèle d’une chaine d’instrumentation pour
guitare, tout en gardant un temps d’exécution suffisamment bas pour respecter une contrainte
temps réel acceptable pour ce genre d’application audio.
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1.1 Emulation of a guitar chain

1.1.1 Main concept

Guitarists use a lot of audio effects to modify the original sound of their guitar.

Audio effect:

An audio effect is a tool or a system that changes the perception that people have of a
sound.

These effects can be classified based on their underlying techniques or on their perceptual
attributes. Their working principles can be consulted in [Zölzer, 2011; Reiss and McPherson,
2014]. Some of them (compressor, distortion, vacuum tube amplifier, noise gate, loudspeaker)
are more difficult to model than others. Indeed, they belong to the class of nonlinear systems
and they have retained our attention in this thesis.

These effects create intentional or unintentional harmonic or inharmonic frequency compo-
nents that are not present in the original input signal.
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Harmonicity:

A harmonic series of sounds is a sequence of pure tones represented by sinusoidal waves
named overtones, where each wave has a frequency which is an integral multiple of the
lowest frequency, the fundamental. If the overtones do not line up with a multiple integral
of the fundamental frequency, they are called inharmonic.

In the case of distortion effects, the creation of a strong harmonic content is intended. In
a vacuum tube guitar amplifier, the distortion is also intended and most often preferred by
musicians than the distortion of a solid state amplifier (amplifier where all vacuum tubes are
replaced by transistors) [Barbour, 1998]. The reason is generally attributed to the dynamic of
the vacuum tube and to the harmonic content it produces. Unfortunately such audio effects
suffer of a few drawbacks, as they can be:

• Expensive: a typical guitar chain (guitar not included) costs approximately between 600
and 1500 C.

• Bulky: as presented in Fig. 1.1 and Fig. 1.2 where an amplifier and its cabinet (guitar
loudspeaker and its enclosure) and a rack of effects with its pedalboard (the place where
the musician can activate or deactivate all the effects with his feet) are respectively shown.

• Heavy: a typical guitar signal chain weights between 15 and 30 kg but professional
setups can weight much more than 100 kg.

• Fragile: especially, the tube amplification is an old technology and tubes have to cool
down before being transported.

Since musicians have to transport all their materials from their home (to practice), to their
rehearsal space (to play with their band), to the recording studio and to the concert stages, it
could be advantageous to replace all the guitar signal chain (excepted the guitar) by computer
emulations. The Fig. 1.3 presents a typical setup for a guitar signal chain and its equivalent
using an emulation system. A typical guitar chain is composed as follows: the guitar is
connected to several audio effects, the signal processed is then sent to the amplifier which sends
it to the cabinet. On stage, during the rehearsal or the recording session, the acoustic signal is
picked by a microphone to be sent to a mix-table or to a Digital Audio Workstation (DAW).
The mix-table controls the balance between all the present instruments. Finally the sound is
sent either to the Public Addressed (PA) loudspeakers, to the return monitors (loudspeakers
toward musicians to have the final rendered) , or to headphones. The objective of this work is
to replace the audio effects, the guitar amplifier and the microphone by a computer model.
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Figure 1.1 Guitar amplifier and its cabinet
HUGHES&KETTNER®.

Figure 1.2 JOHN PETRUCCI’s guitar rack
effects during a concert.

x[n]

x[n]

prediction target

Figure 1.3 Replacement of a typical guitar signal chain by a computer emulation.
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1.1.2 Related works

Some fundamental papers have been published on the subject of the emulation of such nonlinear
audio devices. In particular, a review of digital techniques for emulation of vacuum tube
amplifiers can be found in [Oliveira et al., 2013; Pakarinen and Yeh, 2009]. These techniques
can be separated in different classes:

• Tube emulations by using solid state devices: historically, the first approach to substitute
vacuum tubes in the amplifiers was designed to be directly implemented in the tube
sockets as a replacement of the tube triodes [Eby, 1970]. In 1983 Peavy Electronic
patented an electronic circuit composed of operational amplifiers in order to reproduce
the tube amplifier transfer function [Sondermeyer, 1983]. A more advanced design can
be found in [Sondermeyer and Brown Sr, 1997]. These kinds of emulations cannot be
described as "accurate", it should be considered as a method to build solid state amplifier
so that they sound like a tube amplifier.

• Tube emulations through nonlinear digital models:

– Static waveshaping: a straightforward method to obtain a distorted signal is to apply
an instantaneous nonlinear mapping between the input signal and its corresponding
output [Araya and Suyama, 1996]. This kind of techniques is really limited since the
nonlinearity does not depend on the past of the input signal (this type of nonlinearity
is called a static nonlinearity or a memory-less nonlinearity). However, in a real
circuit, the capacitive elements introduce nonlinear memory effects [Pakarinen and
Yeh, 2009]. The type of nonlinearities present in a vacuum tube is described in
[Aiken, 2006]. An improvement of the static waveshaping method is proposed
by [Gustafsson et al., 2004], where the authors propose the use of Chebychev
polynomials to create coefficients and functions that can be altered in real time to
model the dynamic nonlinearities of a tube amplifier. However, no demonstration
of the accuracy of this method has been found in the literature.

– Circuit simulation based techniques: SPICE (Simulation Program with Integrated
Circuit Emphasis) is a software based on transient Modified Nodal Analysis (MNA)
and can be used to model vacuum tubes. A SPICE simulation requires a significant
amount of Central Processor Unit (CPU) time. Moreover the simulation depends on
the accuracy of the SPICE model used. In 1995, Leach [Leach Jr, 1995] introduces
some SPICE models for vacuum tube triodes and pentodes, Koren [Koren, 1996]
proposes an improvement of vacuum tube models by considering equations obtained
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experimentally rather than following the physical laws. A comparison of SPICE
models can be found in [Cohen and Helie, 2009; Dempwolf et al., 2011]. The most
accurate model from [Dempwolf et al., 2011] shows that the model is accurate for
the three first harmonics of the transfer function but the model becomes inaccurate
from the fourth harmonic, limiting the use of this method for audio emulation
purposes.

– Techniques for solving Ordinary Differential Equation (ODE) that describe the
behavior of a circuit have also been attempted. [Macak and Schimmel, 2010; Yeh
et al., 2008] have worked on the simplification of ODE model resulting in a trade-off
between the accuracy and the efficiency of ODE solvers. However, the model fails
to emulate high-level or high-frequency input signals [Yeh et al., 2008].

– Wave Digital Filters (WDF) are special filters that have a physical interpretation.
Each component (resistors, capacitors, diodes, ...) has its own WDF model and by
the use of adapters, the WDF are connected together as real electrical components
are. It has been demonstrated that WDF can efficiently represent some guitar
circuits [Yeh and Smith, 2008; Pakarinen and Karjalainen, 2010; Karjalainen and
Pakarinen, 2006]. However, finding a general methodology in the WDF framework
to model the feedback loops between different parts of the circuit represents a
significant challenge.

– Analytical methods:

* Dynamic convolution: [Kemp, 2006] has patented a dynamic convolution
method for nonlinear system emulations. The idea is to send a set of impulses
at different amplitudes to the device under test and to record their corresponding
outputs. During the emulation, the input level is analyzed and compared to
the set of impulse responses. The nearest impulse is chosen to evaluate the
emulating convolution. Consequently, the coefficients of the convolution
change according to the amplitude level. Unfortunately, this method can
only model static nonlinearity and fails to emulate dynamic nonlinearities
(nonlinearities depending of the past of the input signal) [Berners and Abel,
2004] such as those found in a tube amplifier.

* Volterra series [Boyd, 1985]: is a sum of multidimensional convolutions that
can be interpreted as an expansion of Taylor series for nonlinear systems where
the polynomial terms are replaced by multidimensional convolutions taking into
account the memory associated to the different orders of nonlinearity. Although
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the Volterra series model is a valid black-box model for various nonlinearity
types, the main challenge is to deal with the numerous coefficients of the
Volterra kernels that are growing as the power of the model order. In general
this model has been applied to model some soft nonlinearities or to linearize
low-order distortion circuits and loudspeakers [Katayama and Serikawa, 1997].
Many papers based on a simplification or a subclass of the Volterra series can
be found. In particular [Farina et al., 2001] propose to identify a subclass of
the Volterra series using an exponential sine-sweep. This method has been
improved to enable the emulation of nonlinear audio effects [Abel and Berners,
2006; Novak et al., 2010b; Tronchin, 2013; Schmitz and Embrechts, 2013,
2014; Novak et al., 2015; Tronchin and Coli, 2015; Schmitz and Embrechts,
2016, 2017] . [Orcioni et al., 2018] present another promising technique based
on the identification of Wiener filter coefficients using multi-variance perfect
periodic sequences. It is based on the use of different input sequences having
different variances to avoid the problem of the locality of the solution that is
present in the methods based on exponential sine sweep. However, the use of
this method is (for now) limited to low-order models.

– Neural Networks: In 2013, [Covert and Livingston, 2013] introduce a simple feed-
forward neural network model to emulate a tube amplifier. Despite the inaccurate
results (100% of root mean square error), it can be considered as a first attempt
to emulate tube amplifiers by neural networks. In 2018, [Schmitz and Embrechts,
2018c] introduce a model based on the Long Short Term Memory Neural Network
(LSTM), enabling the emulation of guitar tube amplifiers with a small root mean
square error and an high-end perceptual accuracy. This model is also able to take
into account the behavior of some parameters of the amplifier. For example, the
gain parameter of the amplifier, which influences directly the amount of distortion,
has been modeled with success. The model has been transformed to reduce its
computational cost in order to increase its real-time performance in [Schmitz and
Embrechts, 2018b] and a perceptual audio evaluation of different structures of
neural network models has been described in [Schmitz and Embrechts, 2019]
proving the efficiency of the method even for high-gain (high-level of distortion)
amplifiers. Another neural network has then been introduced in [Damskägg et al.,
2019] to emulate the SPICE model of a guitar amplifier.
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1.2 Contributions, objectives and applications

The main challenge in this research is to be able to accurately model the nonlinear (NL)
behavior of the guitar signal chain. In particular, we have focused on: loudspeakers, overdrive
effects and tube amplifiers but the method developed here is valid for many other nonlinear
guitar effects. Compressors, overdrive effects, distortion effects, fuzz effects, tube amplifiers
are always nonlinear, at least for some input signal ranges and are hereafter collectively referred
as guitar or audio effects.

Since it is important for musicians to hear the final rendering of their guitar chain while
they are playing (the sound they hear changes the way they play), it is crucial to design models
running in Real Time (RT).

RT constraint:

A RT model must guarantee a response within specified time constraints. In the case of
guitar playing, keeping the delay introduced by the model under 12ms results in a good

experience (some artifacts may be perceptible but are not annoying and do not contribute
badly to musicians’ performance) [Lester and Boley, 2007].

Beyond these practical objectives is hidden a more general one, i.e., the identification
and the emulation of nonlinear systems. To enable the emulation of the guitar chain, several
methods have been tested: a block-oriented method using the parallel monomial Hammerstein
model is introduced and developed in Chap. 3. Then some machine learning methods based on
Neural Network (NN) models are developed in Chap. 4.

• Block-oriented models are, by their structure, easy to interpret and analyze. They contain
few parameters which makes them suitable for emulation purposes. However, most of
them have a lack of flexibility, which makes them difficult to use for real applications.

• On the contrary, neural network models are quite difficult to interpret, they can have an
large number of parameters and are difficult to use for RT applications. However, their
numerous parameters provide a good flexibility to the model. They are well suited for
strongly nonlinear systems such as guitar distortion effects.

The contributions of this thesis are: on one hand, the development of the Hammerstein
Kernels Identification by Sine Sweep (HKISS) method. Applying the original method [Farina
et al., 2001] for the identification of the diagonal elements of the Volterra series by means of an
Exponential Sine Sweep (ESS), we have found some limitations preventing to obtain a good
emulation of the guitar chain. These limitations are discussed in the Chap. 3 of this thesis. In
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particular, we present an exhaustive list of possible sources of errors/limitations when using
this method and show how to avoid them.

On the other hand, the development and the improvement (based on objective and subjective
tests) of NN structures enabling the emulation of guitar effects in RT is proposed. To our
knowledge, the emulation of high-gain tube amplifiers by black-box techniques of this quality
has never been reported earlier. We have proved that the Root Mean Square Error (RMSE)
between the signal coming from the amplifier and the signal coming from the model is low (i.e.,
it depends on the tested amplifier as we will see in Chap. 4 but we have obtained normalized
RMSE from 4% to 36% for best and worst case respectively). Some devices are so well
emulated that listening tests have revealed that less than 1% of the tested listeners are able to
hear the difference between the target and the prediction sounds.

However, comparing different methods is extremely difficult since the RMSE obtained
depends on the chosen test set (the input signal selected to evaluate the method). In the same
way, the performance indices obtained during a perceptual evaluation cannot be compared if
they have been obtained in different studies using different test signals. Therefore, we also
introduce a new dataset gathering guitar amplifier sounds aiming for the nonlinear emulation
benchmarking.

Direct application of the theory and methods developed in this thesis is of course musical.
From our point of view, the ideal application would be a processor integrated to the guitar: the
effects would be activated by a foot-controller and the presets controlled by a smart phone.
Then the guitar should send the processed signal to a wireless receptor plugged into a DAW
station (or a mix table).

Also, the nonlinear identification methods presented in this research could serve to any
black-box model in various domains as shown in these examples: physics (nonlinear thermal
systems identification [Maachou et al., 2014]), psychoacoustic (peripheral auditory model
[Pfeiffer, 1970]), communication (digital satellite communication systems operating over
nonlinear channels [Benedetto et al., 1979]), psychology (observing patients’ responses to
stimuli), biology (human pupillary model [Krenz and Stark, 1991]), finance (neural network
for forecasting financial and economic time series [Kaastra and Boyd, 1996]).

The child who tries to open a door has to manipulate the handle (the input) so as to produce

the desired movement at the latch (the output); and he has to learn how to control the one by

the other without being able to see the internal mechanism that links them. In our daily lives

we are confronted at every turn with systems whose internal mechanisms are not fully open
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to inspection, and which must be treated by the methods appropriate to the Black Box [Ashby,

1957].

1.3 Outline

Part I of this dissertation introduces the goal of this research as well as the background theory
requested for the understanding of this manuscript. We begin by presenting the principal
nonlinear models in Chapter 2 and proceed with comprehensive introduction of machine
learning methods. The original contributions of this dissertation are gathered in Part II. Chapter
3 includes: an introduction to the identification of Hammerstein nonlinear systems through
the exponential sine sweep method, an exhaustive listing of the possible sources of errors and
limitations occurring when applying this method and finally a method to avoid or circumvent
these errors/limitations. Chapter 4 proposes and evaluates several neural network structures
enabling an accurate emulation of nonlinear guitar effects while keeping the real time constraint.

1.4 Publications

This dissertation summarizes several contributions to nonlinear systems identification methods.
Publications resulting from this research include:

• [Schmitz and Embrechts, 2013] Nonlinear Guitar Loudspeaker Simulation. In 134th
Convention of the Audio Engineering Society, May 2013.

• [Schmitz and Embrechts, 2014] Improvement in non-linear guitar loudspeaker sound

reproduction. In the 5th International Conference on Systems, Signals and Image
Processing, May 2014.

• [Schmitz and Embrechts, 2016] A New Toolbox for the Identification of Diagonal Volterra

Kernels Allowing the Emulation of Nonlinear Audio Devices. In the 22th International
Congress on Acoustics, September 2016.

• [Schmitz and Embrechts, 2017] Hammerstein Kernels Identification by Means of a Sine

Sweep Technique Applied to Nonlinear Audio Devices Emulation. In the Journal of Audio
Engineering Society, 65(9):696-710, September 2017

• [Schmitz and Embrechts, 2018c] Real Time Emulation of Parametric Guitar Tubes

Amplifier With Long Short Term Memory Neural Network. In the 5th International
Conference on Signal Processing, March 2018.
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• [Schmitz and Embrechts, 2018b] Nonlinear Real-Time Emulation of a Tube Amplifier

with a Long Short Term Memory Neural-Network. In the 144th Convention of the Audio
Engineering Society, May 2018.

• [Schmitz and Embrechts, 2018a] Introducing a Dataset of Guitar Amplifier Sounds for

Nonlinear Emulation Benchmarking. In the 145th Convention of the Audio Engineering
Society, October 2018.

• [Schmitz and Embrechts, 2019] Objective and Subjective Comparison of Several Ma-

chine Learning Techniques Applied for the Real-Time Emulation of the Guitar Amplifier

Nonlinear Behavior. In the 146th Convention of the Audio Engineering Society, March
2019.

1.5 Download materials

Different resources for this thesis are available online:

• The main website on the emulation of guitar signal chain by neural networks is: http://pc-
dsp.montefiore.ulg.ac.be/download.

• The Github repository gathering the code for the Hammerstein Kernels Identification by

Sine Sweep toolbox (see Sec. 3.6) and the codes for the 8 neural network models (see
Sec. 4.2) is: https://github.com/TSchmitzULG/Thesis

• The dataset presented in App. A.3 gathering the different input/output signals used to
train the neural networks can be downloaded from:
http://www.montefiore.ulg.ac.be/services/acous/STSI/downloads.php

http://pc-dsp.montefiore.ulg.ac.be/download
http://pc-dsp.montefiore.ulg.ac.be/download
https://github.com/TSchmitzULG/Thesis
http://www.montefiore.ulg.ac.be/services/acous/STSI/downloads.php
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Outline of chapter 2:

To be able to accurately describe the challenges encountered in this thesis, an introduction
to the systems theory is presented in Sec 2.1. A brief recall of the properties of linear
systems is given, then the concept of nonlinearity is introduced with some examples and
a proposition of classification for its different forms. The general form of a nonlinear
model is introduced in Sec. 2.2. The Volterra series, which is one of the fundamental
theories of nonlinear systems, is defined in Sec. 2.3. We proceed, in Sec. 2.4, with the
block oriented models and their relations to the Volterra model. The nonlinear state-space
model is then introduced in Sec. 2.5 while Sec. 2.6 is devoted to the NARMAX model.
The link between general formulation of a nonlinear system and neural network models
is introduced in Sec. 2.7. Finally a comprehensive introduction to supervised machine
learning is given in Sec. 2.8
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2.1 Introduction to systems theory

If the theory of linear systems is well known and established, the theory of nonlinear systems
is perceived as quite mysterious. This is due to the fact that if a system is nonlinear: there

is no possibility of generalizing from the responses of any class of inputs to the response for

any other input [Gelb and Vander Velde, 1968] which constitutes a fundamental barrier to the
development of generalized methods. This chapter is devoted to the introduction of the most
current nonlinear models.

2.1.1 Systems and signals

The description of a real system S by a set of equations Ŝ (the mathematical model of the
system) is nowadays crucial in each engineering field. A mathematical model helps to simulate
the system behavior. It can be used to make predictions of the system output corresponding to
a specific input, to control it or to ease its design. System identification is a method to define
the mathematical model of a process. There are three classes of models:

• The analytical modeling, called also White Box, aims to characterize the system using its
physical laws. In electronics for example, a circuit can be modeled using the equations
governing each component (Ohm law for a resistor,...). The result will be more or less
satisfying depending on the knowledge, the number and the accuracy of these laws.
Moreover the model has to be recomputed if a single component of the system changes.

• The behavioral modeling, called also Black Box, allows a more general approach. The
idea is to find a method that could model all systems no matter their internal operation.
Based on the relation between the input and the output of the system, the black-box
model reproduces the behavior of the system but has no physical interpretation.

• The Gray Box approach uses the two techniques above. If the physical laws are unknown
for some components, the introduction of mathematical laws, without physical meaning,
completes the set of already known physical laws.

The black-box method offers the advantage of being applicable to all systems having
measurable, distinct and causal inputs/outputs [Bunge, 1963]. Models can even be designed to
track changes in the systems. The identification procedure of a black-box model should extract
the required information in order to link the output of a system to its corresponding input. This
is not a trivial task since the structure, the order of the nonlinearity and the memory length of
the system are unknown.
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2.1.2 Linear systems

This thesis is largely devoted to the modeling of nonlinear systems. Since, nonlinear systems
belong to a class of systems that are not linear it is deemed relevant to start by a brief reminder
of the linear system properties.

Linearity:

Linear systems must satisfy the superposition and homogeneity principles [Ogunfunmi,
2007]. A system obeys to the superposition principle if the outputs yi(t) from different
inputs xi(t) are additive, and to the homogeneity principle if the output of a scaled version
of an input is also scaled by the same factor. For a linear system with P sums (where P

∈ N≥2) of scaled inputs, we have:

i f

x(t) = ∑
P
i=0 aixi(t),

then

y(t) = ∑
P
i=0 aiyi(t),

(2.1)

Another important property of systems is time invariance. Such linear systems are named
Linear Time-Invariant (LTI) systems.

Time invariance:

A system S is time-invariant if its properties do not change with time.

i f

y(t) = S[x(t)],

then

y(t − t0) = S[x(t − t0)].

(2.2)

To be realizable a system has to be causal.

Causality:

A system is causal if the output depends only on its present and/or past input. All physical
realizable systems have to be causal since the future of its input is unknown.

Linear time-invariant causal systems can fully be described by their impulse response h

such as:
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Impulse response:

y(t) =
∫ +∞

τ=0
h(τ)x(t − τ)dτ. (2.3)

The study of linear models have led to important results and algorithms in the 1970s (non
parametric models based on the concept of impulse responses and parametric methods based
on least-squared algorithms). The researches on linear model identification are still very active,
since the identification methods are generally straightforward, reliable and work well most of
the time (at least in the neighborhood of a given operating point). In fact, linear models can be
considered as an approximation to real systems. However, some systems cannot be modeled by
this simple solution and need a more complex model. Nevertheless, being able to extract the
linear behavior of such systems would be a good starting point before adding nonlinearity to a
model [Schoukens, 2015].

2.1.3 Nonlinear systems

A nonlinear system is a system that does not satisfy the superposition and/or homogeneity
principles, breaking the statements of Eq. (2.1). Such an obvious definition shows the difficulty
to classify all nonlinear systems, due to their huge diversity. The study of nonlinear systems is
challenging and is still an open topic whether in theory or in practice. While many theoretical
methods for the identification of nonlinear systems exist, in practice there are no clear rules
to choose the best method, depending on the application and on the system to model. This
explains why the use of such methods is relatively marginal in industry although they are
intensively studied since the 1940s.

Examples of nonlinear systems

If some systems can be considered as linear, some of them can only be considered as linear on
a restricted bounded amplitude range of their input signal (this is the case of most electrical or
hydraulic actuators). Others, like gas jets have no linear range at all. Nonlinear systems are
present in various fields. For example, nonlinear systems are found in:

• Signal processing: the use of digital signal processors also implies nonlinearities in the
inevitable quantization process.

• Biology: neurons, pupillary behavior, stiffness of the human body.

• Communications: nonlinear amplifiers.
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• Acoustics: loudspeakers, sound wave propagation through materials.

In any way, the need for higher performance systems implies a better control. Therefore, more
accurate methods are required to analyze, characterize and simulate the nonlinearities inherent
to these systems.

Nonlinearity forms

The comprehension of the nonlinearity form present in a system can help to select an appropriate
modeling method. According to [Ogunfunmi, 2007; Gelb and Vander Velde, 1968], the
following classification has been selected:

• Smooth nonlinearities (can be modeled by polynomial equations).

• Non-smooth nonlinearities (nonlinearity with discontinuity).

• Static or dynamic nonlinearities: the nonlinearity is static if the output only depends on a
nonlinear function of the input and dynamic if the output depends on a nonlinear function
of the input signal and some of its derivatives. The nonlinearity has memory.

• Static and multiple valued nonlinearities lead to multiple output values for the same input
(e.g., a relay with hysteresis).

• Homomorphic nonlinearity [Oppenheim and Schafer, 2004].

2.2 General form of a nonlinear system

According to [Ljung, 1998], a model is a mapping from past data (i.e., past input x and/or past
output y) to the output. The predicted output value at time t of the model ŷ(t) depending on the
θ parameters can be written as :

ŷ(t|θ) = G(Zt ,θ), (2.4)

where Zt contains all the input/output pairs from the beginning to the instant t and G(·) is a
nonlinear function that could be parametrized in terms of physical parameters or in black-box
terms as the coefficients of a spline-function. It could be useful to write the Eq. 2.4 as a
mapping of two functions. One function that transforms the past observations Zt into a finite,
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fixed dimension vector ϕ referred to the regression vector and whose components are named
the regressors:

ϕ(t) = ϕ(Zt), (2.5)

and another function g mapping the regressors into the output space such as:

G(Zt ,θ) = g(ϕ(t),θ). (2.6)

Defining a model Ŝ is choosing the regression vector ϕ(t) for the observed input/output
values and choosing a nonlinear mapping g(ϕ(t),θ) from the regressors space to the output
space. The g function can also be decomposed in a series expansion of length K:

g(ϕ(t),θ) =
K

∑
k=1

αkgk(ϕ(t)), θ = [α1, . . . ,αK]
T , (2.7)

where the gk functions are referred to the basis functions [Ljung, 1998]. In fact the expansion
from Eq. 2.7 with different basis functions plays the role of a unified theory for the different
nonlinear models.

2.3 Volterra model

A special case of Eq.2.7 is the use of Taylor expansion choosing gk = ϕk where ϕk should
be seen as all combinations of regressors ϕ j having a summed exponent equal to k (e.g., if
ϕ = (ϕ1,ϕ2,ϕ3) then ϕ(2) = {ϕ1,ϕ2; ϕ1,ϕ3; ϕ2,ϕ3; ϕ2

1 ; ϕ2
2 ; ϕ2

3}. Choosing ϕ as the past
inputs of the system from the beginning to the instant t leads to a special expansion called the
Volterra expansion. An infinite sum of these terms is called the polynomial Volterra series

which can be expressed in continuous time as:

y(t) = h0 +
+∞

∑
k=1

∫ +∞

τ1=−∞

. . .
∫ +∞

τk=−∞

hk(τ1, . . . ,τk) · x(t − τ1) . . .x(t − τk)dτ1 . . .dτk, (2.8)

where hk(τ1, . . . ,τk),1 ≤ k ≤+∞ is a characteristic of the system and is called the kth Volterra

kernel defined for τi ∈]−∞,+∞[, 1 ≤ i ≤ k. The kernels are continuous and bounded in each
τi. For the representation to be unique, the kernels have to be symmetric in their k arguments
τi, 1 ≤ i ≤ k (e.g., the product h2(τ1,τ2) · x(t − τ1) · x(t − τ2)) has to be identical to the product
h2(τ2,τ1) · x(t − τ2) · x(t − τ1). Moreover, for a causal system, hk = 0, ∀τi < 0.
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A truncated polynomial Volterra series has a finite order O and a finite memory length TM

such that Eq. 2.8 can be written as:

y(t) = h0 +
O

∑
k=1

∫ TM

τ1=0
. . .
∫ TM

τk=0
hk(τ1, . . . ,τk) · x(t − τ1) . . .x(t − τk)dτ1 . . .dτk. (2.9)

The Volterra series (1887) has been one of the most used methods in the last 40 years
to model nonlinear systems. While Taylor series uses only a static polynomial expansion,
the Volterra series introduces the notion of Taylor series with memory using the convolution
method as presented in Eq. (2.3). According to [ULG, 2019], the number of peer reviewed
articles including the terms "Volterra series" exceeds nineteen thousands which demonstrates
its popularity and its activity in the research field. Since the 1990s the theory has known a
renewed interest with the increasing computer capacities. However, the use of Volterra series is
still challenging nowadays for multiple reasons:

• The number of parameters: in its digital form, a kernel hk has Mk coefficients where
M is the memory of the system (i.e., the number of past input values including the
present one {x[n] . . .x[n−M+1]} ). This number grows exponentially with the order
of the system. It implies that the number of data required for the identification of a
nonlinear system becomes excessively large. Indeed, applying the symmetry property of
the kernels reduces the search of the coefficients of the kth Volterra kernel to the search
of Mk independent coefficients [Reed and Hawksford, 1996] where Mk is given by the
binomial [Abramowitz and Stegun, 1965, p.265]:

Mk =

(
M+ k−1

k

)
=Ck

M+k−1 =
(M+ k−1)!
k!(M−1)!

. (2.10)

• The number and the size of the kernels is unknown when starting the identification
procedure. Although, a measure of the degree of nonlinearity of a system is introduced
in [Rajbman, 1976].

• Special inputs, as Gaussian noise, are often requested for the identification of the kernels
which is not always possible if the entry of the system is not accessible or for systems
not allowing this kind of entry (e.g., chemical systems).

• As to whether or not the system can be approximated by a Volterra series is not a trivial
question. Roughly speaking, if each component of the system can be modeled by an
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analytic function [Krantz and Parks, 2002] (i.e., a power series which converges at least
for small inputs), the system can mostly be represented by a Volterra series [Boyd, 1985].
However, as described in [Boyd, 1985] analyticity is not the only requirement, e.g., the
following differential equation ẏ(t) =−y3(t)+x(t) does not have an exact Volterra series
representation.

From an engineering point of view, this definition has a poor meaning, indeed, saying
if a tension curve measured in a circuit is infinitely differentiable is only possible if
the measurement instruments have an infinite precision, which is not the case. The
essential matter is to know if an operator N representing the function of a system can be
approximated by a Volterra operator N̂ with a precision ε over a set of input signals X

such that ||N(x)− N̂(x)|| ≤ ε for all x ∈ X . One major difficulty of this approach is to
ensure that the Volterra operator is accurate for all inputs x ∈ X (see examples of different
operators to characterize the iris muscle dynamic for different inputs in [Krenz and Stark,
1991]). This is clearly of considerable importance since the choice of the input signal
during the identification of the Volterra operator determines the input space for which the
operator is valid.

• Identifying high-order kernels requires high-variance signals which can cause high
identification error in the responses of the lower kernels, making the identification
difficult [Orcioni, 2014].

• Volterra series can fail to approximate some real world systems. For example, dynamical
systems with several stable equilibria do not have a fading memory (as explained here-
after) and cannot be represented by a Volterra series. Moreover, the Volterra series model
is not appropriate for all systems. For example, discontinuities and saturation functions
are difficult to approach with this method.

The physical interpretation of the kth Volterra kernel hk is the measurement effect that the
interaction of k past values of the input signal has on the output signal. The popular belief that
any continuous, time-invariant, system can be modeled by a Volterra series has to be qualified
by a stronger concept than continuity which is fading memory. It is introduced by [Boyd and
Chua, 1985] in the Theorem 1. However, before enunciating this theorem, let us introduce
some notations and definitions:

• Definition of continuity [Rudin et al., 1964, p.85]: Suppose X and Y are metric spaces

[Rudin et al., 1964, p.30], E ⊂ X , p ∈ E, and f maps E into Y . Then f is said to be
continuous at p if for every ε > 0 there exists a ∆ > 0 such that dY ( f (x), f (p))< ε for all
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points x ∈ E for which dx(x, p)< ∆, where d is the distance function of the used metric
space.

• Definition of uniform continuity [Rudin et al., 1964, p.90]: uniform continuity is a
property of a function on a set whereas continuity can be defined in a single point. Let
f be a mapping of metric space X into a metric space Y . We say that f is uniformly
continuous on X if for every ε > 0 there exists ∆> 0 such that dY ( f (p), f (q))< ε ∀q, p∈
X for wich dX(p,q)< ∆.

• Definition of C(R): it denotes the space of bounded continuous function R→ R with
the uniform norm (also called supremum norm [Rudin et al., 1964]) such that || f || =
sup | f (x)| ∀x ∈ R.

• Definition of equicontinuity: in real and functional analysis, equicontinuity is a concept
which extends the notion of uniform continuity [Stover, 2019] from a single function to
collection of functions.

• Definition of uniformly bounded: a family of functions indexed by I such as fi : X →
Y,∀i ∈ I is uniformly bounded if there exists a real number r such that: | fi(x)| ≤ r ∀i ∈
I,∀x ∈ X .

• Definition uniform approximation: the quality measurement of the uniform approxi-
mation of a function f(x) by its approximated function P(x) on a given set is given by:
sup | f (x)−P(x)| ∀a ≤ x ≤ b.

We are now able to introduce the Theorem on the Volterra operator:

Volterra operator:

Theorem 1. Let x(t) ∈ X where X is any uniformly bounded equicontinuous set in C(R),
and let N be any time-invariant, fading memory operator defined on X . Then for any
ε > 0, there is a Volterra operator, N̂, such that for all x ∈ X , we obtain

|N(x(t))− N̂(x(t))| ≤ ε. (2.11)

The only constraint on the system is the fading memory of its operator.

Definition of fading memory:

The operator N has a Fading Memory on a subset X of C(R) if there exists a decreasing function
w : R+ →]0,1], lim

t→∞
w(t) = 0, such that for each x ∈ X and ε > 0 there is a δ > 0 such that for
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all ν ∈ X :
sup
t≤0

|x(t)−ν(t)|.w(−t)< δ → |N(x(0))−N(ν(0))|< ε. (2.12)

[Boyd and Chua, 1985] explain that intuitively, an operator has fading memory if two
input signals which are close in the recent past, but not necessarily close in the remote past
yield present outputs which are close. In fact the Fading Memory condition on the operator is
extremely weak and many systems have a fading memory operator. The concept of uniformly
bounded equicontinuous set may seem obscure for those who are not familiar with functional
analysis, it can be seen from an engineering point of view as the set X of signals x(t) which is
bounded by M1 with a slew-rate bounded by M2, which can be expressed formally by:

X =

{
x ∈C(R) such that |x(t)| ≤ M1,

|x(s)− x(t)|
(s− t)

≤ M2 for t ≤ s
}
. (2.13)

This formulation [Boyd, 1985, p.52] is very practical since it is easy to verify that the input
signals are bounded and have a finite slew-rate (which is the case for many signals). However,
all physical systems cannot be modeled by Volterra series. For example:

• Multiple valued nonlinearities such as hysteresis cannot be directly (work around is
possible as it is presented in [Irving, 2008; Ran et al., 2014]) represented by a Volterra
series since the characteristic subharmonics associated with memory nonlinearities are
not generated by Volterra expansion [Billings, 1980].

• The Peak-Hold Operator given by:

N(x(t)) = sup(x(τ)) ∀ τ ≤ t, (2.14)

cannot be modeled by Volterra series since it has no fading memory.

• The Duffing oscillator which can exhibit three equilibrium points [Billings, 2013, p301]
cannot be modeled by a Volterra series for the same reason.

For time varying systems, the Volterra kernels can be replaced by varying kernel functions
where hk(t,τ1, . . . ,τk) is the kth varying Volterra kernels [Yu et al., 1997, 1999; Guo et al.,
2014].

A comprehensive review of Volterra series and associated methods is given in [Cheng
et al., 2017]. The Volterra series are largely applied in the identification of nonlinear systems
including: polynomial nonlinear systems [Jing et al., 2009; Peng et al., 2007b], piecewise linear
systems [Zhu et al., 2008; Lin and Unbehauen, 1990], bilinear systems [Chatterjee, 2010; Peng
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et al., 2007a], saturation systems [Hélie, 2010; Mastromauro et al., 2007], spatio-temporal non-
linear systems [Guo et al., 2010; Li and Qi, 2010; Hélie and Roze, 2008], hysteresis nonlinear
systems [Irving, 2008; Ran et al., 2014], fractional-order nonlinear systems [Hélie and Hasler,
2004; Maachou et al., 2014].

Condition to belong to a Volterra series model:

A continuous-time, time-invariant, finite-memory, causal nonlinear system which is a
continuous functional of its input, can be uniformly approximated over a uniformly
bounded equicontinuous set of input signals, to an arbitrary degree of accuracy, by a
Volterra series of sufficient but finite order [Korenberg, 1991]. This result can be extended
to discrete-time nonlinear systems by the Stone-Weierstrass theorem [Dieudonné, 2013;
Palm, 1979].

2.4 Block oriented models

Block oriented models represent one of the simplest classes of nonlinear models. These models
consist of several parallel/series blocks where a block is either a static (i.e., memoryless)
nonlinearity or a linear filter. If the dynamics of the system can be described by a linear
function and if the system has a static nonlinearity at the input or at the output, the system
can be represented by a Hammerstein model (as presented in Sec. 2.4.1) or a Wiener model
(as presented in Sec. 2.4.2) respectively (e.g., a linear sensor having saturation nonlinearity).
Sandwich models (as presented in Sec. 2.4.3) also called Wiener-Hammerstein models are
composed of one static nonlinearity surrounded by two linear filters. These three models are, in
fact, some simplified cases of the Volterra model. A fundamental property is that a Volterra
operator can be exactly represented by a finite number of parallel cascades (as presented in
Sec. 2.4.4) of Wiener-Hammerstein or Wiener models. Finally, the Wiener-Bose model (as
presented in Sec. 2.4.5), composed of P linear filters followed by a P-inputs static nonlinearity,
plays the role of unified framework for nonlinear models since it can be shown that parallel
Wiener cascade and Volterra models are special cases of the Wiener-Bose model.

2.4.1 Hammerstein model

The Hammerstein model is composed of a static nonlinearity followed by a dynamic linear
block as presented in Fig. 2.1 and Eq. (2.15).
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x(t) w(t) y(t)
Dynamic LinearStatic Nonlinear

F( ) h( )

Figure 2.1 Hammerstein model.

y(t) =
∫ +∞

0
h(τ)w(t − τ)dτ,

w(t) = F(x(t)),
(2.15)

where F(·) is a static nonlinear function usually assumed to be a polynomial function due to the
Weierstrass’ approximation theorem [Jeffreys and Jeffreys, 1999], stating that any function on
a closed and bounded interval can be uniformly approximated on this interval by polynomials
to any degree of accuracy. Considering such a function truncated to the order O where the DC
component has been removed gives:

F(v) = α1v+ . . .+αOvO. (2.16)

Eq. (2.15) can then be described as:

y(t) =
∫ +∞

0
h(τ)

O

∑
k=1

αkx(t − τ)kdτ,

=
O

∑
k=1

∫ +∞

0
h(τ) ·αkx(t − τ)kdτ.

(2.17)

The link with the Volterra series can be obtained by expressing Eq. (2.17) as:

y(t) =
O

∑
k=1

∫ +∞

0
· · ·
∫ +∞

0
αkh(τ1) ·δ (τ1 − τ2) · · ·δ (τ1 − τk) · x(t − τ1) · · ·x(t − τk)dτ1 · · ·dτk.

(2.18)

It can be derived from Eq. (2.18) and Eq. (2.8) that the Hammerstein model is a truncated
Volterra series where the Volterra kernels are:

hk(τ1, · · · ,τk) = αkh(τ1) ·δ (τ1 − τ2) · · ·δ (τ1 − τk) (2.19)
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and then,

hk(τ1, · · · ,τk) =

αkh(τ1) if τ1 = · · ·= τk,

0 else.
(2.20)

In the discrete time representation, the Hammerstein model can be represented by a Volterra
series whose kernels coefficients are equal to zero unless on their diagonal elements, i.e., the
elements of the tensor hk having all its indices equal (τ1 = τ2 = · · ·= τk = τ). For example,
the second order Volterra kernels of a Hammerstein system of memory M is represented by:

h2 =


α2h[0] · · · 0

... . . . ...
0 · · · α2h[M]

 , (2.21)

where h[n] is the Hammerstein kernel of the system.

Belonging to the Hammerstein class:

A system S can be represented by a Hammerstein model if the non-diagonal elements
of its Volterra kernels are equal to zero. Moreover, the diagonal of each Volterra kernel
must be proportional to the impulse response of the linear subsystem. As a consequence,
in an Hammerstein model, the diagonals of the Volterra kernels are proportional between
them such that:

hk(τ1, · · · ,τk) ∝ h j(τ1, · · · ,τ j),

with τ1 = · · ·= τk = τ j ∀ j,k ∈ N∗.
(2.22)

2.4.2 Wiener model

The Wiener model (not to be confused with Wiener series [Wiener, 1966] which is an orthogonal
expansion of functional series) is composed by a static nonlinearity following a dynamic linear
block as presented in Fig. 2.2 and Eq. (2.23).

F( )h( )
x(t) w(t) y(t)

Dynamic Linear Static Nonlinear

Figure 2.2 Wiener model
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w(t) =
∫ +∞

0
h(τ)x(t − τ)dτ,

y(t) = F(w(t)).
(2.23)

Using a polynomial function for the static nonlinearity, the Eq. (2.23) can be expressed as:

y(t) =
O

∑
k=1

αk

[∫ +∞

0
h(τ) · x(t − τ)dτ

]k

, (2.24)

which can be expressed as:

y(t) =
O

∑
k=1

∫ +∞

0
· · ·
∫ +∞

0
αk ·h(τ1) · · ·h(τk) · x(t − τ1) · · ·x(t − τk)dτ1 · · ·dτk. (2.25)

The comparison of Eq. (2.8) and Eq. (2.25) shows that the Volterra kernels hk of a Wiener
system can be expressed as the product of k copies of the impulse response of its linear
subsystem:

hk(τ1, · · · ,τk) = αkh(τ1). · · · .h(τk). (2.26)

Necessary condition to belong to the Wiener class:

From Eq. (2.26) it appears that any one-dimensional slice of the discrete time representa-
tion of the Volterra kernel is proportional to the impulse response of the linear subsystem.
For example, for a fixed value of τ1 = k1 and τ2 = k2, the third Volterra kernel of a Wiener
system is :

h3[k1,k2,τ] = α3h[k1]h[k2]h[τ] = βh[τ]. (2.27)

This result is a necessary condition to belong to the Wiener class. Another formulation
of this condition is that two one-dimensional slices of the Volterra kernels of a Wiener
system have to be proportional [Westwick and Kearney, 2003].

2.4.3 Sandwich or Wiener-Hammerstein model

The Wiener-Hammerstein model (also named sandwich model) is composed by a static nonlin-
earity followed and preceded by linear blocks as presented in Fig. 2.3 and Eq. (2.28).
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w(t) z(t) y(t)
Dynamic LinearStatic Nonlinear

F( ) g( )
x(t)

Dynamic Linear

h( )

Figure 2.3 Wiener-Hammerstein model

w(t) =
∫ +∞

0
h(τ)x(t − τ)dτ,

z(t) = F(w(t)),

y(t) =
∫ +∞

0
g(τ)z(t − τ)dτ.

(2.28)

Using a polynomial static nonlinearity, Eq. (2.28) can be expressed as:

y(t) =
∫ +∞

0
g(τ)

O

∑
k=1

∫ +∞

0
· · ·
∫ +∞

0
αkh(τ1) · · ·h(τk)

k

∏
i=1

x(t − τ − τi)dτ1 · · ·dτkdτ. (2.29)

The Volterra form can be obtained by defining σi = τ + τi:

y(t) =
O

∑
k=1

∫ +∞

0
· · ·
∫ +∞

0

[
αk

∫ +∞

0
g(τ)h(σ1 − τ) · · ·h(σk − τ)dτ

] k

∏
i=1

x(t −σi)dσ1 · · ·dσk.

(2.30)

The comparison of Eq. (2.8) and Eq. (2.30) shows that the Volterra kernels hk of a Wiener-
Hammerstein system can be expressed as:

hk(τ1, · · · ,τk) = αk

∫ +∞

0
g(τ)h(τ1 − τ) · · ·h(τk − τ)dτ. (2.31)
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Necessary condition to belong to a Wiener-Hammerstein class:

In the discrete time domain, the first-order Volterra kernel must be proportional to the
sum of the one-dimensional slices of the second-order Volterra kernel taken parallel to
one axis, named the marginal second-order kernel k(τ) such that [Westwick and Kearney,
2003]:

h1[τ] ∝ k[τ] =
M−1

∑
m=0

h2[τ,m], (2.32)

where M is the memory length of the system.

This model is sometimes called LNL (Linear Nonlinear Linear). There are also models of
the form NLN (Nonlinear Linear Nonlinear) which are not studied here.

2.4.4 Parallel cascade model

The Hammerstein model, the Wiener model and the Wiener-Hammerstein model are very con-
venient to model some nonlinear systems, they are more parsimonious (i.e., they have a smaller
number of parameters) than the general Volterra model but their lack of flexibility reduces
their application field. It has been shown that the output of any continuous, discrete-time,
finite-dimensional system can be approximated by a parallel cascade of Wiener-Hammerstein
models [Palm, 1979] as presented in Fig. 2.4. Later it has been shown that this Volterra model
can be exactly represented by a finite number of P parallel Wiener cascade models [Korenberg,
1991]. The Volterra kernels associated to this structure are the sum of the Volterra kernels of
each branch:

hk(τ1, · · · ,τk) =
P

∑
p=1

αkp

∫ +∞

0
gp(τ)hp(τ1 − τ) · · ·hp(τk − τ)dτ. (2.33)

Moreover, Korenberg [1991] shows that the unidentified residue (i.e., the difference between
the output of the system and the output of the parallel cascade model) is a Volterra series that can
be treated by another parallel cascade model. The nonlinear system can then be approximated
to an arbitrary level of accuracy (in the mean square error sense) by a sum of a sufficient
number of individually identified cascades, where, the kth order of the Volterra kernels limited
to a memory (M+1) in the discrete time representation (the system output depends on input
delays from 0 to M), is fully described by P parallel Wiener cascades [Korenberg, 1991]:

P = 2k−1.

(
M+ k−1

k−1

)
. (2.34)
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y(t)

Dynamic LinearStatic Nonlinear

F1( ) g1( )

x(t)

Dynamic Linear

h1( )

F2( ) g2( )h2( )

wP(t) zP(t)
FP( ) gP( )hP( )

...

...

...

Figure 2.4 Parallel sum of Wiener-Hammerstein cascade models.

2.4.5 Wiener-Bose model

The Wiener-Bose model (named also the General-Wiener model) is constituted by a set of
P-linear filters placed in parallel and followed by a multi-variable polynomial function F of
degree Q as presented in Fig. 2.5. The Wiener-Bose model can be expressed by the following

y(t)x(t)

Dynamic Linear

h1( )

h2( )

wP(t)hP( )

...

P-input
Static nonlinear

w1(t)

Dynamic Linear

...

P-input
Static nonlinear

F(w1,...,wP)

Figure 2.5 The Wiener-Bose model: P linear filters followed by a static multi-input polynomial
nonlinearity.

equations:
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wp(t) =
∫ +∞

0
hp(τ)x(t − τ)dτ,

y(t) = F(Q)(w1, · · · ,wP),

where :

F(Q)(w1, · · · ,wP) = α
0
0 +

Q

∑
q=1

P

∑
p1=1

P

∑
p2=p1

· · ·
P

∑
pq=pq−1

α
(q)
p1,··· ,pq ·wp1(t) · . . . ·wpq(t),

(2.35)

and α
(q)
p1,··· ,pq is a tensor of order q containing parameters. F(Q)(w1, · · · ,wP) simply computes

a polynomial function of order Q with all the combinations of inputs such that the sum of their
exponents is q ∈ [1,Q]. For example:

F(2)(x1,x2,x3) = α
(0)
0 +α

(1)
1 x1 +α

(1)
2 x2 +α

(1)
3 x3

+α
(2)
1,1 x1x1 +α

(2)
1,2 x1x2 +α

(2)
1,3 x1x3

+α
(2)
2,2 x2x2 +α

(2)
2,3 x2x3 +α

(2)
3,3 x3x3.

(2.36)

It can be shown [Westwick and Kearney, 2003] that the Wiener, the Volterra expansion, the
parallel Wiener and Wiener-Hammerstein cascade models are special cases of the Wiener-Bose
model, making from this latter a good general framework for nonlinear models.

2.5 Nonlinear state-space model

The nonlinear state-space model provides a very general description of a finite-dimensional
system, it can be described as:

ẇ(t) = G(t,w(t),x(t),ω(t);θ),

y(t) = H(t,w(t),x(t),ν(t);θ),
(2.37)

where G and H are nonlinear functions of the input(s) x(t), the state(s) w(t) and independent
random variable ω(t),ν(t) (e.g., noise process), θ denotes the unknown parameters.

A special case of the nonlinear state-space is the Wiener-Bose model of Eq. (2.35). Indeed
it is easy to show that the Wiener-Bose model can be described as:
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ẇ(t) = Aw(t)+bx(t),

y(t) = F(w(t)),
(2.38)

where w(t) and b are P-dimensional vectors (P is the number of branches in the Wiener-Bose
model). A is a P x P matrix and F(·): RP → R is a polynomial as expressed in Eq. (2.35). The
relation with the Wiener-Bose system is immediate if it is noticed that the state equation from
Eq. (2.38) is a single input x(t), P-output linear state-space system, which is equivalent to P
separate linear filters [Westwick and Kearney, 2003, p.94]. This leads to the following theorem:

State-space equation:

Theorem 2. The approximation N̂, for any time-invariant fading-memory operator as
described by Theorem 1 in Sec. 2.3 can be realized using the state-space equation (2.38)

2.6 NARMAX model

System identification consists in the determination of the input/output law of a system, where
the inputs/outputs are measured on a finite-time interval resulting in a dataset of input/output
samples. Although, continuous-time models can be identified from this dataset, a discrete-time
representation is usually more convenient. The NARMAX model [Billings and Leontaritis,
1982] is defined in the discrete-time domain by a set of nonlinear difference equations:

y[n] = F (y[n−1], · · · ,y[n−ny],x[n−d] · · ·x[n−d −nx],e[n−1], · · · ,e[n−ne])+ e[n],

(2.39)

where y[n], x[n], e[n] are the system output, input and noise sequence respectively. d is a time
delay usually set to zero or one and ny, nx, ne are the maximum lags for the system output,
input and noise respectively. F(·) is a nonlinear function.

As the Infinite Impulse Response (IIR) filter can represent the Finite Impulse Response (FIR)
filter in a more parsimonious way (i.e., much less parameters) by introducing the information
of the past inputs in a few output lagged terms, the NARMAX model introduces the past of its
outputs in its model. In comparison, the Volterra model only uses the past inputs of the system.
The trade-off is the difficulty to choose an appropriate function F and to identify its arguments.

The Volterra model, the block-structured models and many neural network architectures can
be considered as subsets of the NARMAX model [Chen and Billings, 1989]. The NARMAX
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model can also represent some exotic models such as chaos, bifurcations and sub-harmonic
systems [Billings, 2013].

Sufficient condition to belong to a NARMAX model:

[Leontaritis and Billings, 1985] proved that a nonlinear discrete-time, time-invariant
system can be represented by Eq. (2.39) if the response of the system is finitely realizable,
i.e., if and only if it has a state-space realization. This condition excludes infinite-
dimensional state-space (also called distributed parameter systems [Banks and Kunisch,
2012]). A linearized model exists if the system operates close to an equilibrium point,
i.e., a state we such that we = G(we,x) in the meaning of the state-space equation (2.37)
of the system.
Notice that the form of the nonlinear function F(·) may depend on the input region as for
the Volterra model, therefore a NARMAX model is valid only in a region around some
operating point (i.e., around a special state w). [Chen and Billings, 1989] present some
examples of NARMAX models approximating mathematical functions valid around an
operating point.

2.7 Neural networks models

Neural networks are generally presented in a matrix or tensor form. In this section, we
choose to present neural networks with the same notation than used until now to highlight
the strong relation existing between the general formulation of a nonlinear system and neural
networks which is sometimes disregarded. We hope that readers will appreciate this unusual
but interesting approach of the neural networks.

In the general formulation of a nonlinear system as presented in Eq. (2.7), the choice of the
basis functions gk(·) is free. We have seen in section 2.3 that Volterra series are based on the
Taylor expansion, choosing gk = ϕk. A common but more recent choice is to use a dilated (βk

parameters) and/or translated (γk parameters) version of the same function for all the gk. This
function is called the mother basis function κ:

gk(ϕ(t)) = κ(βk(ϕ(t)− γk)). (2.40)
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Using Eq. (2.40) in Eq. (2.7) gives the operator of the system such that:

g(ϕ(t)) =
K

∑
k=1

αkgk (ϕ(t)) ,

=
K

∑
k=1

αkκ(βk(ϕ(t)− γk)),

(2.41)

where K is the length of the expansion.

Example: choosing κ as the unit interval indicator function:

κ(x) =

 1 for 0 ≤ x < 1,

0 else,
(2.42)

with βk =
1
∆

, γk = k∆ and αk = f (k∆) gives:

g(ϕ(t)) =
K

∑
k=1

f (k∆)κ

(
1
∆
(ϕ(t)− k∆)

)
, (2.43)

which is the piece-wise constant approximation of the function f over intervals of length ∆. In
this case the basis functions are called local (variation takes place in local environment). On the
contrary, the basis functions of the Volterra expansions are global basis functions (significant
variation over the whole real axis).

2.7.1 Activation function

In neural networks jargon, the mother basis function is called the activation function, there are
plenty of possible activation functions, their properties are discussed in [Juditsky et al., 1995]
for nonlinear systems identification with a black-box approach, and in [Karlik and Olgac, 2011;
Maas et al., 2013; Pascanu et al., 2013] for a more classical neural networks approach. One of
the first used activation function was the step function in an Artificial Neural Network (ANN)
named the perceptron:

κ(x) =

 1 for x > 0,

0 else.
(2.44)



36 Nonlinear models

A smoothed version of this step function is the sigmoid function (presented in Fig. 2.6):

κ(x) =
1

1+ e−x . (2.45)

The choice of the sigmoid function in neural networks has been motivated by its similarity with
the activation function of a human neuron. In modern neural networks, the recommendation is
to use rectified linear unit [Jarrett et al., 2009] (as presented in Fig. 2.7):

κ(x) = max(x,0), (2.46)

or exponential linear unit [Clevert et al., 2015] (as presented in Fig. 2.8):

κ(x) =

 α(ex −1) ∀x < 0,

x else,
(2.47)

where lim
x→−∞

κ(x) =−α .
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Figure 2.6 Sigmoid function.
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Figure 2.7 Rectified Linear Unit (ReLU) function.
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Figure 2.8 Exponential Linear Unit function (α = 1).
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2.7.2 Feedforward neural networks

A simplified neural network with only 2 inputs, one output and 2 neurons is presented in
Fig. 2.9, where W represents a matrix of weights mapping the inputs x to h and where ααα is a
vector mapping h into the output y. Each hk element is described as a transformation from an
input vector to a scalar output by:

hk = κ

(
N

∑
j=1

x jWj,k +bk

)
, (2.48)

which can be written in a matrix form as:

hk = κ
(
xxxTW:,k +bk

)
, (2.49)

where ":" stands for "select all the elements of this index". The output of the system can then
be written as:

y =
K

∑
k=1

αkκ
(
xxxTW:,k +bk

)
, (2.50)

which corresponds to the general form of neural networks introduced by Eq. (2.41). In this

x1 x2

y

W11 W12 W21 W22

h1 h2

Figure 2.9 Simple feedforward neural network.
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case, WWW (respectively βββ from Eq. (2.41)) are called the weights and bbb (respectively −γγγ from
Eq. (2.41)) are the bias of the neural network.

2.7.3 Multi-layer neural networks

Multi-layer neural networks, also called Deep Neural Networks (DNN), are the cascade of
several feed-forward networks as presented in Fig. 2.10. Instead of linearly combining the

y

x1 x2

h21 h22

h11 h12

Figure 2.10 Two layers feed-forward neural network.

output of the mother basis functions by the vector ααα , they are collected in a new regression
vector:

ϕ
(2)(t) = [κ(ϕ(t),β1,γ1), . . . ,κ(ϕ(t),βK,γK)] . (2.51)

Then, this vector is introduced in a new layer of basis function forming a new expansion:
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g(ϕ(2)(t)) =
L

∑
l=1

αlκ(βl(ϕ
(2)(t)− γl)), (2.52)

where L is the size of the new expansion (i.e., the number of neurons of this new layer) and
αl,βl,γl are the parameters associated with this layer.

In the matrix form, the multi-layer neural network can be described by a succession of
layers hhh(l) given by:

hhh(l) = κ
l
(

hhh(l−1)TWWW (l)+bbb(l)
)
, (2.53)

where hhh(0) = xxx is the input of the neural network. Although one hidden layer is sufficient (in
principle) to model almost all reasonable systems, [Sontag, 1993] presents many useful insights
to understand the importance of a second hidden layers in a neural networks (i.e., the second
layer can improve the convergence rate).

2.7.4 Recurrent neural networks

In a generic approach, a Recurrent Neural Network (RNN) refers to a model whose some
regressors ϕk(t) are the outputs of the model at a previous moment:

ϕk(t) = g(ϕ(t − τk),θ). (2.54)

In a more classical neural networks approach, this kind of network is specialized to process
discrete-time sequences x1, · · · ,xN , where each xn is a scalar, or a vector if the system has
several inputs. The RNN (as presented in Fig. 2.11) can be built with a collection of hidden
units ht such as:

hhht = f (hhht−1,xxxt ,θ), (2.55)

where the function f is often the result of a simple feed-forward neural network such that the
hidden state ht for a particular time t (called a time step) can be computed in a matrix form:

hhht = κ

(
xxxT

t .WWW x +hhhT
t−1.WWW h +b

)
. (2.56)

The particularity of RNN in machine learning is the sharing of its parameters WWW x,WWW h (the
weights of the network) over the different times steps (see Fig. 2.12). The idea is to have the
same processing of the inputs whatever the input lengths or whatever the position of a particular
input in the sequence. For example, the sentences "Yesterday, I have eaten an apple" or "I
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have eaten an apple yesterday" should be treated equally if the purpose of the network is to
determine the moment where I have eaten the apple. The computational graph of a recurrent
neural network is said unfolded (as it can be seen in Fig. 2.12) if it is presented as a succession
of time steps representing the states at each point of the time. The size of matrices and vectors
given in Eq. (2.56) are:

• hhht is a vector of size Nneurons,

• xxxt is a vector of size Ninputs ̸= 1 if the system is multi-inputs,

• WWW x is a matrix of size Ninputs × Nneurons,

• WWW h is a matrix of size Nneurons × Nneurons,

• b is a vector of size Nneurons.

xt

ht

q-1

Figure 2.11 Recurrent neural network.

2.8 Introduction to machine learning

In the previous sections, different nonlinear models have been presented but nothing is said
about the learning method of the model parameters. Nowadays, the tendency goes to the
machine learning. As this thesis is not purely devoted to machine learning, the terms usually
related to the field of the neural networks are presented in Sec. 2.8.2.
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xt-2 xt-1 xt

ht-2 ht-1 ht

Figure 2.12 Recurrent neural network unfolded over three time steps.

2.8.1 What is machine learning ?

A simple definition could be: machine learning is the science of programming computers so
they can learn from data [Géron, 2017]. A more rigorous definition is given in [Mitchell, 1997]:
Learning: A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T , as measured by P,
improves with experience E.

An experience E

The experience E can be mainly represented by three types of learning process:

• Supervised learning: where the data fed in the learning algorithm includes the desired
solutions called the targets or the labels, e.g., regression tasks, classification tasks.

• Unsupervised learning: where the data fed in the learning algorithm is unlabeled. The
algorithm learns useful properties on the dataset based on its features, e.g., clustering,
dimensionality reduction.

• Reinforcement learning: interact with its environment. Based on some observations, the
system chooses an action and gets rewards or penalties in return. The system has to learn
a strategy to get the best reward, e.g., training a robot to return a table tennis ball over the
net [Mülling et al., 2013], Alphago program [Wang et al., 2016] which has beaten the
world champion of Go in March 2016.
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For the emulation of the guitar signal chain, the supervised learning for a regression task
will be used. From now on, "machine learning" refers to supervised learning process only.

A task T

The task (T ) can be divided in several types [Goodfellow et al., 2016, p.99] but most of the
time it belongs to one of these two main classes:

• The Classification tasks: are tasks where we try to predict (among a finite set of classes)
to which class each input belongs to, e.g.,

– Input mails have to be classified in email or spam classes.

– Handwriting recognition, each symbol has to belong to one class where each class
represents a specific alphanumeric symbol.

• The Regression tasks: are tasks where the operator governing a system is approximated
to make a quantitative prediction of the output, e.g.,

– Estimate the probability of cancer based on clinical and demographic variables.

– Predict the behavior of the stock market based on the politico-economical variables.

– Emulate the behavior of a physical system.

Our interest here is about the regression class, given the past entries of a guitar signal, we
would like to predict the output signal of the system (e.g., a distortion effect, the output of a
tube amplifier).

A performance measure P

Mean square error:

In a regression task, the performance measure (P) is often a measure of the Mean Square Error
(MSE) such that for K targets y[k] ∈ R and their associated predictions ŷ[k] ∈ R, k ∈ [1,K] the
performance is measured by:

P = MSE =
1
K

K

∑
k=0

(y[k]− ŷ[k])2 . (2.57)
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In the case where y is a discrete-time signal, the percentage of the error relatively to the
energy of this output signal can be computed as the Normalized Root Mean Square Error
(NRMSE) defined such that:

P = NMRSE =

√
∑

K
k=0 (y[k]− ŷ[k])2

∑
K
k=0 y[k]2

. (2.58)

This performance measure seems reasonable since it minimizes the distance between the
target and the prediction in the mean square sense. Although the choice of the performance
measure should be dependent on the desired behavior of the system, it is not always straight-
forward. For example, the relation between the NRMSE of an emulated audio device and its
perceived accuracy could be meaningless.

Coefficient of determination R2:

The coefficient of determination is a measure of the quality of a prediction for a linear regression.
R2 is equal to 1 if the model perfectly explains the variance of the output from the input variables
and is equal to 0 if the model is not better than a constant.

P = R2 = 1− MSE
Var(y)

= 1− ∑
K
k=0(y[k]− ŷ[k])2

∑
K
k=0(y[k]− ȳ)2

, (2.59)

where ȳ is the mean value of the output target ȳ = 1
K ∑

K
k=0 y[k].

Speed and inference in real time:

Of course, having a model enabling the emulation of an amplifier with a good accuracy is
important. However, a faster but less accurate model enabling the emulation in real time could
also be useful. For example, the faster model can be used during recording when musicians
want to hear what they play and the most accurate model can be used in post production for
the final rendering of the sound. Therefore, the performance measure of the model could
also depend on the Computational Time (CT) to process a buffer of audio samples. A simple
performance measure that takes the CT and the accuracy into account could be:

P =CT ·MSE. (2.60)

This performance measure is useful to compare different model structures, or different set of
hyperparameters for the same model. However, it is important to be aware of the trivial cases



2.8 Introduction to machine learning 45

where the accuracy is bad but compensated by very small computational time.

Other performance measures have been used to analyze the accuracy of the different models,
even if these measures are not used during the learning phase of a model:

• The Total Harmonic Distortion (THD): is the ratio of the sum of the powers of all
harmonic components excluding the fundamental frequency to the sum of the powers of
all harmonic components including the fundamental frequency [Zölzer, 2011, p.119]:

T HDdB = 10. log10

(
∑

N
i=2 Pharmo(i)

∑
N
i=1 Pharmo(i)

)
, (2.61)

where Pharmo(i) is the power of the ith harmonic and N the number of harmonics consid-
ered (including the fundamental).

• The Signal to Noise Ratio (SNR): is the ratio of the power of the desired signal to the
power of background noise (unwanted signal):

SNRdB = 10. log10

(
Psignal

Pnoise

)
. (2.62)

From now on, the SNR is computed using Psignal = Pharmo(1): the power of the funda-
mental.

• The harmonic content accuracy (∆harmo): is the root mean square error between the
harmonic Power Pharmo,dB(i) of the prediction and target signals:

∆harmo =

√
1
N

N

∑
i=1

(
P target

harmonic,dB(i)−P prediction
harmonic,dB(i)

)2
, (2.63)

where N is the number of harmonics taken into accounts. ∆harmo gives information about
the accuracy of the predicted harmonic spectrum for a chosen model. From now on,
∆harmo is computed with N = 10.

The learning of the neural networks

Historically, Artificial Neural Network (ANN) were first introduced by [McCulloch and Pitts,
1943] in a simplified model on how biological neurons might work together. The parameters
are learned using the gradient descent algorithm. They are chosen to minimize (or maximize) a
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performance function. The gradient of the function is computed (or estimated) by using the
current parameters. Then, those parameters are updated to move against the gradient toward a
better minimum of the function. However, neural networks are often composed of a tremendous
number of parameters. Therefore, ANN have to wait until the 1980s to know a true success.
Indeed until then the computation of the gradient was too expensive, especially for multi-layer
neural networks. ANN have known a revival interest when a better algorithm to compute the
gradient (called the back propagation algorithm) has been developed. More information about
back propagation can be found in Appendix A.1. Actually, most of the work made in the neural
networks field is about improving the learnability of the parameters by introducing some novel
methods, an overview of these methods is given in Appendix A.2.

Universal approximation theorem

One fundamental contribution in the field of neural networks is the universal approximation

theorem [Csáji, 2001] which was first proved in [Cybenko, 1989] under a mild assumption
on the choice of the activation function (i.e., κ is an activation function if and only if κ is
bounded and lim

x→+∞
κ(x) = a and lim

x→−∞
κ(x) = b with a ̸= b). Actually, [Hornik, 1991] proved

that it is the multilayer feedforward architecture and not the choice of the activation function
which gives to the neural network the property of being a universal approximator. For notation
convenience, the following universal approximation theorem is expressed for a single output
unit. The general case, for multiple output units, can be deduced from this:

Universal approximation theorem [Csáji, 2001]:

Theorem 3. Let κ(·) be an arbitrary activation function. Let X ⊆ Rm and X is compact.
The space of continuous functions on X is denoted by C(X). Then ∀ f ∈ C(X),∀ε > 0 :
∃ n ∈ N0, ai j,bi,wi ∈ R, i ∈ {1...n}, j ∈ {1...m} :

ŷ(x1, · · · ,xm) =
n

∑
i=1

wiκ

(
m

∑
j=1

ai, jx j +bi

)
(2.64)

is an approximation of the function y = f (x) such that:

∥ y− ŷ ∥< ε (2.65)
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2.8.2 Terminology and notation used in machine learning

As this thesis is not purely devoted to machine learning, the machine learning terms usually
used in this field are presented in this section. Readers who are already familiar with the
machine learning field can skip this reminder and directly go to the next section.

Hyperparameter: in machine learning, a hyperparameter is a parameter which is set before the
training phase. Consequently, this parameter will not vary during the learning of the training set.

Training set, Test set and Validation set: the dataset used in machine learning is usually split
in three parts:

• the training set gathers examples that the system uses to learn,

• the test set gathers data that are reserved to verify if the trained model generalizes well to
unseen data. The error computed on these new cases is called the generalized error,

• the validation set is used to avoid the search of hyperparameters that fits only with
the test set. A common approach is to have a second holdout set used to test different
hyperparameters. Once those ones are chosen, the generalized error is computed on the
test set to be sure that the model and its hyperparameters generalize well to unseen data.

An instance: is an element of the training set, it is one input of the system at a given time.

Target: corresponds to the true output of the system for a given instance. It is also called the
ground truth and is noted target[n] or y[n].

Prediction: corresponds to the output of the model noted hereafter pred[n] or ŷ[n].

Feature and Attribute: in machine learning, an attribute or a feature has several meanings
depending on the context, but it generally refers to an individual measurable property or char-
acteristic of an object or an observed phenomenon (e.g., Mileage=15000, Temperature=30).
Many people use the words attribute and feature interchangeably [Géron, 2017].

Batch: optimization algorithms using all the data present in the training set before computing
the gradient are called batch gradient algorithms or even deterministic gradient algorithms.
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Minibatch: is a subset of a batch. The reason to use mini-batch is that computing the mean
gradient function for all the instances of the training set can be very time consuming. In practice,
an estimation of the true gradient can be obtained by randomly sampling some instances of
the batch, then taking average over these picked instances. The gradient method is then called
minibatch stochastic. If the size of the minibatch is equal to one, the method is called stochastic

or online. These definitions are often subject to abuses, e.g., minibatch stochastic are often
simply called stochastic methods. Moreover batch and minibatch are often exchanged, e.g.,
"the size of the batch" is often used to refer to the size of the minibatch.

Epoch: the gradient descent is an iterative method, meaning that the weights are updated at
each iteration (i.e., it computes the gradient then it updates the weights). The moment where
the algorithm has seen all the data of the training set is called an epoch. Many epochs may be
necessary to reach the minimum of the cost function.

Learning rate: The learning rate or step size in machine learning is a hyperparameter which
determines to what extent newly acquired information overrides old information [Zulkifli,
2018]. This parameter is often represented by α or η . If the learning rate is too low, the
algorithm takes too long to converge to the minimum, moreover it can stay stuck in a local mini-
mum. On the contrary, a too high learning rate can make the learning to jump over the minimum.

Fully connected: A fully connected (FC) layer also called a Dense layer, is a layer where each
neuron is connected at each neuron in the previous layer by weights. A fully connected layer is
usually followed by a nonlinear activation function.



Part II

Emulation of the Guitar Signal Chain
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Outline of this chapter:

This chapter is devoted to the emulation of guitar effects by the parallel cascade of
Hammerstein models and is organized as follows : the basic identification technique
is recalled in Sec. 3.2. This theory is illustrated with a simple third-order model and
then extended to any finite order. In Sec. 3.3, five problems that may occur during the
implementation of the method are described. An algorithm for testing the reconstruction
of the Hammerstein kernels is proposed to highlight and solve these problems. This
leads to the definition of an Hammerstein Kernels Identification by Sine Sweep (HKISS)
method. Its efficiency is proven in Sec. 3.4 where the method is applied on three different
nonlinear audio devices: two tube amplifiers and a distortion guitar effect. The Sec. 3.5
offers an overview on the limitations of the HKISS method. Finally, the Sec. 3.6 presents
a Matlab toolbox helping to identify the Hammerstein kernels of a nonlinear device
through the HKISS method.

3.1 Introduction

3.1.1 Related works

The polynomial Volterra series as described in Sec. 2.3 is a nice nonlinear operator which
enables the approximation (with a chosen bounded error) of any time-invariant nonlinear system
under the mild assumption that the system has fading memory (see Theorem 1 in Sec. 2.3).
However, the number of computations required to describe a highly nonlinear system grows
exponentially with its order. Therefore, the Volterra series could be unappropriated since:

• these numerous kernel coefficients are difficult to identify,

• there are too much computational operations to emulate a strong nonlinear system in real
time.

In the last few years, a nonlinear convolution method [Farina et al., 2001; Farina, 2000] has
been elaborated with the aim of emulating nonlinear audio systems. The authors proposed to
use the properties of the Exponential Sine Sweep (ESS) signal in order to identify a sub-model
of the Volterra model by considering only the static (memoryless) nonlinearities. This model
is called the Hammerstein model (as presented in Sec. 2.4.1). More precisely, the studied
model is the polynomial parallel cascade of Hammerstein models (as presented in Fig. 3.1).
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It is composed of M (the system order) parallel branches where each branch m gathers the
cascade of a static monomial nonlinearity (putting the input signal to the power m) followed by
a linear filter hm[n] which corresponds to the mth Hammerstein kernel (also called the diagonal
Volterra kernel) [Bendat, 1998; Ogunfunmi, 2007; Kadlec et al., 2008; Rébillat et al., 2011].
With the ESS signal sent through a nonlinear system, they show that it is possible to separate
the different harmonic impulse responses created by the harmonic distortion. This method has
been quite successfully applied to model nonlinearities in loudspeakers [Farina et al., 2001;
Schmitz and Embrechts, 2013, 2014], guitar distortion generators [Tronchin, 2013; Novak
et al., 2010a] (the famous Tube-Screamer [Ibanez, 1978] is often taken as an example) and
compressors [Novak et al., 2009].

However, this method has some limitations (as it will be explained in Sec. 3.3) that may
lead to some inaccuracies during the emulation phase. One of these limitations (the nonsyn-
chronization of the phase) has been addressed in [Novak et al., 2009] and then improved in
[Novak et al., 2015] by using a special ESS signal called the exponential synchronized sine

sweep or simply the Synchronized Sine Sweep (SSS). We have proposed another method to
circumvent the problem of nonsynchronized phase whithout the need of using a SSS [Schmitz
and Embrechts, 2013, 2014]. Moreover, we have proposed in [Schmitz and Embrechts, 2017]
to list and solve the possible error sources when dealing with this method.

An early solution to the problem of input level dependency (see Sec. 3.2.4) of the Hammer-
stein kernels is discussed in [Tronchin and Coli, 2015; Schmitz and Embrechts, 2017]. Finally,
the effect of using a Hammerstein model on a non-Hammerstein nonlinear system (creating
some artifacts in the measured impulse responses) has been discussed in [Torras-Rosell and
Jacobsen, 2011; Schmitz, 2012; Ćirić et al., 2013].

In this chapter, we first highlight some difficulties that must be considered during the
implementation of the ESS method, in order to perform an accurate identification of nonlinear
(NL) systems. The nature of these problems is first described, then a solution is proposed for
each of them. Finally, these solutions are validated by the emulation of real nonlinear audio
devices.

3.2 Hammerstein kernels identification method

This section briefly reminds the principles of the used Hammerstein kernels identification
method. In order to ensure a good understanding, we illustrate it with a third-order model,
before extending it to a general order M.
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Figure 3.1 The polynomial parallel cascade of Hammerstein models

3.2.1 Volterra series

Considering time-invariant nonlinear systems, the Volterra series expresses the relationship
between an input signal x(t) and its corresponding output signal y(t) as an infinite sum of
multiple convolutions [Ogunfunmi, 2007]:

y(t) =
∞

∑
m=1

∫ +∞

−∞

. . .
∫ +∞

−∞

vm(τ1, . . . ,τm).
m

∏
i=1

x(t − τi) dτ1 . . .τm, (3.1)

where {vm(τ1, . . . ,τm)}∀m∈N+ are the Volterra kernels characterizing the system.

3.2.2 Cascade of Hammerstein models

It has been shown in Sec. 2.4.3 that any continuous nonlinear system can be represented by
a finite set of M parallel branches composed by a static nonlinearity Pm(.) surrounded by
two linear filters. The parallel cascade of Hammerstein models is a subclass of this general
model where only static nonlinear monomial functions are followed by a linear filter hm(t)

(the Hammerstein kernels), as presented in Fig. 3.1. A nonlinear, continuous time, causal
Hammerstein model with a finite order M can express its input/output relationship as:

y[n] =
M

∑
m=1

∫ +∞

−∞

hm(τ).xm(t − τ). (3.2)
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The Volterra kernels from Eq. (3.1) and the Hammerstein kernels from Eq. (3.2) are equiv-
alent if vm(τ1, . . . ,τm) = 0 when τi ̸= τ j ∀i, j ∈ [1,m] and i ̸= j. In this case, vm(τ1, . . . ,τm) =

vm(τ1, . . . ,τm = τ1) = hm(τ) and the Hammerstein kernels correspond to the Volterra kernels
taken on their principal diagonals (as presented in Eq. (2.21)). Therefore, the polynomial
parallel cascade of Hammerstein models is also called a diagonal Volterra model. Its equivalent
in discrete time is given by:

y[n] =
M

∑
m=1

hm[n]∗ xm[n], (3.3)

where the symbol "∗" refers to the convolution operator defined in Eq. (2.3).

3.2.3 Hammerstein kernels identification using the ESS method

In order to enable the extraction of the Hammerstein kernels, the nonlinear system has to be
excited with a special input signal (i.e., the Exponential Sine Sweep (ESS)). Such a signal
should enable the separation of the different harmonic impulse responses after the deconvolution
of the nonlinear system output by the inverse filter of the ESS. The next two subsections explain
the properties of the ESS input signal and how it can be used to compute the Hammerstein
kernels.

The following is greatly inspired by our paper published in the Journal of the Audio
Engineering Society [Schmitz and Embrechts, 2017].

Exponential sine sweep phase properties

In the following, our development starts from the original formulation of Farina et al. [Fa-
rina et al., 2001; Farina, 2000]. The equations are expressed in discrete time for a better
correspondence with their practical implementations. Let ss[n] be the ESS signal such that:

ss[n] = Asin(φ [n]), (3.4)

with a phase φ [n] that grows exponentially such that :

φ [n] = ω1
R
fs
.(e

n
R −1) ∀n ∈ [0,N −1], (3.5)

where:
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• R = (N − 1).(log ω2
ω1
)−1 is the inverse of the frequency changing rate. Note: in this

dissertation, the log symbol refers to the natural logarithm (logarithm in base e) also
often noted as ln.

• N is the length of the sweep in samples.

• ω1,ω2 are respectively the initial and final angular frequencies (rads−1).

• fs is the sampling rate (Hz).

An interesting property of the ESS (as explained in Appendix. B.1) is that the mth harmonic
of the ESS can be derived from the ESS itself delayed by ∆m, as:

m.φ [n] = φ [n+∆m]−B(m−1) ∀n ≤ N −1−∆m, (3.6)

where: 
B =

ω1.R
fs

,

∆m = R. log(m).

(3.7)

The B term of Eq. (3.6) could be neglected in the following operations if B = 2kπ, with k ∈
N, since it just adds an integer multiple of 2π to the sine phase. However, this forces the ESS
signal to have specific parameters which could be not ideal.

The property of the ESS signal in Eq. (3.6) is interesting since after its deconvolution by
the ESS inverse filter ss[n], the contribution of a harmonic m in the impulse response will be
delayed by −∆m samples from the fundamental impulse response. In particular, if B ∈ 2kπ , the
deconvolution of the ESS by its inverse filter can be written as:

ss[n]∗ ss[n] =
N−1

∑
k=0

ss[k].ss[n− k] =C.δ [n−n0],

sin(m.φ [n])∗ ss[n] =C.δ [n− (n0 −∆m)],

(3.8)

where C is a constant, δ is the Dirac delta function [Oppenheim et al., 1996, p.30] and n0 is the
position along the time axis of the first order (linear) impulse response which depends on the
ESS length (i.e., n0 = N −1 [Holters et al., 2009]). One can notice that the values ∆m are real
and most often non-integer (except for m=1). Consequently, a phase correction will be required
during the extraction of the harmonic impulse responses in order to avoid phase reconstruction
problems when computing the Hammerstein kernels as it is explained in Sec. 3.3.4. We must
note at this point that if m ̸= 1, the second convolution in Eq. (3.8) is not the same delayed
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version of the Dirac pulse than in the case where m = 1. This problem will be addressed in
Sec. 3.3.6.

The inverse ESS can be computed in several ways [Rébillat et al., 2011; Novak et al.,
2015; Holters et al., 2009; Meng et al., 2008; Norcross et al., 2002; Kirkeby and Nelson,
1999]. However, the advantage of using an analytical computation of the inverse sine sweep as
described in [Novak et al., 2015] is that the bandwidth of the inverse filter can be extended to any
frequency if needed. As explained in Appendix. B.2, the analytical version of ss[n] F−→ SS(ω)

can be computed as: 
SS(ω) = 2

√
ω

2πL
e− j

[
L
(

ω

(
1−ln( ω

ω1
)
)
−ω1

)
− π

4

]
,

with L =
R
fs
.

(3.9)

A third order model example

In order to illustrate the origin of the difficulties mentioned in the introduction, we propose to
establish the Hammerstein kernels equations for a model developed up to the third order:

y[n] = x[n]∗h1[n]+ x2[n]∗h2[n]+ x3[n]∗h3[n]. (3.10)

An extension of the method is then developed up to any order M at the end of this section.
The goal is to obtain M equations giving the M Hammerstein kernels hm[n].

Overview of the Hammerstein Kernel Identification by Sine Sweep (HKISS)
method:

1. The system to model is excited by an ESS and its output y is recorded.

2. The signal y is deconvolved by the inverse filter of the ESS (i.e., ss). The resulting
signal is called the global impulse response g.

3. g is cut into M separated impulse responses gm corresponding to the M harmonic
impulse responses of the system.

4. A transformation T is applied to the gm impulse responses in order to compute the
hm Hammerstein kernels.

5. Eq. (3.3) can then be applied to emulate the system for other input signals.
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The first step is to use the ESS signal (3.4) as an input of the model. Developing the Eq. (3.3)
up to the third order gives:

y[n] = Asin(φ [n])∗h1[n]

+A2 sin2(φ [n])∗h2[n]

+A3 sin3(φ [n])∗h3[n].

(3.11)

Using trigonometric formulas [Zwillinger, 2002], the sine powers are decomposed into an
order-one formulation:

y[n] = Asin(φ [n])∗h1[n]

− A2

2
[cos(2φ [n])−1]∗h2[n]

+
A3

4
[3sin(φ [n])− sin(3φ [n])]∗h3[n].

(3.12)

In order to deconvolve the signal y[n] properly, the cosine term has to be changed in a sine
expression. This can be done by using the Hilbert Transform [Zwillinger, 2002; Qin et al.,
2008] : {

H {sin(u(t))}, sin(u(t))∗ h̄(t) =−cos(u(t)),

H {cos(u(t))}, cos(u(t))∗ h̄(t) = sin(u(t)),
(3.13)

where H {.} is the Hilbert Transform and h̄(t) = 1
πt its kernel. Introducing (3.13) in (3.12) and

using the phase property (3.6) of the ESS, the output of the system can be written as:

y[n] = Asin(φ [n])∗h1[n]

+
A2

2
[sin(φ [n+∆2]−B)∗ h̄[n]+1]∗h2[n]

+
A3

4
[3sin(φ [n])− sin(φ [n+∆3]−2B)]∗h3[n]

= ss[n]∗h1[n]

+
A
2
(ss[n+∆2]cos(B)∗ h̄[n]− ss[n+∆2]sin(B))∗h2[n]

+
A2

4
(3ss[n]− ss[n+∆3]cos(2B)− ss[n+∆3]sin(2B)∗ h̄[n])∗h3[n],

(3.14)

where the DC offset of the even power has been neglected as it is only related to the mean
value of the ESS. Moreover, in practice, most audio devices stop the DC component. In the
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frequency domain, using the trigonometric exponential property, the Euler formula and the
Hilbert Transform property [Zwillinger, 2002], the Eq. (3.14) becomes (see Appendix. B.3 for
the development) for ω > 0:

Y (ω) = SS(ω).H1(ω)

− A
2

(
jSS(ω).e− jB.e

jω∆2
fs

)
.H2(ω)

+
A2

4

(
3.SS(ω)−SS(ω).e− j2Be

jw∆3
fs

)
.H3(ω).

(3.15)

One can notice that since the Hammerstein kernels are real in the time domain, the Hermitian
property [Oppenheim et al., 1996] can be used in the frequency domain to find the Hammerstein
kernels for negative frequencies such that:

Hm(−ω) = H∗
m(ω). (3.16)

The second step is to deconvolve the signal Y (ω) with the inverse filter SS(ω):

G(ω) =
Y (ω).SS(ω)

C
= e− jωn0/ f sH1(ω)

− A
2

(
j.e− jB.e

− jω(n0−∆2)
fs

)
.H2(ω)

+
A2

4

(
3e− jωn0/ f s − e− j2Be

− jw(n0−∆3)
fs

)
.H3(ω).

(3.17)

Using the inverse Fourier transform, the Eq. 3.17 can be expressed in the time domain such
that:

g[n] = h1[n−n0]

− A
2
(

j.e− jB.h2[n−n0 +∆2]
)

+
A2

4
(
3h3[n−n0]− e− j2Bh3[n−n0 +∆3]

) (3.18)

As it can be seen, the deconvolved output of the system is an impulse response g[n] formed
by the sum of the Hammerstein kernels hm[n] positioned around some specific locations given
by n0 or n0 −∆m (as presented in Fig.3.2). The difficulty is now to be able to separate the
different kernels occupying the same position on the time axis (e.g., the Hammerstein kernels
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number 1 and 3 both bring contributions centered on n0). By grouping in gm the kernels having
the same position in the time domain or by grouping the Gm(ω) terms having the same phase
delay e− j ω

fs (n0−∆m) in the frequency domain, the Eq. (3.17) can be written in a matrix form such
that: G1(ω)

G2(ω)

G3(ω)

=

1 0 3A2

4

0 − jAe− jB

2 0
0 0 −A2e− j2B

4

 .

H1(ω)

H2(ω)

H3(ω)

 . (3.19)

By inverting this relation, the Hammerstein kernels (∀ω > 0) are given by:H1(ω)

H2(ω)

H3(ω)

=

1 0 3e j2B

0 2 je jB

A 0
0 0 −4e j2B

A2

 .

G1(ω)

G2(ω)

G3(ω)

 . (3.20)
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Figure 3.2 Deconvolution of the power series (3.10) up to the third order when the input is an
ESS in the frequency range [50, 5000] Hz.
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Extension of the method up to the order M

The generalization up to the order M can be done by means of the trigonometric power formulas
of sine [Spiegel, 1968]:

sin2n+1(t) =
−1n

4n

n

∑
k=0

(−1)kCk
2n+1 sin([2n+1−2k]t)

∀n ∈ N,

sin2n(t) =
−1n

22n−1

n−1

∑
k=0

(−1)kCk
2n cos([2n−2k]t)+

Cn
2n

22n

∀n ∈ N0,

(3.21)

where C is the binomial [Abramowitz and Stegun, 1965, p.265]:

Ck
n =

n!
k!(n− k)!

. (3.22)

Let first assume that B ∈ 2kπ . Using Eq. (3.6) it can then be written that:

sin(m.φ [n]) = sin(φ [n+∆m]) ∀n ≤ N −1−∆m. (3.23)

Using this equation in Eq. (3.21), enables to derive power formulas of the ESS signal for
the positive frequency domain:

SS2n+1 =SS
−1n

4n

n

∑
k=0

(−1)kCk
2n+1e jω∆2n+1−2k/ fs

=an.SS ∀n ∈ N,

SS2n = j.SS.
−1n

22n−1

n−1

∑
k=0

(−1)kCk
2ne jω∆2n−2k/ fs

=bn.SS ∀n ∈ N0,

(3.24)

where SSm is the Fourier transform of mth power of the ESS signal and considering that the
term Cn

2n
22n corresponding to the DC component can be removed as explained earlier.
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Deconvolution process

Taking the development back to the Eq. (3.17) but applying (3.24) for sine powers, the de-
convolution in the frequency domain of the Hammerstein model given in Eq. (3.3) leads
to: 

Z(ω) = Y (ω)SS(ω)e jωn0/ fs

= H1(ω)+
MM

∑
m=1

[amH2m+1(ω)+bmH2m(ω)] ,
(3.25)

where, MM = (M−1)/2. The transformation of Eqs. (3.24), (3.25) into the time domain shows
that z[n] is a superposition of several versions of each Hammerstein kernel hm[n] delayed by ∆k

(e jω∆k/ fs in the Fourier domain). We name gm[n] the superposition of the hi[n] having the same
delay ∆m. Furthermore, we consider that all these harmonic impulse responses "start" at n=0,
which requires to apply a delay of ∆m to all of them:

G1(ω)
...

GM(ω)

= T.


H1(ω)

...
HM(ω)

 , (3.26)

where the elements Tu,v with u,v ≤ M can be developed using Eq. (3.25) in the matrix form
and grouping in Gm(ω) the Hm(ω) having the same phase delay:

Tu,v =


(−1)

1−u
2

2v−1 C
v−u

2
v ∀v ≥ u & mod (

u+ v
2

) = 0

0 else.
(3.27)

Finally, the Hammerstein kernels in the positive frequency domain are given by the follow-
ing relationship: 

H1(ω)
...

HM(ω)

= (T)−1


G1(ω)

...
GM(ω)

 . (3.28)

The case where B ̸= 2kπ with k ∈ N is discussed in Sec. 3.3.3.

3.2.4 Note on the Hammerstein model and its input level dependency

If the nonlinear system to model belongs to the Hammerstein class, the cascade of Hammerstein
models takes the amplitude of the input signal into account. For example, if the nonlinear
system to model is a power series up to the 6th order, Fig. 3.3 compares the output signal
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of this power series when the input signal is x = 0.5sin(2π1000t) with its emulation using
the Hammerstein kernels which have been obtained by using an ESS of amplitude 1. The
signal is reconstructed correctly. However, a real nonlinear system, could no longer match
perfectly the Hammerstein model (see the condition to belong to a Hammerstein model in
Sec.2.4.1). Therefore, the Hammerstein kernels could be different according to the amplitude
of the input signal [Novak et al., 2010a; Tronchin and Coli, 2015]. From now on, Hα

m (ω) are
the Hammerstein kernels measured using an ESS whose amplitude is α :

ss[n] = α sin(φ [n]). (3.29)

To illustrate the Hammerstein kernels amplitude dependency, when the system to model
does not perfectly match the Hammerstein model, Fig. 3.4 presents the comparison between an
ESS (focus on frequencies close to f =1000 Hz) with A = 0.5 passing through the distortion part
of the amplifier Ibanez TSA15h and its emulation using the same input signal. The emulation
is processed using the Hammerstein kernels measured using an ESS of amplitude α = 1 (i.e.,
H1

m(ω)). As it can be seen, the signal coming from the distortion effect (y1) is different from
the emulated signal (y2), while the emulation of this amplifier matches perfectly if using A = α

(see Sec. 3.4.2).
For the remaining part of this chapter, the symbol α over the Hammerstein kernels will be

omitted if α = 1.

3.3 Optimization of the Hammerstein kernels identification
method

Eq. (3.28) can be used to compute the Hammerstein kernels. However, several difficulties must
be taken into account to enable an accurate emulation. In order to illustrate them, a top down
approach is chosen, starting with the optimized case (in Sec. 3.3.2) where all the precautions
are taken. Then, they are removed one by one to prove their necessity (see Sec. 3.3.3, 3.3.4,
3.3.5, 3.3.6).

3.3.1 Test algorithm to highlight the potential difficulties of the HKISS
method

We propose a test algorithm (see Fig. 3.5) based on the nonlinear system described by Eq. (3.3)
which belongs to the Hammerstein class. The kernels hm[n] are chosen to be simple all-pass
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Figure 3.3 Comparison between a sine of amplitude 0.5 with a frequency f =1000 Hz passing
through a power series up to the order 6 (y1) and its emulation (y2) using the Hammerstein
kernels measured for an ESS of amplitude 1 (y1 and y2 have been normalized to be compared).
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Figure 3.4 Comparison between an ESS of amplitude 0.5 (with frequencies close to f =1000 Hz)
passing through the distortion effect of the amplifier Ibanez TSA15h (y1) and its simulation
(y2) by means of Hammerstein kernels measured for an ESS of amplitude 1.
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filters restricted to the Nyquist band [0, fs/2] in such a way that the created system is equivalent
to a power series.

Using the ESS as input signal, the output y1 is the result of the power series (see Sec. 3.3.7
for aliasing consideration). Deconvolving y1 with the ESS inverse filter ss[n] enables to compute
the Hammerstein kernels of this nonlinear system. Then, using Eq. (3.3) the emulated signal y2

can be computed based on the Hammerstein kernels and the ESS powers. If the Hammerstein
kernels are correctly reconstructed, y1 and y2 have to be identical.

( )M.

Nonlinear
Convolution

Computing the
Volterra kernels

*

+

Figure 3.5 Test algorithm: the output of the power series (y1) and its emulation by means of
Hammerstein kernels (y2) have to be identical.

3.3.2 The best case: a correct reconstruction through the HKISS method

Following the top down approach, Fig. 3.6 presents the best match between the output of the
power series which is the target y1 (up to the order M=6) and its emulation by means of the
Hammerstein kernels (i.e., the prediction y2). For clarity, a focus on a part of the sweep signals
(arbitrarily chosen at frequencies close to f = 1000Hz) has been applied. As it can be seen
in Fig. 3.6, the power series is correctly reconstructed. This best match has been obtained by
following all the precautions and corrections described in the next subsections.

3.3.3 Hammerstein kernels phase errors

The model (3.20) shows that the Hammerstein kernels depend on a constant factor B introduced
in the phase of the power of the ESS. During the general formulation given at Eq. (3.28), the
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Figure 3.6 Comparison between the target y1[n] and the prediction y2[n] at f ≃ 1000Hz (best
case).

simplifying assumption that B ∈ 2kπ, with k ∈ N (see Sec. 3.2.3) has been made. Forcing B

close enough to 2kπ would imply to tweak the ESS parameters as it has been done by [Novak
et al., 2015]. In this research, we rather propose to directly take B into account using Eqs. (3.6)
and (3.21). This can be done by multiplying term by term the (T)−1 matrix with CorrB: a
phase corrective matrix of size M×M as explained in Appendix. B.4:

CorrB(u,v) =


e j0 . . . e j(v−1)B

... . . . ...
e j0 . . . e j(v−1)B

 . (3.30)

Indeed, after application of the CorrB matrix in Eq. 3.28, all the phases of the Hammer-
stein kernels are equal to zero (see Fig.3.7), which is a sufficient condition to avoid phase
reconstruction problems [Vanderkooy and Thomson, 2016].

Fig. 3.8 shows the comparison between y1 and y2 when the matrix CorrB is not applied
(with mod (B,2π) = 0.7). The emulated signal (y2) is very sensitive to the B factor. As it can
be seen, it no longer corresponds to the original power series signal (y1).
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Figure 3.7 Phase of the Hammerstein kernels Hm(ω) computed for a power series after applica-
tion of the matrix CorrB ( fs = 44100Hz).
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Figure 3.8 Comparison between y1[n] and y2[n] when the B correction is not applied. Focus on
a part of the ESS signal where the frequency is close to f =1000 Hz.
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3.3.4 Phase mismatch when extracting the impulses gm[n]

The harmonic impulse responses (gm[n]) appear in the deconvolved signal z[n] at specific
positions on the time axis. They can be extracted, around the position n0 −∆m. However,
no matter how the ESS parameters are adjusted, it is impossible to satisfy the condition
∆m ∈ N, ∀m ∈ [1,M] (except for the trivial case M = 1). Actually, the gm[n] impulses are
extracted around the position n0−Ceil(∆m). This leads to a position error εm =Ceil(∆m)−∆m

specific to each order m, as shown in Fig. 3.9. In the frequency domain, this leads to a phase
mismatch between the kernels Gm(ω). Consequently, the computation of the Hammerstein
kernels are impacted as they depend on a weighted sum of the kernels Gm(ω) (see Eq. (3.28)).

∆2

∆3

∆4

Ceil(∆4) Ceil(∆3) Ceil(∆2)

ε4 ε3 ε2 N-1

g1[n]
g2[n]

g3[n]
g4[n]

[n]

1

Figure 3.9 Deconvolution of an ESS passing through a power series, position error εm.

Choosing the sweep parameters in order to minimize the εm leads to a nonlinear optimiza-
tion problem having no exact solutions. Moreover, it could be very restrictive for the ESS
parameters when the order M increases. [Novak et al., 2015] propose to shift the signal z[n] by
(∆m −Ceil(∆m)) before extracting each gm[n] to solve this problem:

Zm(ω) = Z(ω)e j ω

fs (Ceil(∆m)−∆m). (3.31)

This phase mismatch mostly introduces some reconstruction errors at high frequencies.
Fig. 3.10 shows the comparison between the target y1 and the prediction y2 if the phase

mismatch correction is not applied. There is a significant difference between the two signals,
mostly starting at 3000 Hz and increasing with frequency.
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Figure 3.10 Comparison between the target y1[n] and the prediction y2[n] for input frequencies
close to 6000 Hz when the phase correction from Eq. (3.31) is not applied (y2[n] perfectly
matches y1[n] if the correction is applied).

3.3.5 ESS fade in/out

In order to avoid spectral leakage due to abrupt termination of the ESS, an appropriate fade-in
and fade-out procedure has been applied. Similarly to [Novak et al., 2015] a raise cosine
window has been chosen. If the loss of bandwith is expressed as a fraction of f1 and f2, for the
fadeIn and fadeOut respectively, then the length of the window to apply is given by:

lengthfadeIn = R · log(1+ loss),

lengthfadeOut = R · log( f2 ·
1− loss

f1
)+1−N.

(3.32)

3.3.6 Spreading of the Dirac impulse

We have assumed in Eq. (3.8) that the deconvolution of ss(m.φ [n]) is a delayed Dirac impulse
δ [n− (n0 −∆m)]. Indeed, as the signal is band-limited, the Dirac impulse is a Sync function
δ ′

m. It follows that each measured kernel gm[n] is in fact:

g′m[n] = gm[n]∗δ
′
m. (3.33)
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Moreover, as the signal ss(m.φ [n]) starts at frequency m. f1 instead of f1, δ ′
m is more and

more band limited as the order m increases. These limitations spread the kernels g′m[n] around
the positions n0 −∆m.

Extracting the kernels gm[n] from z[n], by starting at the exact positions ∆m can therefore be
problematic. We prefer cutting the kernels gm[n] a few samples before that position to have a bet-
ter reconstruction of the Hammerstein kernels. In practice, 1000 samples have been chosen and
there is no need to take a larger number of samples (at fs = 44100Hz). For example, Fig. 3.12
shows the comparison between the emulated signal using kernels gm[n] cut at n0 −∆m −1000
(signal y′1) and the emulated signal using kernels gm[n] cut at n0 −∆m (signal y2). The signal y′1
is better aligned to the signal y1 of the Fig. 3.6 than y2. Table 3.1 shows the mean absolute er-
ror between y′1 and y2 for frequencies close to f =1000 Hz in the ESS for different cutting offsets.

Table 3.1 Mean absolute error for frequencies close to 1000 Hz between y′1 and y2 for different
offsets.

cutting offset -1000 -500 -100 -10 0
Mean error 0.005 0.007 0.014 0.062 0.155

Note: bandwidth = [5,22000] Hz with fs = 44100Hz

For real-time emulations, introducing such a delay in the impulse responses could affect
the output signal in the same way since these impulse responses will be convolved with the
signal to emulate. This signal will therefore be delayed by the same offset. To avoid this delay,
we propose to cut the kernels gm[n] at n0 −∆m −1000, to compute Hammerstein kernels and
then delete the first thousand samples of the Hammerstein kernels. Fig. 3.13 shows that this
method gives excellent results.

In the case where the bandwidth of the ESS is short (measurement of a sub-woofer for
example), the Dirac impulses δ ′

m become larger and larger (as presented in Fig.3.11). Only
cutting the first thousand samples after the computation of the Hammerstein kernels could lead
to a wrong representation. In this case, a compromise has to be found between the accuracy
of the Hammerstein kernels and their possible use for real-time emulations. In the Toolbox,
described in Sec. 3.6, the choice of the offset before the beginning of the Hammerstein kernels
is therefore left open to the user, depending on the bandwidth and the real-time constraint of
the user’s application.

One can notice that the sampling rate used here is always 44100 Hz as we try to ensure
compatibility with basic sound cards. Nevertheless, the use of higher sampling rates allows a
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better compactness of the impulse responses as the harmonic m extends its bandwidth to the
frequency min(m. f2, fs/2).

The offset of 1000 samples as been chosen according to the results of Table 3.1. However,
since the number of samples between two harmonic impulses evolves logarithmically, they are
increasingly closer when the order M increases (see Eq. 3.7). In order to avoid interferences
between the impulse gm+1[n] and the impulse gm[n], the following condition is imposed:

∆M −∆M−1 > 2 ·offset. (3.34)

In practice, this case happens only when the following conditions are combined:

• The length of the sweep is short.

• The bandwidth is short.

• Numerous Hammerstein kernels are requested.

For example, when the parameters of the ESS are N = 20 · 44100, f1 = 20Hz, f2 =

20000Hz, the condition (3.34) is satisfied until the order reaches M=64 (with an offset=1000).
However for an ESS whose parameters are N = 1 ·44100, f1 = 20Hz, f2 = 100Hz the order
should be limited to M = 14 (or the offset has to be decreased).

3.3.7 Computing the powers of the input signal

Eq. (3.3) shows that implementing the Hammerstein model requires the powers of the input
signal. Some precautions must be taken to avoid aliasing during the emulation of the nonlinear
Device Under Test (DUT). In order to raise the input signal x[n] to the power m, the following
procedure is used:

• Resampling the input signal at m. fs by zeros padding (where fs is the original sampling
rate).

• Filtering the signal in the initial Nyquist band [0, fs
2 ].

• Raising the obtained signal to the power m (at m. fs sampling frequency).

• Filtering the result in the Nyquist band [0, fs
2 ].

• Downsampling the filtered signal at the fs sampling frequency.
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Figure 3.11 Comparison in time domain of the impulse response obtained when deconvolving
an ESS signal having a bandwidth comprised between [20,2000]Hz or between [20,4000]Hz.
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Figure 3.12 Comparison between emulated signals cutting gm[n] at n0 −∆m −1000 (y′1) and at
n0 −∆m (y2).
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Figure 3.13 Comparison between the output power series y1 and the emulated signal y2
computed by cutting gm[n] at n0 −∆m −1000 and deleting the first thousand samples of hm[n].

3.4 Emulation of nonlinear audio devices using HKISS method

In the precedent section, a set of precautions, which are necessary for a correct computation of
the Hammerstein kernels has been presented. Taking these precautions leads to the Hammerstein

Kernels Identification by Sine Sweep (HKISS) method. This section presents several tests made
on real nonlinear audio devices in order to prove the efficiency of this method.

3.4.1 Evaluation algorithm

The following method (illustrated in Fig. 3.14) is proposed to evaluate the HKISS method over
different nonlinear audio devices:

• An ESS signal is sent to the audio Device Under Test (DUT).

• The output of the system is recorded and called the target y1.

• From y1, the Hammerstein kernels can be computed using Eq. (3.28).

• The DUT is emulated through Eq. (3.3) using the ESS as input signal and the Ham-
merstein kernels previously computed. The resulting signal is called the prediction
y2.
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The comparison between the target and the prediction can be made:

1. In the time domain.

2. In the frequency domain to compare the harmonic content of the target and the prediction.
The root mean square error between the ten first harmonics of the target and prediction
signals is used. This measure, called the harmonic content accuracy, is defined in
Eq. (2.63).

ss[n]

Nonlinear

y1

y2

ssm [n]

z[n]

ss[n]

Compute Volterra

kernels
(.)M

hm [n]

Convolut ion

NL device

under test

Nonlinear
Convolution

Computing
Volterra kernels

NL Device
Under Test

Figure 3.14 Comparison between the signal coming from the nonlinear device under test y1
and its emulation y2.

3.4.2 Emulation of a guitar distortion effect (tube screamer) through the
HKISS method

The first nonlinear audio device under test is the distortion effect of the Amplifier TSA15h
[Ibanez, 2015]. This effect is the copy of the famous Tubescreamer distortion effect [Ibanez,
1978]. The parameter Gain of this effect is set at its maximum. Figs 3.15, 3.16 and 3.17
compare the target y1 (i.e., the signal coming from the distortion device) with the prediction y2

(i.e., the signal computed through the HKISS method by using 10 Hammerstein kernels) for the
frequencies close to 500, 1000 and 5000 Hz respectively. As it can be seen, the curves are very
close.



3.4 Emulation of nonlinear audio devices using HKISS method 79

Figure 3.15 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 500Hz. Emulation of the distortion effect of
the TSA15h amplifier.

Figure 3.16 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the distortion effect
of the TSA15h amplifier.
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Figure 3.17 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 5000Hz. Emulation of the distortion effect
of the TSA15h amplifier.

Fig. 3.18 presents the power spectrum of the target and the prediction are compared when
the frequency of the input ESS signal is close to f = 1000Hz. The harmonic content accuracy
is equal to 0.09dB. This proves that the harmonic content is accurately represented. However
when a guitar signal is used, its amplitude is not constant and does not correspond to the
amplitude of the ESS anymore. Consequently, the prediction is less accurate. This is shown in
Fig. 3.19 where the power spectrum of the target and the prediction when the input is a guitar
note whose fundamental is close to the frequency f = 400Hz.

3.4.3 Emulation of the tube amplifier TSA15h through the HKISS method

One of the most popular application in the field of nonlinear audio modeling is the emulation
of tube amplifiers, so dear to guitarists. The emulation of the tube amplifier TSA15h with the
Gain parameter at its maximum position is presented in Figs. 3.20 , 3.21 & 3.22, using an ESS
as input signal, with a focus on the frequencies close to 200, 1000 and 5000Hz respectively.
The prediction y2 is very close to the measured signal y1, in each case.

The power spectrum comparison of the target and the prediction when the frequency of the
input ESS signal is close to f = 1000Hz is given in Fig. 3.23. The harmonic content accuracy



3.4 Emulation of nonlinear audio devices using HKISS method 81

Figure 3.18 Comparison in the frequency domain, between the target y1 and the prediction y2
when the input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the distortion
effect of the TSA15h amplifier (i.e., the Tube-screamer circuit).

Figure 3.19 Comparison in the frequency domain, between the target y1 and the prediction
y2 when the input is a guitar note whose fundamental is close to the frequency f =400Hz.
Emulation of the distortion effect of the TSA15h amplifier.
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is equal to 0.21dB. This proves that the nonlinearities specific to the vacuum tube are also well
emulated by the HKISS method.

For this amplifier, the emulation of a guitar note is worse than for the emulation of the
distortion part only (previously presented in Fig. 3.19). This is shown in Fig. 3.24 where the
power spectrum of the target and the prediction when the input is a guitar note close to the
frequency f = 400Hz. One can notice that the THD of this amplifier is higher than the THD of
the Tube-screamer only. This could explain why the emulation is worse than the one for the
Tube-screamer distortion circuit.

Finally, a time domain comparison between the target and the prediction is given for
different orders (i.e., using different numbers of Hammerstein kernels) in Fig. 3.25. A good
agreement can already be obtained with only few Hammerstein kernels (about five or six) which
is interesting for real-time implementations.

Figure 3.20 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 200Hz. Emulation of the TSA15h tube
amplifier.

3.4.4 Emulation of the tube amplifier: Engl retro tube 50 through the
HKISS method

Another tube amplifier has been tested, the Engl retro tube 50 [Engl, 2015]. This amplifier
is more nonlinear than the TSA15h. The emulation of the Engl retro tube 50 amplifier with
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Figure 3.21 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the TSA15h tube
amplifier.

Figure 3.22 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 5000Hz. Emulation of the TSA15h tube
amplifier.
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Figure 3.23 Comparison in the frequency domain, between the target y1 and the prediction y2
when the input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the TSA15h

tube amplifier.

Figure 3.24 Comparison in the frequency domain, between the target y1 and the prediction
y2 when the input is a guitar note close to the frequency f =400Hz. Emulation of the TSA15h
amplifier.
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Figure 3.25 Emulation of the tube amplifier TSA15h when the input signal is a sine wave a
the frequency f =500Hz using different orders of simulation. Comparison in the time domain
between the target y1 and the prediction y2.

the Gain parameter at its maximum position is presented in Figs. 3.26, 3.27 & 3.28 using an
ESS as input signal with a focus on frequencies close to 200, 1000 and 5000Hz respectively.
The prediction y2 is very close to the measured signal y1, in each case.

The power spectrum comparison of the target and the prediction when the frequency of the
input ESS signal is close to f = 1000Hz is given in Fig. 3.29. The harmonic content accuracy
is equal to 0.04dB.

3.5 Discussion on the limitations of the method

The HKISS method is pretty robust. For example, applying again the test algorithm of Sec. 3.3
(power series model) up to the order 20 causes no problem, as presented in Fig. 3.30. The
model is also accurate for high frequencies (see Fig. 3.31). The remaining limitations are
discussed in this section.
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Figure 3.26 Comparison in the time domain between the target y1 and the prediction y2 when
the input is an ESS. Focus on frequencies close to 200Hz. Emulation of the Engl tube amplifier.

Figure 3.27 Comparison in the time domain between the target y1 and the prediction y2 when the
input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the Engl tube amplifier.
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Figure 3.28 Comparison in the time domain between the target y1 and the prediction y2 when the
input is an ESS. Focus on frequencies close to 5000Hz. Emulation of the Engl tube amplifier.

Figure 3.29 Comparison in the frequency domain, between the target y1 and the prediction y2
when the input is an ESS. Focus on frequencies close to 1000 Hz. Emulation of the Engl tube
amplifier.
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Figure 3.30 Comparison between the target y1 and the prediction y2 for a power series up to the
20th order when the input is an ESS. Focus on frequencies close to 1000 Hz.
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Figure 3.31 Comparison between the target y1 and the prediction y2 for a power series up to the
20th order when the input is an ESS. Focus on frequencies close to 16000Hz.
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3.5.1 Order limitation

The amplitude of the kernels gm[n] decreases when the order m increases. It could be a problem
for noisy nonlinear systems when the kernels reach the background noise creating a maximum
order limit. Improving the signal to noise ratio (SNR) is thus important if high order emulation
is required. It could be convenient to take several measurements of a device and averaging the
results in order to improve the SNR. However, we must be sure that the system is perfectly time
invariant. For example, the measurement of a loudspeaker at a high power could be difficult as
the heating of the coil changes its characteristics.

3.5.2 Low-frequency limitation

As the ESS is band limited in the frequency interval [ω1,ω2], its mth harmonic is band limited in
[m.ω1,m.ω2] (the upper bound could be the Nyquist frequency). It means that the deconvolution
by the inverse filter is also band limited in the frequency interval [m.ω1,m.ω2] which gives a
band limited Dirac impulse δ ′

m.
Eq. (3.8) can then be rewritten as:

sin(m.φ [n])∗ ss[n] = D.δ ′
m[n− (n0 −∆m)], (3.35)

where D is an amplitude constant. In the frequency domain, the impulse δ ′
m delayed by ∆m is a

step function 1(ω) on the domain [m.ω1,mω2] (see Fig. 3.32). Therefore (considering that the
impulse is normalized such that D=1) :

SSm(ω).SS(ω) = 1[m.w1,m.w2](ω). (3.36)

In order to understand the impact on the Hammerstein kernels computations, let’s go back
over Eq. (3.15) again and convolve its output signal y(t) with the ESS inverse filter using
Eq. (3.36): 

G1(ω) = 1[w1,w2].H1(ω)+
3A2

4
H3(ω).1[w1,w2],

G2(ω) =
−A
2

j.e− jB.H2(ω).1[2.w1,2.w2],

G3(ω) =
−A2

4
e− j2B.H3(ω).1[3.w1,3.w2].

(3.37)
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Figure 3.32 FFT of δ ′
m with m ∈ {1,2,6}.

By inverting the relation, the Hammerstein kernels can be obtained such that:
H3(ω).1[3.w1,3.w2] =

−4
A2 e j2B.G3(ω),

H2(ω).1[2.w1,2.w2] =
2
A

j.e jB.G2(ω),

H1(ω).1[w1,w2] = G1(ω)− 3A2

4
H3(ω).1[w1,w2].

(3.38)

This last expression indicates that H3(ω).1[w1,w2] must be known in order to compute
H1(ω).1[w1,w2], but only H3(ω).1[3.w1,3.w2] is known from the first expression in Eq. (3.38).
Consequently, for a power series up to the third order, the Hammerstein kernel H1(ω) is well
reconstructed only in the frequency range [3ω1,3ω2].

In the general case, the Hammerstein kernels are correctly reconstructed for the frequencies
ωvalid which correspond (for a nonlinear system of order M) to:

ωvalid ≥ M ·ω1. (3.39)
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The Fig. 3.33 illustrates this problem by presenting the comparison in the frequency
domain between the first Hammerstein kernel of a power series up to the 6th order (where
Hm(ω) = 1[w1,w2]) and the first Hammerstein kernel reconstructed with the HKISS method. The
reconstructed one does not correspond to the initial one until it reaches the frequency f = 6 · f1.
A way to circumvent this problem is to choose the starting frequency of the ESS (ω1) according
to the desired valid frequency range. For example, if a 10 order nonlinear system has to be
emulated on the frequency range [100, 20000]Hz, the starting frequency has to be chosen such
that f1 = 10Hz.

Figure 3.33 Comparison between the first Hammerstein kernel coming from a power series up
to the order 6 and its reconstruction by the HKISS method.

3.5.3 Hammerstein kernels input level dependency

As discussed in Sec. 3.2.4, the accuracy of the emulated signal depends on the amplitude
matching between the signal to emulate and the amplitude of the ESS used to measure and
compute the Hammerstein kernels. During the emulation test of the amplifier TSA15h, we have
noticed that the Hammerstein kernels Hα

m (ω) have the same shape for a given order m but have
different relative amplitudes (especially for higher-order kernels). For example, the comparison
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of H1
1 (ω), H0.5

1 (ω), H1
5 (ω), H0.5

5 (ω) is presented in Fig. 3.34 for the Tube-screamer distortion
circuit.

This suggests that the Hammerstein kernels Hα
m (ω) could be computed from H1

m(ω) by
changing the amplitude factor A appearing in Eq. (3.20). The Fig. 3.35 shows an example of
such adaptation: the kernels H0.5

m (ω) are obtained from the kernels H1
m(ω) by changing the A

factor. With these adapted Hammerstein kernels Hα
m (ω) based on the measured kernel at full

amplitude H1
m(ω), a signal of amplitude α can be emulated.

For example, a sine of amplitude 0.5 is emulated in Fig. 3.36 using the H1
m(ω) corrected to

give H0.5
m (ω). In comparison, the same signal emulated using H1

m(ω) was presented in Fig. 3.4.
It can be seen that the corrected version is much better. In these examples, the parameter A has
been manually adjusted in order to have the best correspondence between the kernels. This
allows to avoid having a large set of impulse responses Hα

m (ω) corresponding to each level α

in the simulator (space memory consumption). To avoid some difficulties with variable kernels
convolution , the Hammerstein model equation can be weighted as follows:

y[n] =
M

∑
m=1

1

[A(α)]m−1 h1
m[n]∗ xm[n]. (3.40)

A way to determine the function A(α) is to find for each level α , the A factor minimizing
the areas between all the Hα

m (ω) and the Corrected(A,H1
m(ω)) ones. It is important to notice

that some devices could have their Hammerstein kernels Hα
m too different from each other for

different α values. Indeed, as it has been seen in Sec. 2.4.1, an ideal Hammerstein system
has all its kernels proportional together. For these systems, the Hammerstein kernels can then
be approximated for a continuous range of levels by means of an interpolation procedure as
proposed by Tronchin and Coli in [Tronchin and Coli, 2015], but a truncated Volterra model
should be also considered as in [Orcioni et al., 2018].

3.6 Implementation with the Matlab toolbox

The practical implementation of the Hammerstein identification technique is complex and
can be subject to several sources of errors. Hence, a Matlab Toolbox (see Fig. 3.37) for the
Hammerstein kernels identification is proposed. The toolbox is composed of three parts:

1. The generation of the ESS signal.

2. The computation of the Hammerstein kernels through the measured signal at the output
of the DUT.
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Figure 3.34 FFT of the first and fifth Hammerstein kernels of the Tube-screamer distortion
circuit measured with an ESS with full and half amplitudes.

3. The emulation of the nonlinear DUT by convolving the powers of the input signal with
the Hammerstein kernels.

The toolbox can be downloaded in [Schmitz, 2019a].

3.7 Example: emulation of a power series through the HKISS
method

A short example using the toolbox to compute the Hammerstein kernels of a power series up to
the order six is provided here.

3.7.1 Sine sweep generation

The tab ESS generation is the first step to emulate a nonlinear device. It allows the generation
of the ESS with the following parameters (to be given by the user):

• f1 and f2 are the initial and final frequencies of the ESS respectively,
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Figure 3.35 Corrected version of H1
m(ω) in order to fit the H0.5

m (ω) Hammerstein kernels for
m = [1,5]. Tube-screamer distortion circuit of the amplifier TSA15h.

• N is the length of the ESS signal in samples,

• fade in (or out) is the percentage of the value of f1 (or f2) until a fade in (or out) is
allowed. For example if f1 = 10Hz and fade in = 0.1, a fade in will be applied between
the frequency f = 10Hz and f = 11Hz. The fade out will be applied between the
frequency f2 and f2 −0.1 · f2. These values are displayed in the frame Bandwidth (see
Fig. 3.37).

The generate button exports the ESS in a .wav format.

3.7.2 Hammerstein kernels calculation

Once the ESS signal has been sent to the DUT, its output signal y has to be loaded in the toolbox
to be convolved with the inverse filter of the ESS. In this example, the output signal of a power
series until the 6th order named yPowerSeries is provided. It can be loaded in the toolbox by
pushing the Load y response button (see Fig. 3.38). After having pressed the Deconvolve button,
the z impulse is obtained as depicted at Fig.3.38. Before cutting z into the harmonic impulses
gm, the following parameters have to be specified :
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Figure 3.36 Comparison between an ESS of amplitude 0.5 passing through the distortion effect
TSA15h and it simulation (y2) by means of Hammerstein kernels measured for an ESS of
amplitude 1 but corrected with the A factor.

• Nb Kernels is the number of Hammerstein kernels requested for the emulation of the
DUT.

• Length Kernels is the desired length for the Hammerstein kernels.

• The Delay cut is the number of samples kept before the theoretical position of the
Hammerstein kernels. This number has to be comprised in the interval [-1000 0]. Note:
the user should verify that the condition from Eq. (3.34) is respected.

3.7.3 Emulation of the DUT

The third tab (see Fig. 3.39) enables the emulation of the DUT by convolving the Hammerstein
kernels with any chosen signal in a .wav format. For this example, we can load the sweep.wav

signal and convolve it with the Hammerstein kernels. This prediction signal can then be
compared to the target yPowerSeries.
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Figure 3.37 The Matlab Hammerstein identification toolbox.
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Figure 3.38 The Hammerstein kernels computation tab.

Figure 3.39 The nonlinear convolution tab.
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3.8 Conclusion

Many researches have been done on Volterra kernels identification in the last few years. As
the impulse response characterizes a linear system very precisely, we expect to extend the
method to nonlinear systems with an equivalent success. As we have shown, the cascade of
Hammerstein models can lead to a great sensitivity to inaccuracies during its implementation.
In this research, we have highlighted different kinds of errors and we have shown how they can
affect the emulation of a nonlinear system. Moreover we have proposed a way to get around
each problem leading us to an accurate emulation of three nonlinear systems: the tube-Screamer

like overdrive effect, the TSA15h tube amplifier and the Engl retro tube 50 amplifier. We
have also described the limitations of the model (i.e., maximum order, low-frequency limitation,
input level dependency). Finally, we have proposed a solution in Eq. (3.40) for the input
amplitude level dependency of the Hammerstein kernels which seems to be valid for some
nonlinear devices. This problem is still a major limitation of this method for guitar signal
emulation purpose. Indeed, the guitar signal amplitude is continuously changed according to
the strength of the playing but also during the ringing of a note. Indeed, the first part of a note
(the attack) can reach an amplitude of 1 V if the string is hardly picked while the amplitude
can be of 10 mV if the string is softly picked. Further investigation are required to continue to
improve the robustness of this method.
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Outline of chapter 4:

This chapter is devoted to the emulation of tube amplifiers by neural network models. The
introduction in Sec. 4.1 explains why and how neural networks could be used as a reliable
method to emulate tube amplifiers. In Sec. 4.2, different models of neural networks are
presented and analyzed. The comparison between them is discussed in Sec. 4.3 according
to objective metrics. Two models, i.e., the most accurate and the fastest, are discussed
and evaluated in terms of perceived accuracy (through some listening tests) in Sec. 4.4.
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4.1 Introduction to the emulation of guitar amplifiers by
neural networks

4.1.1 Motivation to use neural networks for the guitar emulation task

Several reasons have led us to the machine learning field:

• The parallel cascade of Hammerstein models was not flexible enough to represent
the distortion effect of a tube amplifier. Its static nonlinearity does not represent the
nonlinear memory effects present in audio devices. The first idea was to switch to
a Wiener-Hammerstein model, but no analytic identification of the filter coefficients
was possible using the Exponential Sine Sweep (ESS) method. The parameters of the
Wiener-Hammerstein model had to be learned by a machine learning technique.

• The HKISS method requests the use of an ESS as input signal, the estimated operator
N̂ was then more appropriate for these kinds of sinusoidal signals as introduced in
Theorem. 1 Sec. 2.3. Machine learning techniques allow to get rid of the exponential
sine sweep as input signal and use guitar signals during the identification phase. The
estimated operator N̂ is then well suited to emulate guitar signals.

• Neural network models are very flexible, and can represent strong nonlinearities.

An adequate neural network structure has to be chosen. As Recursive Neural Networks
(RNN) are designed to treat time series, they appear as an appropriate choice for our application.

4.1.2 Related works

Only few researches have used neural networks for the emulation of tube amplifiers [Covert
and Livingston, 2013; Schmitz and Embrechts, 2018c,b, 2019; Damskägg et al., 2019], even if
similar models have been widely applied in the machine learning field for other types of tasks.
To understand their capabilities and their limitations, it is important to trace some fundamental
contributions in the machine learning field (see Appendix A.2). Artificial Neural Networks
(ANN) (in opposition with biological neural networks) often simply called neural networks are
the core of deep learning. They are powerful, versatile and they are used in a very large set of
machine learning tasks such as: speech recognition services (SIRI), classification of images
(Google), recommendation of video to watch (Youtube), finding relations between data, e.g.,
how S&P 500 stocks are correlated with twitter informations.
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Other uses of neural networks in audio

Typically, in the audio field, neural networks have also been used for different tasks, such as
(non-exhaustive list):

• Correction of loudspeaker nonlinearities [Low and Hawksford, 1993].

• Augmented reality (AR) applications, to reproduce the acoustic reverberation field [Kon
and Koike, 2018], to emulate head related transfer functions [Chun et al., 2017].

• The classification of spatial audio localization and content [Hirvonen, 2015].

• Enhancement of speech intelligibility in noisy environments [Thoidis et al., 2019].

• Audio sources separation and identification [Nugraha et al., 2016].

• Audio processing technique to increase the sampling rate [Kuleshov et al., 2017].

• Music information retrieval [Shuvaev et al., 2017].

4.1.3 Dataset for guitar amplifiers

The age of Big data (i.e., the record and the centralization of all our activities) has made the
development of efficient machine learning tasks easier. Indeed, making a general model is
easier with a lot of data than with few data. In the 1980s the datasets were constituted by
approximately thousands of instances. Nowadays, some datasets are created with a billion of
instances [Goodfellow et al., 2016, p.21]. The same algorithms which had some difficulties
to achieve some simple tasks in 1980s are now able to take care of complex tasks due to the
increase of the collected data.

In [Schmitz and Embrechts, 2018a], we have introduced a new dataset gathering several
guitar amplifiers output sounds. This dataset has two purposes:

• The first one is to collect enough data to train our neural networks.

• The second one is to ease the comparison of different models. Indeed, it is hard to prove
that a model generalizes so well that any test sets will give exactly the same measured
performance. Therefore, the comparison of two models has to be made on the same test
set.
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To create this dataset, different guitar signals have been recorded and then sent through
several amplifiers. For each amplifier, the output signal has been recorded (as presented in
Fig. 4.1) for ten positions of the gain parameter (a parameter of the amplifier enabling the
control of the amount of distortion, where 1 is the lowest level and 10 the strongest one).
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Figure 4.1 A guitar signal (Input Dataset) is sent through different amplifiers and is recorded
for different gain levels for each amplifier.

Input set

One important point in machine learning is to obtain a model that generalizes well, i.e., from a
number of training instances, the model has to be able to generalize to instances it has never
seen before. The model can then be used for inference (i.e., emulating the output of an amplifier
for any guitar signals in the input). To do so, it is important that the class of input signals is
sufficiently representative of the guitar signals used during the training phase. The input dataset
has to be:

• Long enough: for each amplifier and each gain, our input set contains 8,408,005 instances
(i.e., guitar signal sampled at 44100 Hz).

• Diversified: the dataset gathers 5 different musical styles:

1. A chromatic scale.

2. A set of Major and minor chords.

3. A song with chords only "La Bamba".
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4. A song with chords and single musical notes.

5. A song with single musical notes in a "Am" blues scale.

Output set

The recorded sounds are taken at the output of each amplifier (i.e., the sound card is connected
to the output of the power amplifier by means of the Torpedo loadbox [TwoNoteEngineering,
2011] as presented in Fig. 4.2). The role of the loadbox is to attenuate the amplified output
signal to a line level.

input set

output set

sound
card

Amplifier
under
test

spkr out

Torpedo
LoadBox

Figure 4.2 Recording of the dataset, the output set is a scaled (in amplitude level) version of
the output signal of the amplifier (speaker out).

The amplifiers present in the dataset are:

• The Ibanez Tsa15H channel crunch.

• The Mesa Boogie 550 channel clean.

• The Mesa Boogie 550 channel crunch.

• The Mesa Boogie 550 channel disto.

• The Mesa Boogie MarkV channel clean.

• The Mesa Boogie MarkV channel crunch.

• The Mesa Boogie MarkV channel disto.

• The Engl Retro Tube 50 channel disto.

• The Blackstar HT5M channel disto.

More informations on this dataset are presented in Appendix. A.3. The dataset can be
downloaded from [Schmitz, 2018b].
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Training, testing, validating, listening

Each model presented in this chapter, is trained and evaluated as following:

• The model is trained during 15 hours using 80% of the dataset A.3 (i.e., 6 726 404
instances ).

• The generalized error is computed using the remaining 20% of this dataset (i.e., 1 681
601 instances). These 20% are randomly picked over each different musical style of the
dataset.

• Hyperparameters search are carried out on another dataset of 374 224 instances.

• Figures and listening tests use a third dataset of 910 337 instances to compare the
differences between the target and the prediction signals.

4.2 Different neural network models for guitar amplifier em-
ulation

Eight neural network models are presented in the following sections. Their main character-
istics are summarized in Table 4.1. The accuracy in time domain given by the NMRSE (see
Eq. (2.58)), the speed of the model (given in computational time CT) and the harmonic content
accuracy (∆harmo from Eq. (2.63)) of each model are given on a relative scale where:

• ⋆ means that the model performs less than the others,

• ⋆⋆ means that the model is in the average,

• ⋆⋆⋆ means that the model performs better than the average.
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Motivation summary for the different models:

• Model 1: recurrent neural network, based on LSTM cells limiting the problem of
vanishing or exploding gradient. This first model gives accurate results but is not
optimized in terms of computational time.

• Model 2: a second layer of LSTM cells is added to gives more flexibility to the
model and to determine if the resulting accuracy is improved.

• Model 3: a sequence of output samples is predicted instead of one single output
sample for each input instance. The goal is to make a faster model than the model
1.

• Model 4: the gain parameter of the amplifier is added as input feature of the LSTM
layer in order to see if the parameters of the amplifier can be taken into account.

• Model 5: a convolutional layer is added at the input of the neural network to reduce
the length of the input sequence allowing the use of a smaller number of LSTM
cells in the LSTM layer in order to reduce the computational time.

• Model 6: small feedforward neural network, this network is very fast and is used to
determine if such a small neural network can reach an appropriate level of accuracy.

• Model 7: the idea is the same than for model 6 but using a small convolutional
neural network.

• Model 8: this model is the same than the model 5 where the LSTM cells are
replaced by simpler cells (less computation in each cell). The goal is to determine
if there is a reduction of the computational time while keeping the same accuracy.

4.2.1 Model 1: Guitar amplifier emulations with a LSTM neural net-
work

As a first approach in the neural network field, it seemed natural to work with Recurrent
neural networks (RNN), as presented in Sec. 2.7.4, since they are designed to take care of time
series prediction. One major problem encountered when dealing with RNN is the difficulty
to learn long-term dependencies. It is known as the vanishing or exploding gradient problem
as described in Appendix A.4. A special RNN cell called the Long Short Term Memory
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Table 4.1 Overview of the different proposed neural network models.

Short description Code NMRSE CT ∆harmo

Model 1 (p.105)
One layer
of LSTM cells Appendix. A.5.2 ⋆⋆ ⋆ ⋆⋆

Model 2 (p.121)
Two layers
of LSTM cells Appendix. A.5.3 ⋆ ⋆ ⋆⋆⋆

Model 3 (p.126)
Sequence to
sequence prediction Appendix. A.5.4 ⋆⋆ ⋆ ⋆⋆⋆

Model 4 (p.131)
Taking the amplifier
parameters into account Appendix. A.5.5 ⋆ ⋆ ⋆

Model 5 (p.136)
LSTM layer with
convolutional input
reduction layer

Appendix. A.5.6 ⋆⋆⋆ ⋆⋆ ⋆⋆

Model 6 (p.144)
Stacked feedforward
layers Appendix. A.5.7 ⋆ ⋆⋆⋆ ⋆

Model 7 (p.148)
Two convolutional
layers with two
pooling layers

Appendix. A.5.8 ⋆ ⋆⋆⋆ ⋆⋆⋆

Model 8 (p.153)

One layer with
simple recurrent
cells and convolutional
input reduction layer

Appendix. A.5.9 ⋆ ⋆⋆ ⋆⋆⋆
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(LSTM) cell has been introduced [Hochreiter and Schmidhuber, 1997] in order to overcome
this problem.

Introduction to the LSTM cell

The Long Short Term Memory (LSTM) cell is indeed a special RNN cell with gates to control
when information enters or leaves the memory. This architecture lets the network learn long-
term dependencies more easily than with simple RNN cells since the network can let the
information flow through the entire network with only few modifications. Indeed, in a classic
RNN, the information from the first cell is transformed at each time step. Therefore, some
information is lost at each time step. In a LSTM NN, the information can be passed without
alteration from the first cell to the last cell using gates. The Fig. 4.3 presents a LSTM cell. It is
composed of:

• A short state memory vector h[n]: this vector represents the state of the cell, it also
corresponds to the output of the nth cell i.e., h[n] = y[n]. The size of this vector is called
the number of hidden units of the cell (Nh).

• A long terms state vector c[n]: this vector represents a long term state since information
can easily flow from a long remote cell to the current cell.

• An input signal z[n]: The use of a vector in the notation can be confusing. In general,
z[n] is an input vector gathering Nf features for the time step n: for example, the input of
the LSTM cell can be the current input signal value and a set of amplifier parameters (i.e.,
z[n] = [x[n],Gain,Bass,Medium,Treble], where Gain, Bass, Medium, Treble are usual
parameters of guitar amplifiers). z[n] can also simply be the scalar value corresponding
to the value of the guitar signal sampled at a time t = nTe where Te is the sampling period,
i.e., z[n] = x[n].

Each LSTM cell has two tasks:

• Computing an output state h[n] depending on the input vector z[n], the previous state
vector h[n−1] and the previous long terms dependency vector c[n−1].

• Transform the long terms dependency vector c[n] to let information leaves or enters the
memory.

These two operations are made through the concept of gates. A gate is an element wise
multiplication (⊗) between an input vector a[k] and a gate vector b[k] containing values between
zero and one. The two extreme cases are:
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• if b[k] = 0 then b[k]⊗a[k] = 0 → the element a[k] is forgotten and replaced by 0.

• if b[k] = 1 then b[k]⊗a[k] = a[k] → the element a[k] is fully kept.

The LSTM cell has three gate vectors, f[n], i[n] and o[n] ∈ [0,1]: f[n]: selects which part
of the long terms dependency vector c[n] will be kept and which part will be forgotten. The
content of this gate vector is chosen according to the previous short term state h[n] and to the
input vector z[n]. In fact the input vector and the previous short state memory vector constitute
the inputs of a fully connected layer of Nh hidden units. A sigmoid activation function is used
to obtain the gate vector whose elements are comprised between 0 and 1 such that:

f[n] = σ
(
Wz f z[n]+Wh f h[n−1]+b f

)
. (4.1)

Similarly, the input gate vector i[n] and the output gate vector o[n] are computed such that:

i[n] = σ (Wziz[n]+Whih[n−1]+bi) . (4.2)

o[n] = σ (Wzoz[n]+Whoh[n−1]+bo) . (4.3)

Their purposes are respectively: to choose which part of the input candidate g[n] will be
added to the long term dependency vector and to choose which part of the long term dependency
vector will be used to compute the output state of the cell h[n]. The input candidate g[n] to add
to the long term dependency vector is computed as:

g[n] = tanh
(
Wzgz[n]+Whgh[n−1]+bg

)
. (4.4)

One can notice that the only difference with the computation of the gate vectors is the use
of the hyperbolic tangent instead of the sigmoid as activation function since the result does not
need to be comprised between zero and one anymore. The long term dependency vector c[n]
can then be computed as:

c[n] = c[n−1]⊗ f[n]+g[n]⊗ i[n]. (4.5)

Finally, the short memory state h[n] can be computed as:

h[n] = tanh(c[n])⊗o[n], (4.6)

where:

• Wh f , Whi, Whg, Who are matrix weights of size [Nh ×Nh].
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• Wz f , Wzi, Wzg, Wzo are matrix weights of size [Nh ×Nf].

• b f , bi, bo, bg are bias vector of size [Nh ×1].

• c and h are state vectors of size [Nh ×1].
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Figure 4.3 A Long Short Term Memory cell.

Presentation of the tested amplifier

The amplifier Engl retrotube 50 (Distortion channel) has been used to evaluate the eight models
presented in this chapter. The power spectrum of the output of the amplifier, when the input
signal is an ESS with a focus on frequencies close to f =1000 Hz, is presented in Fig. 4.4. In
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this power spectrum, there are 22 harmonics from which ten have less than 20 dB difference
with the amplitude of the fundamental frequency. This illustrates the strong nonlinear behavior
of this tube amplifier. The amplitude level of the harmonics are given in dB. The column
" dBc" presents the normalized harmonics such that the fundamental has an amplitude level of
"0 dBc". This will ease the comparison between the amplitude levels of the target harmonics
and the prediction harmonics. The Total Harmonic Distortion (THD) and the Signal to Noise
Ratio (SNR) are presented, for the same input frequency, in Figs. 4.5 and 4.6 respectively.

Figure 4.4 Power spectrum of the amplifier Engl retro tube 50 Disto for a frequency f ≃
1000Hz.

Presentation of model 1

Our first model is presented in Fig. 4.7: the N last values (samples) of the input guitar signal x

are sent to a LSTM neural network unrolled over N time steps. One particularity of a recurrent
neural network is the use of only one set of parameters for all the unrolled time steps. This
means that the parameters Wh f , Whi, Whg, Who, Wz f , Wzi, Wzg, Wzo,b f , bi, bo, bg are
shared between all the LSTM cells. The output state h[n] is transformed into a single value
by a Fully Connected (FC) layer. This single value is the prediction ŷ[n] of the neural network
for the time sequence x = [x[n−N +1], · · · ,x[n]]. The prediction of the neural network ŷ[n] is
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Figure 4.5 Total Harmonic Distortion of the amplifier Engl retro tube 50 Disto for a frequency
f ≃ 1000Hz.

Figure 4.6 Signal to Noise Ratio of the amplifier Engl retro tube 50 Disto for a frequency
f ≃ 1000Hz.
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then compared to the real output of the amplifier i.e., the target y[n] by mean of a Normalized
Root Mean Square Error (NRMSE) cost function (as presented in Eq. 2.58). The Tensorflow
framework [Abadi et al., 2015] is used in this research, the code to build the graph of this
neural network model can be found in Appendix A.5.2 and the entire code can be downloaded
in [Schmitz, 2019b].

LSTM
 Cell

LSTM
 Cell

FC

... NRMSE

h[n]h[].

c[].

Figure 4.7 Model 1: emulation of tube amplifier with LSTM neural network.

Parameters of the model

The hyperparameters of the model (i.e., the minibatch size, the number of hidden units Nh,
the number of unrolled time steps N) have been chosen by random exploration. Actually,
some bounds have been fixed for each hyperparameter. These bounds have been chosen by
eliminating the hyperparameter values which give not accurate results (too small number of
hidden units for example) or by eliminating values which increase too much the computational
time (too many time steps for example). To estimate the hyperparameters, the model has
been trained during three hours on a validation set using hyperparameters selected randomly
between these bounds (using an Intel 7-4930K @3.4 GHz*12 equipped with a Nvidia Titan
xp graphic card). Then, an accuracy performance (the RMSE) has been measured on a subset
of this validation set. This validation set is composed of 30 seconds of guitar signal sampled
at 44100 Hz. 10 % of this validation set are reserved to measure the performances of the
model according to the choice of the hyperparameters. This gives approximately 1190 000
instances for the training phase and 132000 instances for the evaluation. The results are
presented in Fig. 4.8. The upper subfigure represents the RMSE of the network in regard of the
following hyperparameters: the minibatch size, the number of time steps (N) and the number
of hidden units (Nh), while the lower subfigure is its projection into the (N, Nh) plane. One
can notice that the learning rate is not in the exploration space since the used optimization
algorithm Adam [Kingma and Ba, 2014]) is an adaptative learning rate algorithm. The learning
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rate hyperparameter η can usually be set to its default value (i.e., η = 0.001). The others
hyperparameters are discussed below:

• The minibatch size: rather than computing the gradient on all the instances of the training
set, an estimation can be obtained using a subset called a minibatch. A compromise,
between the accuracy of the computed gradient and the speed to compute it, has to
be made. In fact, accelerating the gradient computation has a stronger impact in the
algorithm convergence than increasing the accuracy of the estimated gradient. However,
the use of a GPU enables the parallel computation of the gradient for several instances.
Depending on the used GPU, the size of the minibatch can be chosen to take advantage
of its numerous processing cores, in order to increase the accuracy of the computed
gradient without any expense in computational time. As it can be seen in Fig. 4.8 for a
too small minibatch size, the GPU is under used and the convergence is slow leading
to a too high RMSE after 3 hours of training. Similarly, a too large minibatch size led
to a slow computation of the gradient and to a too high RMSE after 3 hours of training.
A good compromise seems to choose a minibatch size comprised between [500, 1500]
instances.

• The number of hidden units (Nh) represents the length of the vector state in the LSTM
cell. The Fig. 4.8 shows that best results are obtained by using a number of hidden units
comprised between [150, 200].

• The number of unrolled time steps (N) represents the memory length of the system. As it
can be seen in Fig. 4.8 there is no need to increase this hyperparameter too much since
the models having a number of time steps comprised between [100, 200] give already
good results. Results for N < 100 are not shown but previous explorations have shown
that models with less than a hundred of time steps perform poorly.

Discussion and results

The Fig. 4.9 shows how a vector of Ndata samples will be reshaped into minibatch_size instances
of size N to be treated in parallel by the GPU.

Computational time of a model

The purpose of the models is to enable an accurate emulation of a tube amplifier in real time.
Usually, the speed of a model is measured in Floating Point Operation Per Second (FLOPS).
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Figure 4.8 Model 1: hyperparameters search (i.e., minibatch size, number of hidden unit Nh, the
number of unrolled time steps N) random exploration for one layer of LSTM neural network.

However, the use of GPU and their thousands of cores gives the opportunity to highly parallelize
the computations. The number of FLOPS is thus inconsistent since it does not tell how much
the model is parallelizable. Therefore, it is not a good indicator to estimate if a model respects
the real-time constraint. Rather than using FLOPS, the Computational Time (CT) to process a
buffer (i.e., a vector of L input samples) is used. In this research, the size of the buffer has been
set to L = 400 samples in order to keep a small latency (i.e., at a sample rate fs = 44100Hz, a
new input buffer of 400 samples is sent every 9.1 ms, such that, the maximal allowed CT of the
model should be of 9.1 ms). The CT is measured between the moment when the incoming buffer
is sent to the neural network model and the moment when the model returns the corresponding
output values.
Remarks:

• The CT depends on the computer choice (i.e., an Intel core i7-4930K CPU at 3.4GHz ·12,
32 Gb of ram and a GPU Nvidia Titan Xp). During this research, the same computer has
been used for all the model evaluations which makes the CT a consistent comparative/rel-
ative measure.
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Figure 4.9 Reshaping a guitar signal of length Ndata to have Ndata − (N −1) instances where
each instance is composed of a sequence of input signal of length N (the number of time step)
and the output sample of the device under test corresponding to the last sample of the input
sequence. The minibatch_size corresponds to the number of instances treated in parallel by the
GPU.
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• One advantage of the method is to measure the time to process a buffer of L samples
including the time to transfer data to the GPU.

Table 4.2 presents the normalized root mean square error and the computational time to
process a buffer of 400 samples using the model 1 to emulate the Engl Retro Tube 50 amplifier
on its Disto channel with a gain of 5. The hyperparameters used to train the model are :
minibatch size = 1000, number of hidden units Nh = 150, number of unrolled time steps
N=100.

Table 4.2 Model 1: normalized root mean square error, computational time and harmonic
content accuracy for a single LSTM layer model (parameters: N=100, Nh = 150).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 7.1 39% 5.3

To illustrate the accuracy of the model, we compare in Fig. 4.10 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model in
the time domain. The validation set used for this test is a guitar signal never seen by the model
before (see Sec. 4.1.3). Moreover, Fig. 4.11 presents the comparison between the spectrogram
of the target (Fig. 4.11a) and the spectrogram of the prediction (Fig. 4.11b) when the input
signal is an ESS with a bandwidth comprised between 50 and 5000 Hz. Fig. 4.12a presents
the spectrogram of this ESS input signal. For clarity, Fig. 4.12b shows the evolution of its
instantaneous frequency on a logarithmic vertical axis. All the spectrograms presented in this
chapter are computed by using the following parameters:

• NFFT = 256, the Fast Fourier Transform (FFT) length,

• noverlap = 128, the number of overlapping samples between two consecutive FFT,

• the window applied is a Kaiser window [Harris, 1978] with a beta parameter equal to 8.

Several observations on the spectrograms:

• As it can be seen in Fig. 4.11a, there are many curves in the spectrogram, showing that
the Engl Retro Tube 50 is a high-order nonlinear system.

• Fig. 4.13 presents the comparison between the power spectrum of the target and the
prediction when the input frequency is f ≃ 1000Hz in the ESS. In this figure, ∆ ,

dBcprediction − dBctarget represents the difference between the amplitude level of the
harmonics such that:
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– if ∆ < 0, the harmonic amplitude is underestimated in the model,

– if ∆ > 0, the harmonic amplitude is overestimated in the model.

From now on, a predicted harmonic is said:

– underestimated if ∆ <−3 dB,

– overestimated if ∆ > 3 dB,

– well estimated if −3 dB < ∆ < 3 dB.

As it can be seen in Fig. 4.13, the harmonics number 4, 6, 8, 10 are underestimated while
the harmonic number 9 is over estimated. The model also creates some noisy signals
which are not present in the amplifier system. As shown by the spectrogram in Fig. 4.11b,
this noisy behavior increases with frequency, after t = 13s (i.e., after 1500 Hz in the
ESS input signal): the signal seems to be mixed with a white noise as it can also be
seen in Fig. 4.14 where the comparison between the power spectrum of the target and
the prediction when the input frequency is f ≃ 2000Hz in the ESS is presented. The
Signal to Noise Ratio (SNR) of the model for frequencies close to f =1000 Hz is equal to
15.5 dB while it is equal to 1.88 dB for frequencies close to 2000 Hz.

• The THD measured at 1000 Hz shows that the model overestimates the harmonic content
(T HDtarget =−1.2 dB < T HDprediction =−0.65 dB).

• The noise becomes very important from t = 13s which corresponds to a frequency
of 1500 Hz. But this is also the higher fundamental frequency of our guitar. So after
t = 13s, the model does not know how to respond since it has never been trained for
these frequencies. The same happens for low frequencies, below t = 2s, since the input
ESS frequency is below 80 Hz which is also the lowest fundamental frequency of our
guitar.

• Finally, the model is more accurate between 5s and 13s, which corresponds (in the ESS
input signal) to the frequency range [160-1500] Hz.
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Figure 4.10 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 1 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 1.

Figure 4.11 Comparison of the spectrograms of the target(a) and the prediction(b) for model 1
when the input is an ESS in the frequency range [50-5000] Hz.
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(a) Spectrogram of the ESS in the frequency range [50-
5000] Hz.
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(b) ESS frequency as a function of time.

Figure 4.12 ESS input signal in the frequency range [50-5000] Hz.
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Figure 4.13 Power spectrum of the target compared with the power spectrum of the prediction
for frequencies close to f ≃ 1000Hz in the ESS (model 1). ∆ = dBcprediction − dBctarget.
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Figure 4.14 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 2000Hz in the ESS (model 1). ∆ = dBcprediction − dBctarget.

4.2.2 Model 2: two layers of LSTM cells

Presentation of model 2

A single layer of LSTM cells already gives promising results. This second model is a neural
network with two LSTM layers as presented in Fig. 4.15. The Tensorflow code used to build
the graph of this neural network model can be found in Appendix A.5.3 and the entire code can
be downloaded in [Schmitz, 2019b].
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Figure 4.15 Model 2: emulation of tube amplifiers with two staked LSTM layers.

Parameters of the model

The results of the hyperparameters exploration are presented in Fig. 4.16. The results are similar
to those obtained for the model 1, i.e., the best scores are given by a number of hidden units Nh

comprised between [150, 200] and a number of unrolled time steps N comprised between [100,
200].

Discussion and results

As presented in Table. 4.3, the NRMSE is worse than the one reached by a single LSTM layer
and the computational time is approximately two times bigger. The fact that this model does not
have a better NRMSE than the previous model is surprising, since the model is more flexible
and has much more parameters than the model 1. Some optimization of the learning rate can be
made but since all models have used the same learning rate, it has not been realized. However,
this model has the best harmonic spectrum accuracy as presented in Fig. 4.19 and Table 4.3.

The hyperparameters used to train the model are: the minibatch size = 1000, the number of
hidden units Nh = 150 and the number of unrolled time steps N=100. The model is too slow to
run in real time since it computes a buffer of 400 samples in 12.6 ms which is superior to the
computational time available at a sample rate of 44100 Hz (i.e., CT available = 400

44100 = 9.1 ms).
Two options are still possible to run this model in RT (at the expense of the latency):

• Decrease the sample rate to increase the CT available.

• Increase the number of samples in the buffer in order to increase the CT available.
However, increasing the number of samples in the buffer also increases the number of
computations but if the model is well parallelized and the resources of the GPU are not



4.2 Different neural network models for guitar amplifier emulation 123

Figure 4.16 Model 2: hyperparameters exploration (i.e., minibatch size, number of hidden unit
Nh, the number of unrolled time steps N), random exploration for two stacked layers of LSTM
neural network.
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overwhelmed, the CT will increase less than proportionately. For example, the CT to
emulate a buffer 3 times bigger (buffer = 1200 instead of 400) is CT1200 = 11.2 ms which
is less than 2 times the CT for a buffer of 400 samples CT400 = 7.1 ms. This is due to the
possible parallel computation of several instances of the minibatch by the different cores
of the GPU.

Table 4.3 Model 2: normalized root mean square error, computational time and harmonic
content accuracy (parameters: N=100, Nh = 150).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 12.6 42% 2.6

To illustrate the accuracy of the model, we compare in Fig. 4.17 the signal at the output
of the Engl Retro Tubes 50 (the tube amplifier) with its prediction by the neural network
model. Moreover, Fig. 4.18 presents the comparison between the spectrogram of the target
(Fig. 4.18a) and the spectrogram of the prediction (Fig. 4.18b) when the input signal is an
ESS with a bandwidth comprised between 50 and 5000 Hz. Even if the NRMSE is worse than
for the model 1, the spectrogram of the model 2 is cleaner (i.e., less noisy). The Fig. 4.19
presents the comparison between the power spectrum of the target and the prediction when
the input frequency is close to f ≃ 1000Hz in the ESS. The SNR measured at 1000 Hz is
better than for model 1 (SNRmodel2 = 23.2 dB > SNRmodel1 = 15.5 dB). The harmonic number
4 is overestimated while the harmonic number 9 is underestimated. The THD measured at
1000 Hz shows that the model still overestimates the harmonic content (T HDtarget =−1.2 dB<

T HDprediction =−0.78 dB).
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Figure 4.17 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 2.

Figure 4.18 Comparison of the spectrograms of the target(a) and the prediction(b) for model 2
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.19 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 2). ∆ = dBcprediction − dBctarget.

4.2.3 Model 3: sequence-to-sequence prediction with one LSTM layer

Presentation of model 3

In model 1, a sequence of N input samples x = {x[n−N + 1], · · · ,x[n]} is used to compute
the output value ŷ[n]. Since the LSTM cells share the same weights and biases (as presented
in Sec.4.2.1), it would make sense to use each state vector h[·] (and not just the last one) to
compute a sequence of output values ŷ = {ŷ[n−N + 1], . . . ,y[n]} as presented in Fig. 4.20.
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The Tensorflow code used to build the graph of this neural network model can be found in
Appendix A.5.4 and the entire code can be downloaded in [Schmitz, 2019b].

At first glance, it seems that the sequence-to-sequence prediction should be N times faster
than the sequence-to-sample model (i.e., model 1). Indeed, the time to compute a minibatch of
size NminiBatch is given by:

• For a sequence-to-sample model : the time t1 to compute one instance multiplied by
the number of instances in the minibatch:

CT = t1 ∗NminiBatch. (4.7)

• For a sequence-to-sequence model : if the number of outputs are noted Nout then there
is Nout output samples computed for each instance. Therefore, the number of instances
required to compute the whole minibatch is equal to NminiBatch/Nout (if the minibatch size
is an integer multiple of the output size). Finally, the time to compute all the instances of
the minibatch is :

CT = t1.NminiBatch/Nout with Nout ∈ [1,N]. (4.8)

However, this result is not straightforward since during inference (i.e., when the model is
used for emulation after the training phase) all samples in the buffer are treated in parallel such
that if the GPU has enough parallel cores, processing one sample or 400 may take approximately
the same amount of computational time, even though, the sequence-to-sequence model has N

times less FLOPS than the sequence-to-sample model. One can notice that if just one CPU is
used, the sequence-to-sequence model is more interesting.

There is another reason that makes the sequence-to-sequence model less interesting when
using a GPU. Indeed, in an unrolled LSTM neural network, the state vector entering in the
first cell (i.e., h[n−N]) is set to 0. Consequently, the estimation of ŷ[n−N + 1] will be
wrong since the incoming vector h[·] is 0 only for this cell (the other cells receive a non
null entering state h[·]). One possible way to circumvent this problem is to store the state
h[n−N + 1] when computing the instance x = {x[n−N + 1], · · · ,x[n]} and to use this state
vector as the incoming state vector of the first LSTM cell when computing the next instance
x = {x[n−N +2], · · · ,x[n+1]}. This method will break the parallelization on the minibatch
since the input state vector to compute an instance depends on a state vector computed in a
previous instance, making this process a serial process.
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However, this method is still interesting for CPU use. Moreover, computing the gradient
for a sequence can be more robust than computing the gradient for a unique output sample.
This method can be seen as a regularization technique: each cell k ∈ [n−N + 1,n] can be
represented by a function f (W,b,x[k]) where all cells share the same weights W and biases
b. Consequently, there are more constraints on the weights and biases if each cell has to
fit its own target (sequence-to-sequence model) than if only the last cell has to fit its target
(sequence-to-sample model). Therefore, it can be interesting to predict a sequence of a few
output samples during the training phase to have a better constraint on the weights and biases
of the LSTM layer, even if only the last output sample ŷ[n] will be used during the inference. In
this case, the next output sequence {ŷ[n−Nout +2], · · · , ŷ[n+1]} is computed using the input
sequence {x[n−N], · · · ,x[n+1]} to give the next output value ŷ[n+1] and so on and so fourth.
In comparison, if the Nout values {ŷ[n−Nout +1], · · · , ŷ[n]} are computed for the input instance
{x[n−N+1], · · · ,x[n]}, the next instance is composed by the output values {ŷ[n+1], · · · , ŷ[n+
Nout]} computed using the input sequence {x[n−N +Nout +1], · · · ,x[n+Nout]}.
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LSTM
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NRMSE

...

...

...
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Figure 4.20 Model 3: using the Nout outputs of the LSTM layer to predict a sequence.

Discussion and results

As it can be seen in Table 4.4, the NRMSE, the CT and the harmonic content accuracy are
slightly better when using a sequence-to-sequence model with an output sequence length =
5 rather than when using a sequence-to-sample model (output sequence length = 1). But, by
continuing to increase the output sequence length (Nout), the NRMSE can increase again (the
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model is not flexible enough to predict a long sequence). The CT can also become worse if the
output sequence is too long. This can be explained since the gain in number of operations is
counterbalanced by the increase of output state data (Nout ×Nh elements). Consequently, the
terms t1 from Eqs. (4.7),(4.8) are not equal anymore. This increases the load of post processing
(i.e., processing after the LSTM layer). More informations on this post processing can be found
in the code of Appendix A.5.4 .

Table 4.4 Model 3: normalized root mean square error, computational time and harmonic
content accuracy for model 3 on the Engl Disto (parameters: N=100, Nh = 150, gain of the
amplifier = 5).

Model Nout (samples) CT(ms) NRMSE(%) ∆harmo(dB)

1 1 7.1 39% 5.3
3 5 6.4 37% 3.2
3 10 7.1 39% (not computed)
3 100 12 60% (not computed)

To illustrate the accuracy of the model, we compare in Fig. 4.21 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model.
Moreover, Fig. 4.22 presents the comparison between the spectrogram of the target (Fig. 4.22a)
and the spectrogram of the prediction (Fig. 4.22b) when the input signal is an ESS with a
bandwidth comprised between 50 and 5000 Hz. Clearly, these figures show that this model
generates a lot of noise. Fig. 4.23 presents the comparison between the power spectrum of
the target and the prediction when the input frequency is close to f ≃ 1000Hz in the ESS.
The SNR measured at 1000 Hz is worse than the one obtained for the model 1 (SNRmodel3 =

11.5 dB < SNRmodel1 = 15.5 dB). There is no overestimated harmonics while the harmonics
number 4, 8, 10 are underestimated. The THD measured at 1000 Hz shows also that the model
tends to underestimate the harmonic content (T HDtarget =−1.2 dB < T HDprediction =−3 dB).
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Figure 4.21 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network (model 3) with an output sequence length = 5 (prediction), when a
guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 3.

Figure 4.22 Comparison of the spectrograms of the target(a) and the prediction(b) for model 3
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.23 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 3). ∆ = dBcprediction − dBctarget.

4.2.4 Model 4: taking the parameters of the amplifier into account in
LSTM cells

In the previous models, the parameters of the amplifier are fixed (i.e., all in their middle
position). Indeed, the target is measured for a specific set of the amplifier parameters. Then
the model is trained for this dataset. If the user wants to emulate the amplifier with another
set of parameters, he has to load another model. Usually, tube amplifiers have at least four
parameters:

• The Gain which controls the amount of distortion.
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• The Bass which controls the low-frequency response.

• The Mid which controls the medium-frequency response.

• The Treble which controls the high-frequency response.

These parameters are controlled by potentiometers, usually graduated in ten steps. This
gives 104 possible combinations for a simple amplifier. Having numerous models is not
convenient for two reasons:

• Training many models is time consuming.

• Storing many models with their weights, biases and graphs consumes data storage.

Moreover, there is no easy interpolation between stored models. For example, it could be
convenient to compute the model of an amplifier whose gain is 1.5 when available measurements
are for gain 1 and 2 only. For these reasons, a model that directly takes the parameters of the
amplifier into account is developed in this section.

Presentation of model 4

As specified in Sec. 4.2.1 the input z[n] of each LSTM cell can be a vector of Nf features. Until
now, only one feature was used (i.e., the current input guitar sample x[n]). To take into account
the parameters of the amplifier, the values of the parameters can be added as input features.
For example, to take the amplifier gain parameter into account, the entry of each LSTM cell
becomes z[n] = [x[n],gain[n]] as presented in Fig. 4.24. The Tensorflow code used to build the
graph of this neural network model can be found in Appendix A.5.5 and the entire code can be
downloaded in [Schmitz, 2019b].

LSTM
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LSTM
 Cell
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... NRMSE

h[n]h[].
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...

Figure 4.24 Model 4: Using two input features to take the parameter gain of the amplifier into
account.
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Parameters of the model

The hyperparameters are the same than those used in model 1, i.e., a number of hidden units
Nh = 150 and a number of unrolled time steps N = 100.

Discussion and results

For this model, the targets of the neural network are the output samples coming from the
amplifier when its gain is set to 1 or 5. The other gain levels are not present for practical
reasons, i.e., to be able to fit the entire dataset in the Random Access Memory (RAM) without
having to change the code to take into account the split dataset. Since the gain five was chosen
as default value for the previous models, it is also chosen for this model in order to ease the
comparison. The gain 1 was chosen since the sound produced by the amplifier for this gain
level is very different than the sound produced when the gain is five. Moreover, since the
amplifier produces less distortions at low gain level, its emulation should be eased (by contrast,
the choice of gain 5 and 10 should be more difficult to emulate).

It is important to mix the output samples of gain 5 with those of gain 1 so that a minibatch
gathers approximately 50% of instances of gain 1 and 50% of instances of gain 5 at each
iteration (i.e., for each computation of the gradient). If the datasets were simply concatenated
[datagain1,datagain5], the training algorithm might optimize the weights and biases for instances
of gain 1 on the first half of the epoch then for instances of gain 5 on the second half but
may not converge to both of them. Mixing them ensures that at each iteration the gradient is
computed using both instances of gain 1 and gain 5. To do so, the dataset is reshaped as usual
(see Fig. 4.9) except that the input is a tuple (x[n],gain[n]) and not a single value as before (see
Fig.4.24). Then the different instances of the dataset are randomly shuffled.

Table. 4.5 shows that the NRMSE for this model is similar when it is used for gain 1 and
gain 5. The model performs a little bit less than its equivalent for a fixed gain. However, the
technique is promising in order to take the parameters of the amplifier into account. Some
might think that the model would perform better for gain 1 since the model is more linear.
However, the energy of the target for gain 1 is lower than the energy of the target for gain 5 (as
explained below). Consequently, the predicted signal obtained with gain 5 has a stronger impact
on the minibatch MSE than the signal with gain 1. This difference of energy can be explained
by the increasing saturation effect of the target signal when the gain is increased. Indeed, the
saturation effect makes the output signal look like to a square signal. As presented in Fig. 4.25,
the signal of gain 5 has more energy than the signal of gain 1 even if their amplitudes are
normalized to the same level Vcc.
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Figure 4.25 Saturation effect when increasing the gain of the amplifier.

Table 4.5 Model 4: normalized root mean square error, computational time and harmonic
content accuracy for a model that takes the gain of the amplifier into account (parameters:
N = 100, Nh = 150, gain=1&5).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 1 6.5 43% /
Engl Disto 5 6.5 42% 7.2

To illustrate the accuracy of the model, we compare in Fig. 4.26 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model
for the gain 5. Moreover, Fig. 4.27 presents the comparison between the spectrogram of the
target (Fig. 4.27a) and the spectrogram of the prediction (Fig. 4.27b) when the input signal
is an ESS with a bandwidth comprised between 50 and 5000 Hz. The Fig. 4.28 presents
the comparison between the power spectrum of the target and the prediction when the input
frequency is close to f ≃ 1000Hz in the ESS. The SNR measured at 1000 Hz is better than
the one obtained for the model 1 (SNRmodel4 = 16.4 dB > SNRmodel1 = 15.5 dB). The odd
harmonics are overestimated while the harmonics number 4, 6, 8 are underestimated. The
THD measured at 1000 Hz shows that the model tends to overestimate the harmonic content
(T HDtarget =−1.2 dB < T HDprediction =+2 dB).
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Figure 4.26 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 4 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 4.

Figure 4.27 Comparison of the spectrograms of the target(a) and the prediction(b) for model 4
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.28 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 4). ∆ = dBcprediction − dBctarget.

4.2.5 Model 5: a faster LSTM model using convolutional input

Presentation of model 5

The main problem when dealing with recurrent neural networks is the limited use it makes
of the GPU capabilities. Indeed, in a recurrent neural network, each cell has to wait for the
state vectors of the previous cell as explained in Eq. 2.56. Consequently, the states cannot be
computed in parallel, loosing the advantage of using a GPU.
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The speed of the model can be increased by reducing the number of time steps N as it can
be seen in Table 4.6. The gain in CT when reducing the number of time steps is less than linear.
Indeed, the computations in the LSTM layer is not the only source of CT consumption since
the model also has to reshape the input/output data and transfers them from the sound card to
the GPU. If the CT of the LSTM layer is decreased, it progressively becomes similar to the CT
of the other operations.

Our goal is to reduce the number of LSTM cells from N = 100 to M ∈ [10,20] cells.
However, reducing the number of time steps also reduces the accuracy of the model since the
model has less information from the past. One idea to circumvent this problem is to use the
same number of time steps for the input data but to reduce this number before the treatment
by the LSTM layer. A Convolutional Neural Network (CNN) is chosen to reduce the number
of time steps. This model, called the Long Short Term Memory with Convolutional input
(LSTMConv) model is presented in Fig. 4.29. The Tensorflow code used to build the graph
of this neural network model can be found in Appendix A.5.6 and the entire code can be
downloaded in [Schmitz, 2019b].

Table 4.6 Model 5: Computational time when reducing the number of time steps N on the Engl
Disto amplifier (parameters: N, Nh = 150).

N=100 N=50 N=20 N=10 N=5
CT(ms) 7.1 5.1 3.8 3.3 3

LSTM
Cell M

LSTM
 Cell 1

FC

NRMSE

h[n]h[].

c[].

...

Convolutional reduction

...

...

...

...

Figure 4.29 Model 5: LSTMConv.
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Convolutional reduction layer

The objective of this layer is to reduce the number of LSTM Cells without reducing the number
of input time steps N. Until now, the number of LSTM cells M was equal to N. A layer
projecting the N input values into the M LSTM cells is required (with M < N). This layer will
change the representation of the input signal, reducing its length while attempting to preserve
the global information it contains (see Fig. 4.29).

A CNN is used to reduce the length of the input signal: a kernel k of length L is used to
compute a representative version of the input x (size of x = Nin) such as the output d of a
Convolutional Reduction (CR) layer (size of d = Nout) is given by:

d[i] = κ

(
L−1

∑
u=0

x[u+ i∗S].k[u]+b

)
,

∀i ∈ [0,Nout −1],

(4.9)

where:

• S is called the stride size and allows to skip input samples. The output size of the CR
layer is given by Nout =

Nin
S . In fact, if Nin is not an integer multiple of S, the output

size is given by its upper bound Nout = ceil
(

Nin
S

)
and the signal x is (left and right) zero

padded in order to obtain this output size.

• κ and b are respectively the activation function and the bias term as presented in Sec. 2.7.2

The kernel k and the bias b are the parameters of the neural network to optimize. Instead of
using a unique kernel, it is possible to use C different kernels where C is also called the number
of maps. The output of such convolutional layer can be written as a matrix D:

Di, j = κ

(
L−1

∑
u=0

x[u+ i∗S].ku, j +b j

)
,

∀i ∈ [0,Nout −1] and ∀ j ∈ [1,C].

(4.10)

D is a matrix constituted of C maps of length Nout. This matrix can be sent to Nout LSTM
cells where each cell has C input features. In order to decrease the size further, D can be sent in
another CR layer. The output of the lth CR layer can be written as:

D(l)
i, j = κ

(
Cl−1

∑
m=1

L−1

∑
u=0

D(l−1)
u+i∗Sl ,m

.k(l)u, j +b(l)j

)
,

∀i ∈ [0,N(l)
out −1] and ∀ j ∈ [1,Cl],

(4.11)
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where Cl is the number of maps of the lth CR layer. The number of maps and the stride sizes S

do not have to be the same in each CR layer. The output length of the lth layer N(l)
out is given by :

N(l)
out =


ceil

(
Nin

Sl

)
if l = 1,

ceil

(
N(l−1)

out
Sl

)
else.

(4.12)

We now have a way to transform an input vector x of size [N,1] into a matrix D of size
[M,C] with M < N by adjusting the number of CR layers and the stride size S of each layer.
Due to the parallelization of the operations in a GPU, computing the cell_states of the LSTM
layer based on C channels instead of one does not raise the CT in a significant way.

Parameters of the model

The LSTMConv model requires the setting of a few hyperparameters:

• the number of input time steps N,

• the number of LSTM cells M,

• the stride size S in each CR layer,

• the number of maps C in each CR layer,

• the length L of the kernels in each CR layer.

In order to choose the hyperparameters, we have defined a performance score for the model
depending on the inverse of the RMSE and the time per epoch (i.e., the time required to process
all the training data once). The higher the score, the better:

per f _score =
1

RMSE.time_epoch
. (4.13)

The objective of this score is to show which set of hyperparameters gives a good accuracy
while maintaining a low CT. Some bounds on the hyperparameters have to be set to avoid
trivial cases where the time is so small that it can counterbalance a very bad accuracy. Each
point in Fig. 4.30 represents the score of the model 5 obtained on the test set after 3 hours of
training. Each point has been obtained using a random combination of the following three
hyperparameters : the length of the kernels L, the number of maps C (identical in the two CR
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layers for this test) and the number of input time steps N. One can notice that the number of
LSTM Cells is not represented. Indeed, as the CT strongly depends on the number of LSTM
Cells, it has been fixed to the maximum time allowing a real-time emulation. Consequently, the
stride size parameter S is chosen such that 15 LSTM Cells are used in each experiment (i.e., for
each point of Fig. 4.30).

In Fig. 4.30, the red ellipse represents a selection of the best performance scores, i.e., small
RMSE and small CT. The bottom figure of Fig. 4.30, is a projection of these scores on the
(C,N) plane. It shows that most of the best performance scores are over the red line of 150 time
steps. The horizontal line defines a limit on the number of channels, it helps to prevent the
overfitting of the database by reducing the flexibility of the model. Finally, the best parameters’
combination is situated around [N,L,C] = [160,12,35].

Discussion and results

For this model, we have chosen to use two CR layers with the stride sizes S1 = 4 and S2 = 3.
The choice of the stride sizes determines the number M of LSTM cells present in the model.
On one hand, it impacts the resulting accuracy of the model and on the other hand, it impacts
the CT since less LSTM cells reduce the number of sequential computations. The number of
LSTM cells is then set by:

M = ceil

ceil
(

N
S1

)
S2

 . (4.14)

Depending on the ceiling operation, M will be equal to N
12 or to N

12 +1. The model has been
implemented according to the general structure shown in Fig. 4.29. Two CR layers have been
used to reduce the number of input time steps from N=150 to M=13 LSTM Cells. Table 4.7
shows that the resulting model is 4% more accurate and 58% faster than the model 1.

Table 4.7 Model 5: normalized root mean square error, computational time and harmonic
content accuracy for a LSTMConv model (parameters: N=150, Nh = 150).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 4.1 35% 5.6

To illustrate the accuracy of the model, we compare in Fig. 4.31 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model.
Moreover, Fig. 4.32 presents the comparison between the spectrogram of the target (Fig. 4.32a)
and the spectrogram of the prediction (Fig. 4.32b) when the input signal is an ESS with a
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Figure 4.30 Performance scores of the model 5 according to the values of the hyperparameters :
(N,C,L).

bandwidth comprised between 50 and 5000 Hz. The Fig. 4.33 presents the comparison between
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the power spectrum of the target and the prediction when the input frequency is close to
f ≃ 1000Hz in the ESS:

• The even harmonics are underestimated (except for the harmonic number 4) while the
odd harmonics are overestimated (except for the harmonic 3).

• The THD measured at 1000 Hz shows that the model tends to overestimate the harmonic
content (T HDtarget =−1.2 dB < T HDprediction = 0.2 dB).

• The harmonic number 2 is very badly represented: this is a serious default since it is
one of the major contribution to the output sound. 10 dB are missing for this harmonic
while the harmonic number 9 has 8.1 dB too much. The balance between the even and
odd harmonics is compromised. However, the listening tests still give good results as
presented in Sec. 4.4.

• One can notice that, this spectrogram is one of the cleanest, its noise floor is lower
than those of previous models even for high frequencies. Since high frequencies have
never been trained for this model (guitar signal frequency range is [80-1500] Hz) it also
means that this model generalizes particularly well to unseen data. The SNR measured
at 1000 Hz measured at 1000 Hz is better than the one obtained for the other models
(SNRmodel5 = 21.4 dB).
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Figure 4.31 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 5 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 5.

Figure 4.32 Comparison of the spectrograms of the target(a) and the prediction(b) for model 5
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.33 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 5). ∆ = dBcprediction − dBctarget.

4.2.6 Model 6: feedforward neural network

Presentation of model 6

The model 6 (as presented in Fig. 4.34) is a multi-layer feedforward (i.e., no recurrent connex-
ions) neural network composed of three fully connected layers as defined in Sec. 2.7.2. From
now on, this model is called, the Deep Neural Network (DNN) model. The Tensorflow code
used to build the graph of this neural network model can be found in Appendix A.5.7 and the
entire code can be downloaded in [Schmitz, 2019b].
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FC layer 1

FC layer 2

Figure 4.34 Model 6: DNN.

Parameters of the model

This model has few hyperparameters:

• the number of layers which has been fixed to 3,

• the layers 1 and 2 have respectively 1000 and 500 hidden units and use a relu activation
function (see Sec. 2.7.1),

• the last fully connected layer maps the 500 hidden units from layer 2 to the output
prediction sample ŷ[n] using a hyperbolic tangent activation function,

• the input layer is composed of the N = 150 last input samples as described in model 5.

Discussion and results

The purpose of this model is to limit the number of sequential computations to obtain the
shortest CT as possible. This is possible by removing the recurrent operations (i.e., the unrolled
time steps) and by limiting the number of stacked layers. Indeed, since the output of the layer
l −1 is the input of the layer l, the latter has to wait for the results of the previous layer before
computing its own output. Table 4.8 presents the computational time to process a buffer of 400
samples and the NRMSE of the model 6 trained on the Engl retro tube 50 channel Disto. As
it can be seen, the accuracy of this model is lower than for the other models but in terms of
computational time, it is the fastest.

To illustrate the accuracy of this model, we compare in Fig. 4.35 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model.
Moreover, Fig. 4.36 presents the comparison between the spectrogram of the target (Fig. 4.36a)
and the spectrogram of the prediction (Fig. 4.36b) when the input signal is an ESS with a
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Table 4.8 Model 6: normalized root mean square error, computational time and harmonic
content accuracy for a DNN model emulating the Engl Disto amplifier (parameters: N=150,
layer 1 Nh = 1000, layer 2 Nh = 500, gain of the amplifier = 5).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 2.2 41% 6

bandwidth comprised between 50 and 5000 Hz. Noise is present in low frequencies (below t=5s
which corresponds to frequencies f <200 Hz in the ESS input signal) and in high frequencies
(above t=14s which corresponds to frequencies f >2000 Hz). Fig. 4.37 presents the comparison
between the power spectrum of the target and the prediction when the input frequency is close
to f ≃ 1000Hz in the ESS:

• The SNR measured at 1000 Hz is slightly better than the one obtained for the model 1
(SNRmodel6 = 16 dB > SNRmodel1 = 15.5 dB).

• The harmonics number 2, 3, 7 are overestimated while the harmonics number 4, 5,
8 are underestimated. The THD measured at 1000 Hz shows that the model tends to
overestimate the harmonic content (T HDtarget =−1.2 dB < T HDprediction =+4.2 dB).

• The harmonics number 2 is even louder than the fundamental frequency.
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Figure 4.35 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 6 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 6.

Figure 4.36 Comparison of the spectrograms of the target(a) and the prediction(b) for model 6
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.37 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 6). ∆ = dBcprediction − dBctarget.

4.2.7 Model 7: convolutional neural network

Presentation of model 7

The Convolutional Neural Networks (CNN) have already been used in model 5 to transform the
N input samples into a matrix of size M×C where M is the new number of time steps and C is
the number of maps. A classic CNN (as presented in Fig. 4.38) is composed by convolutional
layers (as introduced in Eq. (4.10)) combined with pooling layers.
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The goal of a pooling layer is to subsample the output of the convolutional layer in order to
reduce its size before the next convolutional layer. It helps to reduce the computational load,
the memory usage and the risk of overfitting. The sampling function is free of choice but is
often chosen as the max function over a small area called the receptive field or the kernel length.
As in the convolutional layer, a stride size and a length for the receptive field have to be chosen.
The output D(l)

i, j of a pooling layer l is given in function of the output of the previous output

layer D(l−1)
i, j such that: D(l)

i, j = max
(

D(l−1)
i∗Sl+[1:Ll ], j

)
,

∀i ∈ [0,N(l)
out −1] and ∀ j ∈ [1,Cl−1],

(4.15)

where:

• C(l−1) is the number of maps of the previous layer.

• Ll is the length of the receptive field of the layer l.

• Sl is the stride size of the layer l as defined in Sec. 4.2.5.

• N(l)
out is the output size of the layer l, it can be computed by using Eq. (4.12).

The Tensorflow code used to build the graph of this neural network model can be found in
Appendix A.5.8 and the entire code can be downloaded in [Schmitz, 2019b].

Parameters of the model

The hyperparameters of the CNN model are given in Table 4.9 .

Table 4.9 Model 7: hyperparameters of each layer of the CNN model (model 7).

layer l Cl Sl Ll κl

conv layer 1 35 3 12 relu
pool layer 2 35 2 3 max
conv layer 3 70 1 6 relu
pool layer 4 70 2 3 max
FC 1 / / tanh

Where: κl is the activation function
of the layer l
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Figure 4.38 Model 7: CNN.

Discussion and results

The results of this model in terms of NRMSE and CT are presented in Table. 4.10. This
model is faster than the other models (except for the model 6 based on a feedforward neural
network) at the expense of the NRMSE. Indeed, this model has the worst NRMSE of all the
models presented in this chapter (for the Engl Disto amplifier). However, the harmonic content
accuracy is 3.3 dB which is still accurate for such a fast model.

Table 4.10 Model 7: normalized root mean square error, computational time and harmonic
content accuracy for a CNN model emulating the Engl Disto amplifier with a gain of 5 (the
parameters of the model are given in Table 4.9).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 2.9 43% 3.3

To illustrate the accuracy of this model, we compare in Fig. 4.39 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model.
Moreover, Fig. 4.40 presents the comparison between the spectrogram of the target (Fig. 4.40a)
and the spectrogram of the prediction (Fig. 4.40b) when the input signal is an ESS with a
bandwidth comprised between 50 and 5000 Hz. The Fig. 4.41 presents the comparison between
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the power spectrum of the target and the prediction when the input frequency is close to
f ≃ 1000Hz in the ESS:

• The SNR measured at 1000 Hz is significantly better than the one obtained for the model
1 (SNRmodel7 = 19.2 dB > SNRmodel1 = 15.5 dB).

• The harmonic number 9 is overestimated while the harmonics number 4, 10 are underes-
timated.

• The THD measured at 1000 Hz shows that the model tends to underestimate the harmonic
content (T HDtarget =−1.2 dB < T HDprediction =−2 dB).

Figure 4.39 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 7 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 7.

Figure 4.40 Comparison of the spectrograms of the target(a) and the prediction(b) for model 7
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.41 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 7). ∆ = dBcprediction − dBctarget.

4.2.8 Model 8: simple recurrent neural network

Presentation of model 8

In Sec. 4.2.1, the LSTM cell is introduced to avoid vanishing or exploding gradient problems.
However, the use of CR layers introduced in model 5 makes the recurrent layer smaller
(N =⇒M). This reduces the risk of vanishing/exploding gradients as explained in Appendix A.4.
The model 8 is identical to the model 5 except that the LSTM cells are replaced by RNN cells
as introduced in Sec. 2.7.4 and by Fig. 4.42. The output of each RNN cell can be computed as



154 Emulation of guitar amplifier by neural networks

shown in Eq. (2.56). The Tensorflow code used to build the graph of this neural network model
can be found in Appendix A.5.9 and the entire code can be downloaded in [Schmitz, 2019b].

RNN
Cell M

RNN
 Cell 1

FC

NRMSE

h[n]h[].

...

Convolutional reduction

...

...

...

...

Figure 4.42 Model 8: RNN.

Parameters of the model

The model uses exactly the same hyperparameters than those presented in Sec. 4.2.5 for the
model 5.

Discussion and results

The results for this model in terms of NRSME and CT are presented in Table. 4.11. As it can
be seen, this model performs significantly less (in terms of NRMSE) than the model 5 (i.e., the
model using LSTM cells) but has the same CT.

Table 4.11 Model 8: normalized root mean square error, computational time and harmonic
content accuracy for a RNN model (parameters: are the same than those used for the model 5).

Amplifier channel Gain CT(ms) NRMSE(%) ∆harmo(dB)

Engl Disto 5 4.1 42% 3.7

To illustrate the accuracy of the model, we compare in Fig. 4.43 the signal at the output of
the Engl Retro Tubes 50 (the tube amplifier) and its prediction by the neural network model.
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Moreover, Fig. 4.44 presents the comparison between the spectrogram of the target (Fig. 4.44a)
and the spectrogram of the prediction (Fig. 4.44b) when the input signal is an ESS with a
bandwidth comprised between 50 and 5000 Hz. As, this model is very similar to the model 5,
it is not surprising that its spectrogram looks similar. Although its NRMSE is one of the worst,
this model seems less noisy than the other models. The Fig. 4.45 presents the comparison
between the power spectrum of the target and the prediction when the input frequency is close
to f ≃ 1000Hz in the ESS:

• On the contrary of model 5, the harmonic number 2 is very well emulated.

• The accuracy of the predicted harmonic amplitudes is one of the best in comparison with
the other models. In particular, the THD measured at 1000 Hz shows that the model
has practically the same THD than the target (T HDtarget =−1.2 dB ≃ T HDprediction =

−1.1 dB).

• The SNR measured at 1000 Hz is better than the one obtained for the model 1 (SNRmodel7 =

16.2 dB > SNRmodel1 = 15.5 dB).

• The harmonic number 9 is overestimated while the harmonic number 4 is underestimated.
The others are well estimated.

• The THD measured at 1000 Hz shows that the model tends to underestimate the harmonic
content (T HDtarget =−1.2 dB < T HDprediction =−1.1 dB).
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Figure 4.43 Comparison in the time domain of the output of the amplifier (target) and the
output of the neural network model 8 (prediction) when a guitar signal is provided at the input.
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(a) Target Engl retro tube 50 gain 5.
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(b) Prediction model 8.

Figure 4.44 Comparison of the spectrograms of the target(a) and the prediction(b) for model 8
when the input is an ESS in the frequency range [50-5000] Hz.
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Figure 4.45 Power spectrum of the target compared with the power spectrum of the prediction
for a frequency f ≃ 1000Hz in the ESS (model 8). ∆ = dBcprediction − dBctarget.

4.3 Evaluation of the different neural network models through
performance metrics

4.3.1 Comparison in the time domain of normalized root mean square
error, computational time and signal to noise ratio

The normalized root mean square error is one of the main objective measures of model accuracy.
From now on, it is called the Performance Index (PI). Another performance measure is the
Computational Time (CT) to process a buffer of audio sample. Indeed, a fast model is required
to enable the emulation of the guitar signal chain in real time with the smallest latency. The
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size of this audio buffer is fixed to 400 samples. Finally, the harmonic content accuracy ∆harmo

and the SNR are also used to compare the different models. These measures are presented
for all models in Table 4.12 (∆harmo is defined in Eq. (2.63)). All these models are trained
and evaluated using the same dataset and the same amplifier, the Engl Retro Tube 50 channel

Disto with the same gain (i.e., gain=5) except for model 4 which is trained for gains 1 and
5. It appears that the CNN and the DNN models outclass the LSTM models in terms of
computational time. However, the LSTM model 5 has the best PI. The RNN, CNN and DNN
models have approximately the same accuracy but the DNN model is significantly faster than
the others. As discussed before, the chosen PI may not be perfectly representative of the
human perceptual accuracy. Consequently, if the differences in terms of PI were inaudible,
the DNN model would be the most interesting one. One can notice that, all these models are
close in terms of PI. However, as it will be seen in Sec. 4.4.1, a difference of a few percents in
terms of PI may involve a huge difference of perceptual accuracy. The analysis of The SNR
measured at 1000 Hz shows that all the models have a lower SNR than the one measured for
the target (SNRtarget = 41.8 dB). The models number 2, 5 and 7 have the best SNR, at least for
frequencies close to f = 1000Hz. The model 3 is particularly noisy.

Table 4.12 Comparison of all the models in terms of Normalized
Root Mean Square Error, Computational Time, Signal to Noise
Ratio and harmonic content accuracy for the Engl retro tube 50
amplifier at gain=5:

Model Type NRMSE CT400samples SNR1000Hz ∆harmo

1 LSTM 39% 7.1ms 15.5 dB 5.3 dB
2 LSTM 42% 12.6ms 23.2 dB 2.6 dB
3 LSTM 37% 6.4ms 11.5 dB 3.2 dB
4 LSTM 42% 6.5ms 16.4 dB 7.2 dB
5 LSTM 35% 4.1ms 21.4 dB 5.6 dB
6 DNN 41% 2.2ms 16 dB 6 dB
7 CNN 43% 2.9ms 19.2 dB 3.3 dB
8 RNN 42% 4.1ms 16.2 dB 3.7 dB
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4.3.2 Evaluation in the frequency domain based on spectrograms and
power spectrums

The spectrograms obtained for models number 1 to 8, when the input signal is an ESS with a
bandwidth comprised between 50 and 5000 Hz are presented in Fig. 4.46. These spectrograms
have already been presented and discussed earlier but they are placed side by side to ease their
comparison. Fig. 4.47 presents the power spectrum (focus on the tenth first harmonics) of the
target and prediction signals for the different models when the frequency of the input signal is
close to f = 1000Hz in the ESS. The prediction level is adjusted such that the amplitude of the
fundamental matches the amplitude of the fundamental of the target. Based on Figs. 4.46 and
4.47, several observations can be made:

• The spectrograms of models 1,3,4 are the noisiest, especially for input signals in the
frequency range 2000-5000 Hz (i.e., t=[14,17]s in the ESS) and in the range 50-150 Hz
(i.e., t=[0,4]s in the ESS).

• The spectrogram of model 2 (2 LSTM layers) is "cleaner" (i.e., less noisy) than the one
obtained from the model 1 (1 LSTM layer), even if the PI of the model 2 (42%) is a
bit worse than the PI of the model 1 (39%). This proves that the noise of a model is
not directly correlated to the PI. Consequently, the PI alone is not able to characterize
the global quality of a model. In Fig. 4.47, the comparison of the power spectrums, for
an input frequency close to 1000 Hz, shows that the model 2 tends to overestimate the
even harmonics and to underestimate the odd ones. The model 2 has more than 270 000
trainable parameters (in comparison, the model 1 has only 91000 trainable parameters)
enabling a more flexible model. This improves the harmonic content accuracy ∆harmo as
shown in Table 4.12.

• Model 3 (sequence-to-sequence prediction) has the noisiest spectrogram, even if its PI
(37%) is slightly better than the one obtained for the model 1 (PI of 39%). This shows,
once again, that the PI alone cannot explain the accuracy of a model. As it can be see in
Table 4.12, the harmonic content accuracy of this model is one of the best.

• Model 4 (taking into account the gain of the amplifier in the LSTM cells) is a little bit
noisier than the model 1 in low-frequency but is a little bit quieter in high-frequency. The
power spectrum for f ≃ 1000Hz shows that the harmonic content accuracy is lower than
the one obtained for model 1 (see Fig. 4.47 and Table. 4.12). Actually, this model has the
worst harmonic content accuracy of the eight models. However this model shows that
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it is possible to take the parameters of the amplifier into account in the neural network.
Moreover, the gain parameter is the most difficult parameter to emulate since it directly
controls the amount of distortion (i.e., the nonlinearity strength of the system). Some
other parameters such as: the bass, the middle and the treble (called the tonestack in the
musician world) should be easier to model since the tonestack of an amplifier is often
placed at the last stage of the pre-amplifier. Consequently, it will act as a set of simple
filters and does not contribute to the nonlinear behavior of the amplifier.

• Model 5 (LSTMConv) is a very accurate model (in terms of PI). Its spectrogram is one of
the cleanest, but the power spectrum shows that the harmonics are not so well estimated
(see also Table 4.12).

• Model 6 (DNN) is globally not too noisy (even if at 1000 Hz the SNR is low). As it can
be seen in the power spectrum (for a frequency close to f = 1000Hz) and in Table 4.12,
the harmonic content accuracy is one of the worst of the eight models. However, this
is also the fastest model. Depending on the resources and on the computational time
available, it could be interesting to consider the use of this model.

• Model 7 (CNN) is quiet, gives a very good harmonic content accuracy and is one of the
fastest models. Surprisingly, this model has a poor accuracy in terms of PI=NRMSE.

• Model 8 (RNNConv) has a PI of 42% which is not very accurate. However, globally,
it is one of the quietest models. The power spectrum for an input frequency close to
f = 1000Hz shows that the harmonics are very well estimated.

• One can notice that the noise in the spectrograms, the PI and the harmonic content
accuracy are not fully correlated. These quality measures are therefore complementary.
Also note that the SNR and the ∆harmo are given for an input frequency close to f =

1000Hz which is not representative of the entire frequency range used.

From these observations, we have decided to focus on two models: the first one is our most
accurate model in terms of PI (i.e., the LSTMConv model 5) and the second one is our fastest
model (i.e., the DNN model 6) called from now on, the LSTM and DNN models respectively.
To ensure that the characteristics of both models are not specific to the Engl amplifier, these
two models are going to be compared for the emulation of different amplifiers (introduced in
Sec.4.1.3). Their PI are given in Table. 4.13, it can be noticed that:
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(a) model 1.
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(b) model 3.

2 4 6 8 10 12 14 16

Time (secs)

0

5

10

15

20

F
re

q
u
e
n
c
y
 (

k
H

z
)

-80

-70

-60

-50

-40

-30

-20

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

(c) model 5.
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(d) model 7.
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(e) model 2.
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(f) model 4.
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(g) model 6.
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(h) model 8.

Figure 4.46 Comparison of the spectrograms of the models 1-8 for an ESS as input signal.
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(a) model 1.

(b) model 3.

(c) model 5.

(d) model 7.

(e) model 2.

(f) model 4.

(g) model 6.

(h) model 8.

Figure 4.47 Power spectrums of the models 1-8 for f ≃ 1000Hz in the ESS.
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• The LSTM model always makes a better prediction than the DNN model. However, for
the amplifiers: MesaBoogie Mark V disto, MesaBoogie Mark V clean and MesaBoogie

550 crunch, the difference in terms of PI is less than 5%.

• The amplifiers have an increasing amount of distortion when passing from a clean

channel to a crunch channel and from a crunch channel to a distortion channel. Some
might think that the more distortion the amplifier has, the worst the PI will be, but this
is not always the case. For example, the PI of the MesaBoogie Mark V is increasingly
worse when choosing a channel of this amplifier with more nonlinearities, but this is
not the case for the MesaBoogie 550, where the clean channel (i.e., the one with less
nonlinearities) has the worst PI of the three channels.

• The Blackstar is the only "full" transistor amplifier of this set. Apparently, it is not better
emulated than the others. This shows that the nonlinearities specific to vacuum tube
amplifiers are just as well emulated than those in the transistor amplifier.

Table 4.13 The PI obtained for different amplifiers with
the LSTM and DNN models and their relative differ-
ences:

Amplifier name PILST M PIDNN ∆PI

Engl retro tube disto 35% 41% 6%
MesaBoogie 550 clean 36% 46% 10%
MesaBoogie 550 crunch 29% 31% 2%
MesaBoogie 550 disto 32% 37% 5%
Ibanez TSA15 crunch 25% 31% 6%
MesaBoogie Mark V clean 4% 7% 3%
MesaBoogie Mark V crunch 13% 23% 10%
MesaBoogie Mark V disto 21% 25% 4%
Blackstar HT5M 28% 39% 11%

Where: PILST M and PIDNN are the performance in-
dices of the LSTM and DNN models. ∆PI = PIDNN −
PILST M
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4.4 Subjective evaluation of LSTM and DNN models by us-
ing listening tests

In Table 4.13, an evaluation of models 5 and 6 has been made for several amplifiers in terms of
NRMSE. In order to select a model based on its perceptual quality, we have defined a perceptual
performance index named the Probability of Audible Difference (PAD):

Probability of audible difference:

The PAD is the probability for a listener to be able to find an audible difference between
the prediction and the target. The PAD is specific to a model and an amplifier (i.e., the
PAD of the model 2 evaluated on the Engl disto amplifier is equal to ...). A PAD of 75%
means that three listeners over four are able to hear a difference between the target and
the prediction signal.

Two listening-tests have been realized to answer to the following questions:

• Can the number of parameters of a model be reduced in order to speed up its execution at
the expense of the PI, but without a loss of perceptual accuracy (i.e., without increasing
the PAD)?

• Is there a threshold in terms of PI, under which, the PAD does not evolve anymore (i.e.,
the model is sufficiently accurate and does not need to be improved anymore)?

The objective of these listening tests is not to rate the quality of the emulation on a
continuous scale as in a classic ABX test [Rec, 2015]. Indeed, the objective is to know which
percentage of listeners are still able to hear a difference between the target and the prediction

signals. Consequently, this test only allows two possible answers: the target and the test signals
are the same or not the same. The listening tests have been carried out using a Seinnheiser

HD25-1 headphone. However, in order to have more results, the listening test has also been
put on-line [Schmitz, 2018a], where the control of the listening material is not possible. The
sound signals are encoded in wav format with CD audio quality. The test is still ongoing and
the results can be consulted in [Schmitz, 2018a].

4.4.1 The Progressive test: analysis of the PAD in function of the PI

Implementation of the Progressive test

The idea behind this first listening test, named the Progressive test, is to determine the threshold,
in terms of PI, required to reach a PAD equivalent to the random choice probability (i.e., the
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probability to be successful at the test by picking the answers randomly). Indeed, if listeners
cannot distinguish the target from the prediction better than an algorithm that randomly asso-
ciates the test signal to the target or to the prediction label, then, the model does not need to
be improved anymore (unless to improve the CT). A quicker model using a smaller number
of parameters can then be considered. The chosen model for this test is the LSTMConv model 5.

The test is organized as follows:

1. The prediction and the target audio signals are labeled and presented to the listener. The
listener can play both sounds as many times as he wants until he thinks that he may
retrieve the differences between the prediction and the target. This is the familiarization
phase.

2. The amplifier MesaBoogie MarkV Disto has been chosen for this test since it is well
emulated in terms of PI for such a strong level of distortion. Two sounds are presented
to the listener: the first one is the target, the second one is either the same target or the
prediction (randomly picked).

3. The listener has then to indicate if the two sounds are the same or not (as presented in
Fig. 4.48).

4. The test starts with a model having a PI (i.e., the NRMSE) of 40% then 30%, 25% and
finally 20%.

The different PI have been obtained by stopping the training phase of the neural network
model when the PI threshold is reached (by limiting the number of epochs of the training
phase).

Results of the Progressive test

The results of the Progressive test (with 243 participations) are presented in Fig. 4.49. The
vertical axis represents the probability for of listener to be able to hear a difference between
the prediction and the target (i.e., the PAD) and the horizontal axis represents the NRMSE of
the LSTM model for the MesaBoogie MarkV Disto amplifier. The participants can be anybody
without limit of age or any musical knowledges. As it can be seen, the PAD and the PI are not
correlated in a linear way. Clearly, for a PI = 40%, the perceptual difference between the target
and the prediction signals is strong, while the perceptual difference for models trained for a PI
= 30, 25 and 20% is more subtle.
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Figure 4.48 Listening test interface.

To reduce the possibility to give the correct answer by chance, we have asked each listener
to make the same listening test 3 times (while changing randomly if the tested sound is a target
or a prediction). The test is positive (i.e., the listener is able to hear a difference) if all the
correct answers are given. The probability to pass the Nexp tests successfully by chance is given
by:

1
2Nexp

=
1
23 = 12.5%. (4.16)

The model can be considered as "subjectively accurate" when the PAD is close to this
random level. When analyzing the PAD, it is important to notice that 12.5% of tested listeners
may be counted as being able to hear a difference while they just have made "good" random
choices.

How can this bias be taken into account?

Considering Np listeners making the Nexp experiments, these listeners can be divided into two
classes X and Np −X , where:{

X listeners who are really able to retreive the difference

Np −X the others
(4.17)
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Figure 4.49 Progressive test: the percentage of listeners who hear a difference between the
target and the prediction (PAD) when the LSTM model 5 is trained until some specific PI are
reached. Emulation of the MesaBoogie_MarkV_Disto with the LSTM model 5.

We can guess that listeners belonging to the second class still have a probability of about
50% to correctly answer each question. Therefore, a proportion of 1

2Nexp still gives the correct
answers by chance. The total of correct answers is thus given by:

PAD ·Np = X +
Np −X
2Nexp

. (4.18)

PAD =
X
Np

+
1− X

Np

2Nexp

=
X
Np

(1− 1
2Nexp

)+
1

2Nexp
.

(4.19)

Finally, if the Np listeners can be considered as a representative sample of the population,
the percentage of listeners that are truly able to hear a difference between the prediction and
the target signals is given by the Corrected Probability of Audible Difference (PADcorr):

PADcorr =
X
Np

=
2Nexp .PAD−1

2Nexp −1
. (4.20)
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For example, if Nexp = 3 successive experiments have been made and that the experimental
PAD = 25%, the estimated percentage of listeners truly able to hear a difference between the
two signals (i.e., excluding those who give the correct answers by chance) is given by:

PADcorr =
23. 25

100 −1
23 −1

≃ 14.3%. (4.21)

The corrected results of the Progressive test using the PADcorr are presented in Fig. 4.50.
The vertical axis represents the probability for a listener to truly be able to hear a difference
between the prediction and the target (i.e., the PADcorr) and the horizontal axis represents the
corresponding NRMSE of the LSTM model for the MesaBoogie MarkV Disto amplifier. As it
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Figure 4.50 Progressive test: the percentage of listeners who truly hear a difference between the
target and the prediction (PADcorr) for different training PI measured in NRMSE. Emulation of
the MesaBoogie_MarkV_Disto with the LSTM model 5.

can be seen in Fig. 4.50, statistically, nobody is able to hear a difference between the target and
the prediction when the PI is lower than 20%.

Analyzing the subjective performance (PADcorr) of a model in function of its PI can be a
convenient way to select the fastest model that respects this performance. For example, if it is
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considered that misleading 90% (PADcorr=10%) of the listeners is enough, the parameters of
the model can be relaxed to have a faster model that respects this percentage.

Example of parameter numbers reduction for a model

If the MesaBoogie Mark V Disto (whose the best PI is equal to 21% with a PADcorr = 0%)
was emulated with a faster LSTM model using a smaller number of time steps N and a longer
stride size S, a PI of 25% would still be reached, satisfying the condition PADcorr < 10%. The
original model and the new shorter model are compared in Table 4.14. As it can be seen, the
new model is 17% faster for a loss of 7% in the PADcorr.

Table 4.14 Comparison of two LSTM models in terms of PI
and Computational Time:

N S1 S2 PI CT PADcorr

LSTM (model 5) 150 4 3 21% 4.1ms 0%
LSTM shorter 100 4 5 25% 3.5ms 7%

Where: N is the number of input time step Sl is the stride
size of the lth convolutional reduction layer.

4.4.2 The Hardest test

While the Progressive test was designed to compare the PAD in function of the PI, this second
listening test (named the Hardest test) aims to compare the PAD of all amplifiers using the
best reached PI obtained for the LSTM and the DNN models. It gives information on which
amplifiers are sufficiently well emulated by the LSTM or the DNN models and which ones are
not. There are 196 participants for the LSTM Hardest test and 113 participants for the DNN
Hardest test. This test is not reserved to musicians.

Implementation of the Hardest test

In this test, each listener has to choose between two different models before starting the listening
test: the first one uses the LSTM model 5 and the second the DNN model 6. The test follows
the same rules than for the Progressive test, except that the model type (LSTM or DNN) has to
be chosen first.
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Results of the Hardest test

It has been shown that the Progressive test can help to choose the maximum PI that a model
should have in order to respect a given PAD. However, the correspondence between the PAD
and the PI significantly depends on the amplifier and on the model chosen. Consequently, a
simple threshold on the PI is not sufficient to determine the perceived accuracy of a model. The
PAD depends on the chosen model and on the selected amplifier as shown in Fig. 4.51 where
the PAD between the target and the prediction for all amplifiers emulated with LSTM (a) and
DNN (b) models are presented (the used PAD is the non corrected one).

The results of this test lead to several observations:

• Globally, the LSTM model has a better perceptual accuracy: the Mean(PADLST M) =
18.8% while the Mean(PADDNN) = 30.6%. It also has a better PI: the Mean(PILST M) =

24.4% while the Mean(PIDNN) = 31.1%.

• Some amplifiers are very well emulated by LSTM model but not by the DNN model,
e.g., the PADLST M(IbanezT SA15) = 7% while the PADDNN(IbanezT SA15) = 70%.

• On the contrary, some amplifiers are better emulated by the DNN model than by
the LSTM model, e.g., the PADLST M(MesaBoogie Mark V crunch) =46% while the
PADDNN(MesaBoogie Mark V crunch) =27%.

• The PAD and the PI are not well correlated: this clearly appears in Fig. 4.51, since the
different amplifiers are ranked by decreasing PAD, but their corresponding PI (on the
horizontal axis) are not ranked in a decreasing order. This constitutes a fundamental
barrier to train neural network models with a sound emulation purpose as discussed in
Sec. 4.4.3.

• In Fig. 4.51a, some PAD are below the random probability line (in red), which can seem
strange. Indeed, each amplifier has been tested by approximately 20 different listeners
which is not enough to avoid some statistical fluctuations. Moreover, an additional
explanation could be that the probability to have a target (or a prediction) as test signal is
about 50% (randomly picked) which leads to a probability of 3 random correct answers
of 12.5%. However, in the case where the same test signal is taken 3 times, human
psychology could prevent the listener to answer three times the same answer reducing
the probability of correct random answers.
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(a) LSTM model.

(b) DNN model.

Figure 4.51 Hardest test, on the vertical axis, the probability of audible difference (PAD)
between the target and the prediction. On the horizontal axis: the best normalized RMSE (PI)
of the LSTM (a) and DNN (b) models.
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The Table 4.15 lists the variation of performances in terms of PI and PAD when passing
from the LSTM model to the DNN model. The following acronyms are used:

• PILST M and PIDNN are the performance indices of the LSTM and DNN models respec-
tively.

• PADLST M and PADDNN are the probabilities of audible difference between the target and
the prediction for the LSTM and the DNN models respectively.

• ∆PI = PIDNN −PILST M is the loss of accuracy in terms of PI (i.e., the NRMSE) when
the DNN model replaces the LSTM model. Finally, ∆PAD = PADDNN −PADLST M is the
perceived loss of accuracy when the DNN model replaces the LSTM model.

Table 4.15 The PI and the PAD obtained with the LSTM and DNN models and their
relative differences:

Amplifier PILST M PIDNN PADLST M PADDNN ∆PI ∆PAD

Engl retro tube disto 32% 41% 38% 25% 9% -13%
MesaBoogie 550 clean 36% 46% 18% 20% 10% +2%
MesaBoogie 550 crunch 29% 31% 13% 16% 2% +3%
MesaBoogie 550 disto 32% 37% 18% 36% 5% +18%
Ibanez TSA15 crunch 25% 31% 7% 70% 6% +63%
MesaBoogie Mark V clean 4% 7% 4% 21% 3% +17%
MesaBoogie Mark V crunch 13% 23% 46% 27% 10% -19%
MesaBoogie Mark V disto 21% 25% 18% 18% 4% 0%
Blackstar HT5M 28% 39% 27% 62% 11% +35%

The DNN model is better (i.e., it is perceived as more accurate) than the LSTM model if
∆PAD < 0. Moreover, if ∆PAD is close to 0, the use of the DNN model may be preferred since it
is still 2.5 faster than the LSTM model. This is the case for the amplifiers: Engl retro tube disto,
MesaBoogie 550 clean, MesaBoogie 550 crunch, MesaBoogie Mark V crunch, MesaBoogie

Mark V disto.

4.4.3 Choosing an appropriate objective function during the training
phase

The two listening tests have shown that a PI based on the NRMSE is not strongly correlated
with the perceptual accuracy of a model. This implies that:
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• it is not appropriate to compare the perceptual quality of two different models based only
on their NMRSE,

• the maximum PI respecting a chosen PAD can be studied in order to determine the fastest
model to use. However, this maximum PI is still specific to a given model and to the
chosen amplifier.

The optimized model (i.e., the fastest model respecting a given PAD) can be selected by
using the following method:

1. For a given amplifier, compare the PAD of different model structures using the Hardest

test as defined in Sec. 4.4.2.

2. Once the model type is selected, use a Progressive test to find the maximum PI verifying
a chosen PAD as defined in Sec. 4.4.1. The models corresponding to the different PI
thresholds can be selected by stopping the training phase when these PI are reached.

3. Compute an optimized model verifying that maximum PI but using a smaller number of
parameters to speed up the CT of the model.

As it can be seen, computing an optimized model requires a lot of listening tests which is not
ideal since it takes a lot of time and human resources. This is the result of an "imperfect" choice
of the objective function. As described in Sec. 2.8.1, the PI does not correspond perfectly to
the objective of the model, i.e., having the best perceptual accuracy as possible. Unfortunately,
finding an objective measure that could be related to the subjective accuracy of a model is
extremely difficult and could be the topic of research of an entire project.

Some systems, such as the Perceptual Evaluation of Audio quality (PEAQ) [Thiede et al.,
2000; Zheng et al., 2012] and the Perceptual Objective Listening Quality Analysis (POLQA)
[Beerends et al., 2013] try to give a PI score which tends to be correlated with the perceived
difference between two audio signals. This PI is called the Objective Difference Grade (ODG).
Although these systems seem well suited to measure the perceived accuracy without using
listening tests, their reliability depends on the type of the tested signals [Zaunschirm et al.,
2014; Creusere et al., 2008] as well as the type of differences that have to be retrieved (small
distortion, crackling noise, white noise, harmonic content).

Indeed, this algorithm is based on the computation of audio features which are then
combined together using a small feedforward neural network. The goal of the network is
to match the subjective score given by listeners with the objective score computed using the
audio features. The resulting model depends on the used dataset as well as the kind of audible
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differences that were presented to listeners. Actually, this method was first developed to
quantify the perceptual accuracy of audio-codecs. In other words, this method should be able
to detect small distortions. Consequently, this objective is significantly too different from ours
to give accurate results since our dataset is constituted of strong distorted signals. The context
being different, the performance of this method is not guaranteed.

A test of the PEAQ system using the Matlab implementation from [Kabal et al., 2003] on
our guitar signals is presented in Fig.4.52. The ODG is given by the PEAQ algorithm when
it compares the target signal of the MesaBoogie MarkV Disto with it prediction at different
levels of accuracy (NRMSE). Obviously, the ODG values are not correlated to the subjective
evaluation of these signals (presented in Fig. 4.49) since the best PAD value is obtained with
the PI=20% while the PEAQ evaluation associates the worst ODG value to this PI (as presented
in Fig. 4.52). Moreover, the use of PEAQ algorithm in the training phase of the neural network
is not trivial. Indeed, PEAQ recommends to use signal lengths comprised between 10 to 20
seconds in order to give a correct ODG score. This is a huge amount of data if it has to be
used with the back-propagation algorithm [Chauvin and Rumelhart, 1995] during the training
phase of the neural network. Therefore, we are not recommending the use of PEAQ as is, but
we recommend to keep the NRMSE PI score, knowing that the comparison between models
will not be straightforward. As future works, we propose to investigate other PI such as the
Power Spectrum Model (PSM) and the Envelope Power-Spectrum Model (EPSM) [Biberger
and Ewert, 2016], since they can also be used to account for psychoacoustical effects such as
spectral masking and amplitude modulation masking.



4.4 Subjective evaluation of LSTM and DNN models by using listening tests 175

40 30 25 20

Accuracy of the model 5 in NRMSE (%)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

O
b
je

c
ti
v
e
 d

if
fe

re
n
c
e
 g

ra
d
e
 (

O
D

G
)

Figure 4.52 Objective Difference Grade given by PEAQ algorithm for the LSTM model having
different NRMSE (Black Star amplifier).
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This research aimed to accurately emulate in real time the nonlinear audio devices present

in a guitar chain.

5.1 Summary of work

Such digital emulations exist since many years, but their objective accuracy is hard to prove.
Most existing methods are developed for a commercial use and their underlying technology is
often kept secret. Moreover, their lack of perceptual accuracy is often reported by musicians.
The objectives of this thesis can be summarized as follows:

• Improving the identification of nonlinear audio systems through black-box methods.

• Applying these methods to the emulation of the guitar signal chain while keeping the
real-time constraint as low as possible.

• Providing objective and subjective measures of the emulation accuracy.

The results presented in this thesis are based on objective and subjective measures enabling the
comparison in the time and the frequency domains of different models. The objective measures,
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defined in Sec.2.8.1, are: the NMRSE, the SNR and the difference of harmonic content. While
a perceptual measure based on the results of listening tests, i.e., the Probability of Audible
Difference (PAD), is presented in Sec.4.4.
Two methods have been selected in response the nonlinear emulation of audio devices challenge:

• The first one (described in Chap. 3) is an improvement of an analytical method, originally
developed in [Farina et al., 2001] which uses a sub-model of the Volterra series.

• The second method (described in Chap. 4) is original in the field of guitar chain emulation
and is based on neural networks.

These two methods push the state of the art further, if compared with the reviews in [Pakarinen
and Yeh, 2009; Oliveira et al., 2013].

As a first approach, a model based on the Volterra series has been selected. Indeed, the
large class of nonlinear systems it can represent makes it suitable to model nonlinear audio
devices. However, when the order of the system increases, the number of parameters increase
exponentially, making difficult its real-time implementation. A subclass of this model, i.e., the
polynomial parallel cascade of Hammerstein models, has been studied in Chap. 3. The possible
sources of errors/limitations inherent to the method and the way to solve or circumvent them are
studied in Sec. 3.3. The computation of the Hammerstein kernels (using the different corrections
proposed) is extended to any order in Sec. 3.2.3. The final method, called the Hammerstein
Kernels Identification by Sine Sweep (HKISS) method presents very accurate results. Some
examples of nonlinear systems emulated through the HKISS method are presented in Sec. 3.4,
the harmonic content accuracy measured at 1000 Hz is inferior to 0.3 dB for the 3 tested devices
which is very accurate. The principal remaining limitation of the model (presented in Sec. 3.5.3)
is that the accuracy of the model is no longer guaranteed if the amplitude of the signal to be
emulated is different from the one selected during the measurement of the Hammerstein kernels.
Nevertheless, we also have proposed a solution to this problem by introducing an appropriate
amplitude function which changes the relative amplitudes of the Hammerstein kernels. This
solution is adequate when the nonlinear system to model is close to an Hammerstein model.
However, for nonlinear system too far from this ideal, another model should be used.

This leads us to consider more complex models by using a neural networks approach.
Indeed, the results obtained with a recurrent neural network for this regression task were so
promising that we have next focused on these kinds of identification procedures. One major
advantage of neural networks is that the model can be trained using specific data related to the
application. These data can be chosen close to the signal to emulate. For example, the neural
networks have been trained using some guitar signals (see Appendix A.3) leading to models
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that better generalize to these kinds of signals. A first neural network using Long Short Term
Memory (LSTM) cells is presented in Sec. 4.2.1. This first network is already very accurate. It
has been improved in terms of computational time, flexibility, accuracy through seven other
models. In particular, the introduction of model 5 in Sec. 4.2.5 has enabled the emulation of
tube amplifiers by means of LSTM neural networks with a very low latency. These models
are compared in terms of computational speed and measured accuracy in Sec. 4.3 and two of
them are compared in terms of perceptual accuracy in Sec. 4.4 for different guitar amplifiers.
The Normalized Root Mean Square Error (NRMSE) and the Probability of Audible Difference
(PAD) for these different amplifiers vary from 4 to 36% and from 4 to 46% respectively for the
LSTMConv model 5. The DNN model 6 is the fastest model (processing a buffer of 400 samples
in 2.2 ms) although its NRMSE and PAD vary from 7 to 46% and from 16 to 70% respectively.
The harmonic content accuracy of the neural network models is lower than the harmonic content
accuracy of the Hammerstein model, i.e., approximately 4 dB between the harmonic amplitude
levels of the prediction and the target for the neural network models depending on the amplifier
and on the model selected and less than 0.5 dB for the Hammerstein method (with a constant
amplitude input signal). However, the neural network models generalize better to guitar signals
(non constant amplitude level signals).

5.2 Future works

The Hammerstein kernels identification method is very accurate for sine signals. However, for
signals with a variable amplitude, the prediction can deviate from the target. This method could
be improved as follows:

• A criterion on the applicability of the method is needed. The criterion could be based on
both the amplitude variability of the input signal and the Hammerstein-like behavior of
the system to be modeled. The latter could be measured by the difference between the
Hammerstein kernels evaluated for ESS of different amplitudes.

• The interpolation function between the Hammerstein kernels Hα
m (ω) for different ampli-

tudes of the ESS should be further developed.

• Finally, for models being too far from an ideal Hammerstein model, a truncated Volterra
series still could be considered. Indeed, the use of modern GPU can help to compute the
convolutions of the different kernels with the input signal since the convolution operation
lends itself very well to parallelization. The HKISS method could be used to have a fast
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first estimation of the main diagonal of the Volterra kernels; then, the flexibility of the
model could be increased by adding some sub-diagonals terms to the Volterra kernels,
until the desired accuracy is reached.

Neural network models can benefit from all the tremendous research activity of this field to
improve the efficiency of the neural network itself: new cells, new regularization techniques,
better initialization methods and better optimizers. However, from an acoustical point of
view, the choice of the objective function seems to be a critical point. In Chap. 4, several
performance indices have been used (i.e., the NRMSE, the SNR, the harmonic content accuracy)
but none of them is perfectly correlated to the perceptual accuracy (measured in PAD). This is
a fundamental barrier to the progress of neural networks for the emulation of audio devices.
Moreover, the models cannot easily be compared to each other without listening tests which
are very time consuming. These problems should be further studied by:

• Computing an evaluation function whose performance index is correlated to the PAD.
This can be the task of a second neural network, taking some features as inputs and some
PAD as targets. The features would be computed based on the difference between the
prediction and the target signals of the audio device model. Consequently, once this
second neural network is trained, it should be able to make a prediction of the PAD. This
would enable the comparison of different models of an audio device directly in terms of
PAD which is the real objective of their emulation.

• Choosing a better objective function (usually called the loss function) to use during the
training phase of the neural network. Usually, for regression tasks, the mean square
error is taken. But some other functions such as the Power Spectrum Model (PSM) and
the Envelope Power-Spectrum Model (EPSM) [Biberger and Ewert, 2016] should be
tested since their authors claim that these functions are able to take into account some
psycho-acoustical effects such as spectral masking and amplitude modulation masking.

5.3 Contributions

The state of the art on the tube amplifier emulations has been pushed further in the following
direction:

• The ESS method has been improved into the HKISS method. Indeed, this method
simultaneously introduces different corrections that solve specific problems, sometimes
underestimated by previous works. In particular, this improvement has enabled the time
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comparison between the prediction and the target signals "sample by sample" which was
not possible earlier.

• A toolbox allowing the computation of the Hammerstein kernels of an audio device and
its emulation through nonlinear convolutions is proposed.

• We have introduced a new method to emulate tube amplifiers by proposing 8 different
neural network models.

• Several optimizations on these models have been made to enable the real-time emulation
of the guitar signal chain using neural networks and a GPU.

• Objective measures such has the NRMSE, the harmonic content accuracy, the SNR are
given for each model, easing the (objective) comparison of the different models.

• A method to compare the accuracy of two models (e.g., LSTM model 5 and DNN model
6) including their perceptual accuracy is proposed.

• Finally, a dataset gathering the output signals of 9 different amplifier channels for different
types of input guitar signals is provided. The output of each amplifier is available for ten
positions of their gain parameter.
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A.1 Back propagation algorithm

Without this algorithm developed by [Rumelhart et al., 1988], ANN would probably have stayed
in a dark era. To understand its importance, let us assume that a function f : R100 →R has to be
modeled. The used neural network is a feed forward neural network composed of two layers of
1000 neurons. The number of weights between the input and the first layer is N1 = 100∗1000,
the number of weights between the first and the second layer is N2 = 1000 ∗ 1000 and the
number of weights between the second layer and the output is N3 = 1000. This leads to a
total number of weights N = N1 +N2 +N3 = 1101 000. To compute the gradient of the Cost
function C, the algorithm has to compute more than a billion of partial derivatives ∂C

∂w , where w

represents all the weights of the network. A simple way to compute the gradient of the cost
function relatively to the parameters w j is to approximate it by:

∂C
∂w j

≃
C(w+ εe j)−C(w)

ε
, (A.1)

where ε is a small positive number and e j is a unit vector in the direction j. Computing
the gradient of the cost function for N weights requires to compute the cost function N + 1
times called the forward passes. The advantage of the back propagation algorithm is that it
simultaneously computes all the partial derivatives in just one forward pass. Indeed, the back
propagation algorithm provides a fast way to compute an error δ l

j relative to a neuron j in a
layer l and to relate it to the gradient ∂C

∂w j
of the cost function. Explaining the equations of

the back propagation algorithm is beyond the scope of this introduction but understanding
its principles gives a better insight into how the neural network can learn from the data. For
interested readers, we propose the following references [Nielsen, 2015; Goodfellow et al., 2016,
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P.204], where the computation of the gradient using the back propagation algorithm is well
explained.

A.2 Overview of the methods improving the learnability of
neural networks

Actually, most of the work made in the neural networks field is about improving the learnability
of the parameters by introducing some novel methods, such as:

• New network structures

– Deep Neural Network [Schmidhuber, 2015]

– Convolutional Neural Network [LeCun et al., 1998]

– Recurrent Neural Network [Rumelhart et al., 1988; Schmidhuber, 1993]

– Long Short Term Neural Network [Hochreiter and Schmidhuber, 1997]

• New activation functions:

– Sigmoid [Goodfellow et al., 2016, p.67]

– Rectified Linear Unit (ReLU) [Jarrett et al., 2009]

– Leaky ReLU [Maas et al., 2013]

– Hyperbolic tangent [Goodfellow et al., 2016, p.195]

– Exponential Linear Unit (ELU) [Clevert et al., 2015]

• New initialization methods:

– Xavier and He initialization [Glorot and Bengio, 2010]

• New regularization techniques:

– Batch normalization [Ioffe and Szegedy, 2015]

– Dropout [Srivastava et al., 2014]

– Gradient clipping [Mikolov, 2012; Pascanu et al., 2013]

– Early Stopping [Goodfellow et al., 2016, p.246]

– l1, l2 regularization [Goodfellow et al., 2016, p.234]
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– Max-Norm regularization [Srebro et al., 2005]

– Data augmentation [Goodfellow et al., 2016, p.240]

• New gradient descent optimizers:

– Momentum [Polyak, 1964]

– Nesterov accelerated gradient (NAG) [Nesterov, 1980; Sutskever et al., 2013]

– AdaGrad algorithm [Duchi et al., 2011]

– RMSProp [Tieleman and Hinton, 2012]

– Adam [Kingma and Ba, 2014]

A.3 Dataset information

This section is largely inspired by our paper [Schmitz and Embrechts, 2018a].

A.3.1 Experimental setup

Five different types of guitar signals have been recorded using a guitar PRS SE 245 and the
UR22 Steinberg sound card (44100Hz sample frequency and float 32 bit depth). The 5 resulting
musical samples have been concatenated in a wav file with a silence of two seconds inserted
between them. Then, this wav file is sent through several guitar amplifiers (currently : the
Ibanez TSA15 channel Crunch, the Engl Retro Tube50 channel Drive, the Mesa Boogie 5-50

channels Clean, Crunch and Burn, the Mesa Boogie MarkV channels Clean, Crunch, Xtreme

and the Blackstar HT5 Metal channel Disto). The signal is then taken at the output of the power
amplifier stage by a load box (the Torpedo Reload TwoNoteEngineering [2011]) reducing
its amplitude to a line level. Finally, the load box sent the signal back to the sound card (as
presented in Fig. A.1). A description of the 5 musical styles played is given hereafter.

Sample1: chromatic scale

In this sample, each note of the PRS guitar neck is played successively. Starting on the 6th
string of the guitar (E low), the notes are played until the 4th fret of the guitar neck. Then, the
same pattern is applied from the 5th to the 1st string. When the 1st string is reached, all the
fingers are shifted of one fret to the right (as presented in Fig. A.2). This sample ends when
the 22th fret of the guitar neck is reached. A tablature is provided along with the partition.
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input set

output set

sound
card

Amplifier
under
test

spkr out

Torpedo
LoadBox

Figure A.1 Recording of the dataset, the output set is a scaled version of the output signal of
the amplifier (speaker out)

Figure A.2 Chromatic scale: all the notes of the guitar neck are played successively
(sample1)

Figure A.3 Chords in Major scale then in Minor scale
(sample2)

Figure A.4 Chords of the
song La Bamba (sample3)
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Figure A.5 Chords of a
blues song (sample4)

Figure A.6 Am blues scale
(sample5)

A tablature depicts the six strings of the guitar. A number i corresponds to the ith fret (see
[Wikipedia, 2018] to get further information on tablature).

Sample2: chords

A set of chords has been played in this order: C, D, E, F, G, A, B in Major then in Minor. The
chords are given in Fig. A.3.

Sample3: Bamba song

This sample is composed of a song of three chords: C, F, G as presented in Fig. A.4.

Sample4: blues song

This sample is composed of a classical blues pattern: E, A, B7 as presented in Fig. A.5.

Sample5: blues scale Am

This sample is a short solo of guitar in Am blues scale as presented in Fig.A.6.

A.3.2 Building a learning dataset

For each amplifier, the five musical samples are sent to the guitar amplifiers and recorded for
ten different positions of the Gain parameter. A Matlab function is provided to help the user to
build its learning set (train + test sets) easily:

[train, test] = getInOut(modelName, lStyle, lGain,ratio)
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This function enables the user to choose which sample types, which amplifier and which
gain(s) will be in the learning set. It returns two matrices (train and test) composed of the input
sound signal in the first column, its corresponding output sound signal in the second column
and the amplifier gain parameter used during the recoding in the third one. The parameters of
the function are :

• modelName: the name of the wav file containing the output signal of a specific amplifier,

• lStyle: a list of numbers corresponding to the desired types of musical samples among
the onces presented in the previous section (samples 1-5),

• lGain: a list of Gain parameter values (comprised between 1 and 10,

• ratio: the ratio of the length of the training set to the test set.

Example:
[train, test] = getInOut(′Engl.wav′, [5,3], [1,10],0.8)

returns two matrices containing the concatenation of the sample 5 and 3 with the gain parameter
1 and 10 as it can be seen in Fig. A.7. The train matrix is used to train the model while the
test matrix is used to evaluate the model on a sequence that has never been seen before. It
ensures that the model does not over-fit the dataset. By default, each musical sample is sliced
as follows: 80% of its content is sent to the training set while the remaining 20% are placed
in the test set. The slices are chosen randomly under the constraint that they remain the same
each time the user call the function getInOut.
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C1 C2 C3

sample3[1] out3[1] 1

sample5 out5 1

sample3 out3 10

sample5 out5 10

...
sample3[N] out3[N]

...
...
1

Matrix train

Figure A.7 The matrices Train or Test contain the desired musical input samples in the first
column (C1), their corresponding output signals from the amplifier in the second column (C2).
The gain parameter values used during the recording is in the third column (C3).

A.4 Vanishing or exploding gradient problem

In a recurrent neural network, it turns out that the gradient can vanish or become unstable along
the different layers of the network [Hochreiter et al., 2001].

• A vanishing gradient occurs when the gradient decreases too much in the earlier layers.
The former layers stop to learn.

• An exploding gradient occurs when the gradient increases too much in the former layers.
The gradient becomes unstable.

The following example helps to understand the core of the problem. Supposing a deep
neural network composed of H hidden layers with only one neuron in each layer with a sigmoid
σ activation function and using a standard initialization of weights (zero mean and a standard
deviation of 1). The repercussion of the variation of a bias bl in the cost function C can be
approximated by [Nielsen, 2015, Eq. (120)]:

∆C
∆bl

≃ ∂σ(zl)

∂bl
wl ·

∂σ(zl+1)

∂bl+1
wl+1 · . . . ·

∂σ(zH)

∂bH
wH · ∂C

∂aH
, (A.2)
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where zl is the weighted input of the neuron in the layer l:

zl = wlal−1 +bl (A.3)

and al = σ(zl) is the output of the neuron in the layer l. The sigmoid activation function is
given by:

σ(z) =
1

1+ e−z . (A.4)

Consequently, its derivative is:
dσ(z)

dz
=

ez

(1+ ez)2 , (A.5)

which has a maximum in z=0 such that:

dσ(0)
dz

= 0.25 (A.6)

The gaussian initialization of the weights gives weights which globally satisfy |wh| < 1
such that: ∣∣∣∣∂σ(zh)

∂ z
wh

∣∣∣∣< 0.25 ∀h ∈ [1,H]. (A.7)

Therefore, analyzing Eq. A.7 and Eq. A.2, it can be seen that the variation of the cost
function in regards of the variation of a bias bl situated in a layer l tends to decrease when the
number of layers between the layer l and the output layer H increases. Similarly, an exploding
gradient occurs if

∣∣∣∂σ(zh)
∂ z wh

∣∣∣> 1.
The only way that the gradient does not explode or vanish is that all the product terms are

close to balancing out. Several techniques have been created to obtain such results [Glorot and
Bengio, 2010], such as: proper initialization, non-saturating function, batch normalization.

A.5 Structure of the neural network models in Tensorflow

During this thesis, we have chosen to build our neural network models with the Tensorflow
framework [Abadi et al., 2015].
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Tensorflow

"TensorFlow is a machine learning system that operates at large scale and in heteroge-
neous environments. TensorFlow uses dataflow graphs to represent computation, shared
state, and the operations that mutate that state. It maps the nodes of a dataflow graph
across many machines in a cluster, and within a machine across multiple computational
devices, including multicore CPUs, generalpurpose GPUs, and custom-designed ASICs
known as Tensor Processing Units (TPUs). This architecture gives flexibility to the
application developer: whereas in previous “parameter server” designs the management
of shared state is built into the system, TensorFlow enables developers to experiment
with novel optimizations and training algorithms. TensorFlow supports a variety of
applications, with a focus on training and inference on deep neural networks. Several
Google services use TensorFlow in production, we have released it as an open-source
project, and it has become widely used for machine learning research. In this paper, we
describe the TensorFlow dataflow model and demonstrate the compelling performance
that TensorFlow achieves for several real-world applications."[Abadi et al., 2015]

In this section, the code of the neural network models [1-8] is provided, Tensorflow models
are build in the form of dataflow graphs:

• The first step is to describe the graph of the model.

• The second step is to feed the input nodes of the graph with data.

• The third step is to compute the gradient of the cost function and to update the weights
of the network to minimize that cost function.

• The fourth step is to use the network for inference.

The first step is described here, the entire code of the models can be found in [Schmitz, 2019b].

A.5.1 Notation and basic informations:

• In the codes below, the symbol "\" cut a line too long into two lines.

• In Tensorflow, the input nodes are specials and are called placeholders.

• In python, the length of an element can be None, it means that the size will be defined by
the data shape fed into this node, this is useful since the variables of the model can have
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different sizes without the need to compute several models, e.g., a placeholder can have a
a size given by the minibatch size during the training phase (depending of GPU capacity)
and another size during inference, e.g., the buffer length of the sound card.

A.5.2 Code defining the structure of the graph for model 1

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 100

5 num_hidden = 150

6 num_out = 1

7 n u m _ f e a t u r e = 1

8 b a t c h _ s i z e = 1000

9

10 # ######################

11 # Graph C o n s t r u c t i o n

12 # ######################

13 G = t f . Graph ( )

14 wi th G. a s _ d e f a u l t ( ) :

15 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

16 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

17 name =" d a t a " )

18 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

19 name = " t a r g e t " )

20 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , \

21 t f . shape ( d a t a ) [ 1 ] , n u m _ f e a t u r e ] )

22 d a t a S h a p e d = t f . t r a n s p o s e ( da taShaped , [ 1 , 0 , 2 ] )

23

24 wi th t f . name_scope ( " LSTMLayer " ) :

25 f u s e d C e l l = LSTMBlockFusedCell ( num_hidden ,

26 u s e _ p e e p h o l e = F a l s e )

27 va l , s t a t e = f u s e d C e l l ( da taShaped , d t y p e = t f . f l o a t 3 2 )

28

29 wi th t f . name_scope ( " e x t r a c t L a s t C e l l o f t h e L S T M L a y e r " ) :

30 l a s t _ i n d e x = t f . shape ( v a l ) [ 0 ] − 1

31 l a s t S t a t e = t f . g a t h e r ( va l , l a s t _ i n d e x )
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32

33 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( l a s t S t a t e , \

34 i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , a c t i v a t i o n _ f n = t f . nn . tanh , \

35 w e i g h t s _ r e g u l a r i z e r =None , scope =" FCPred " )

Code A.1 for model 1

In the code the subscript are not allowed, therefore, some variable names had to be replaced.
Their equivalent with the rest of the text (see Chap. 4 is given here:

• num_step is the number of input time steps N,

• num_hidden is the number of hidden units Nh in each LSTM cell, it corresponds to the
length of the state vectors,

• num_out is the number of output samples for each instance,

• num_feature is the input size of each LSTM cell,

• in the code, the term batch_size refers to the number of instances treated in parallel by
the GPU, indeed it refers to the minibatch size that is often shorten into batch size.

Comments:

• Line 16: data is the input node of shape batch_size×num_step.

• Line 18: target is the output value at the amplifier y[n] of shape batch_size×1.

• Line 20, 22: the LSTM layer has to receive data shaped into num_step×batch_size×
num_ f eature.

• Line 27: the output of the entire LSTM layer is given by a tuple (val, state). val is the
state vector h and state gathers the state vector h and the long term state vector c.

• Lines 29, 30: val gathers all the state vectors (i.e., one for each LSTM cell), only the last
one is taken to compute the prediction ŷ[n],

• Line 33: a fully connected layer maps the lastState of shape batch_size×num_hidden

into the prediction vector of shape batch_size×num_out.
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A.5.3 Code defining the structure of the graph for model 2

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 100

5 num_hidden = 150

6 num_out = 1

7 n u m _ f e a t u r e = 1

8 b a t c h _ s i z e = 1000

9

10 # ######################

11 # Graph C o n s t r u c t i o n

12 # ######################

13 G = t f . Graph ( )

14 wi th G. a s _ d e f a u l t ( ) :

15 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

16 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , \

17 [ None , num_step ] , name =" d a t a " )

18 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

19 name = " t a r g e t " )

20 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , \

21 t f . shape ( d a t a ) [ 1 ] , n u m _ f e a t u r e ] )

22 d a t a S h a p e d = t f . t r a n s p o s e ( da taShaped , [ 1 , 0 , 2 ] )

23

24 wi th t f . name_scope ( " LSTMLayer1 " ) :

25 f u s e d C e l l 1 = t f . c o n t r i b . rnn . LSTMBlockFusedCell ( num_hidden , \

26 u s e _ p e e p h o l e = F a l s e )

27 va l , s t a t e = f u s e d C e l l 1 ( da taShaped , d t y p e = t f . f l o a t 3 2 )

28 wi th t f . name_scope ( " LSTMLayer2 " ) :

29 f u s e d C e l l 2 = LSTMBlockFusedCell ( num_hidden , \

30 u s e _ p e e p h o l e = F a l s e )

31 va l2 , s t a t e 2 = f u s e d C e l l 2 ( va l , d t y p e = t f . f l o a t 3 2 )

32 wi th t f . name_scope ( " e x t r a c t L a s t C e l l o f t h e L S T M L a y e r " ) :

33 l a s t _ i n d e x = t f . shape ( v a l 2 ) [ 0 ] − 1

34 l a s t S t a t e = t f . g a t h e r ( va l2 , l a s t _ i n d e x )

35

36 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( l a s t S t a t e , \
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37 i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , a c t i v a t i o n _ f n = t f . nn . tanh , \

38 w e i g h t s _ r e g u l a r i z e r =None , scope =" FCPred " )

Code A.2 for model 2

Refers to Sec. A.5.2 for presentation of variable names.
Comments:

• The only difference with the code from model 1 is for the lines 28-30, where the state
vector of the previous LSTM layer is sent into a second LSTM layer. One can notice that
the input shape of the second layer is num_step×batch_size×num_hidden while the
input shape of the first layer was num_step×batch_size×num_ f eature. Each element
of the state vector can be seen as an input feature of the second LSTM layer.

A.5.4 Code defining the structure of the graph for model 3

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 100

5 num_hidden = 150

6 num_out = 5

7 n u m _ f e a t u r e = 1

8 b a t c h _ s i z e = 1000

9

10 # ######################

11 # Graph C o n s t r u c t i o n

12 # ######################

13 G = t f . Graph ( )

14 wi th G. a s _ d e f a u l t ( ) :

15 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

16 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

17 name =" d a t a " )

18 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

19 name = " t a r g e t " )

20 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , \

21 t f . shape ( d a t a ) [ 1 ] , n u m _ f e a t u r e ] )

22 d a t a S h a p e d = t f . t r a n s p o s e ( da taShaped , [ 1 , 0 , 2 ] )

23
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24 wi th t f . name_scope ( " LSTMLayer1 " ) :

25 f u s e d C e l l 1 = LSTMBlockFusedCell ( num_hidden , u s e _ p e e p h o l e = F a l s e )

26 va l , s t a t e = f u s e d C e l l 1 ( da taShaped , d t y p e = t f . f l o a t 3 2 )

27 l a s t _ i n d e x = t f . shape ( v a l ) [0]−1

28 l a s t V a l s = t f . g a t h e r ( va l , \

29 t f . r a n g e ( l a s t _ i n d e x −num_out , l a s t _ i n d e x ) )

30 wi th t f . name_scope ( " ReshapeOutputofLSTMSeq " ) :

31 s t a c k e d _ v a l = t f . r e s h a p e ( t f . t r a n s p o s e ( l a s t V a l s , [ 1 , 0 , 2 ] ) , \

32 [−1 , num_hidden ] )

33 s t a c k e d _ o u t = f u l l y _ c o n n e c t e d ( s t a c k e d _ v a l , 1 , \

34 a c t i v a t i o n _ f n = t f . nn . tanh , \

35 w e i g h t s _ r e g u l a r i z e r =None , scope =" s t a c k e d P r e d " )

36

37 p r e d i c t i o n = t f . r e s h a p e ( s t a c k e d _ o u t , [ −1 , num_out ] , \

38 name=" FCPred " )

Code A.3 for model 3

Refers to Sec. A.5.2 for presentation of variable names.
Comments:

This model is similar to model 1 except for

• Line 28: instead of taking the output of the last LSTM cell only, num_out outputs are
taken. lastVals has a size given by num_out ×batch_size×num_hidden.

• Line 30: lastVals is reshaped into batch_size.num_out ×num_hidden.

• Line 32: the num_hidden values of the batch_size.num_out instances are mapped by a
fully connected layer into a node of shape 1×batch_size.num_out.

• Line 36: the prediction vector is reshaped into batch_size×num_out.

• Lines 30-36 are sort of "trick" to use only one fully connected layer for the num_out

outputs.

A.5.5 Code defining the structure of the graph for model 4

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################
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4 num_step = 100

5 num_hidden = 150

6 num_out = 1

7 n u m _ f e a t u r e = 2

8 b a t c h _ s i z e = 1000

9

10 # ######################

11 # Graph C o n s t r u c t i o n

12 # ######################

13 G = t f . Graph ( )

14 wi th G. a s _ d e f a u l t ( ) :

15 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

16 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step , \

17 n u m _ f e a t u r e ] , name =" d a t a " )

18 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

19 name = " t a r g e t " )

20 d a t a S h a p e d = t f . t r a n s p o s e ( da taShaped , [ 1 , 0 , 2 ] )

21

22 wi th t f . name_scope ( " LSTMLayer " ) :

23 f u s e d C e l l = LSTMBlockFusedCell ( num_hidden )

24 va l , s t a t e = f u s e d C e l l ( da taShaped , d t y p e = t f . f l o a t 3 2 )

25

26 wi th t f . name_scope ( " e x t r a c t L a s t C e l l o f t h e L S T M L a y e r " ) :

27 l a s t _ i n d e x = t f . shape ( v a l ) [ 0 ] − 1

28 l a s t S t a t e = t f . g a t h e r ( va l , l a s t _ i n d e x )

29

30 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( l a s t S t a t e , \

31 i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , a c t i v a t i o n _ f n = t f . nn . tanh , \

32 scope =" FCPred " )

Code A.4 for model 4

Refers to Sec. A.5.2 for presentation of variable names.
Comments:

• The code is identical to the code for model 1, except that the input placeholder data

is of shape batch_size× num_step× num_ f eature = 2 (see Line 16) instead of shape
batch_size× num_step in model 1. The second input feature is for the gain of the
amplifier.



202 More information about:

A.5.6 Code defining the structure of the graph for model 5

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 150

5 num_hidden = 150

6 num_out = 1

7 n u m _ f e a t u r e = 1

8 conv_chan = [ 3 5 ]

9 c o n v _ s t r i d e s = [ 4 , 3 ]

10 c o n v _ s i z e = 12

11 b a t c h _ s i z e = 1000

12

13 # ######################

14 # Graph C o n s t r u c t i o n

15 # ######################

16 G = t f . Graph ( )

17 wi th G. a s _ d e f a u l t ( ) :

18 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

19 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

20 name =" d a t a " )

21 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

22 name = " t a r g e t " )

23 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , num_step , 1 , 1 ] )

24

25 wi th t f . v a r i a b l e _ s c o p e ( " ConvLayers " ) :

26 da taReduced = t f . l a y e r s . conv2d ( i n p u t s = da taShaped , \

27 f i l t e r s = conv_chan [ 0 ] , k e r n e l _ s i z e = ( c o n v _ s i z e , 1 ) , \

28 s t r i d e s =( c o n v _ s t r i d e s [ 0 ] , 1 ) , padd ing = " same " , \

29 a c t i v a t i o n = t f . nn . e lu , name = "C1" )

30 da taReduced = t f . l a y e r s . conv2d ( i n p u t s = dataReduced , \

31 f i l t e r s = conv_chan [ 0 ] , k e r n e l _ s i z e = ( c o n v _ s i z e , 1 ) , \

32 s t r i d e s =( c o n v _ s t r i d e s [ 1 ] , 1 ) , padd ing = " same " , \

33 a c t i v a t i o n = t f . nn . e lu , name="C2" )

34 da taReduced = t f . r e s h a p e ( da taReduced , [ t f . shape ( d a t a ) [ 0 ] , \

35 t f . shape ( da taReduced ) [ 1 ] , conv_chan [ 0 ] ] )

36
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37 f u s e d C e l l = LSTMBlockFusedCell ( num_hidden , u s e _ p e e p h o l e = F a l s e )

38 da taReduced = t f . t r a n s p o s e ( da taReduced , [ 1 , 0 , 2 ] )

39

40 wi th t f . name_scope ( " ex t rac tLas tVa lueLSTM " ) :

41 va l , s t a t e = f u s e d C e l l ( da taReduced , d t y p e = t f . f l o a t 3 2 )

42 l a s t _ i n d e x = t f . shape ( v a l ) [ 0 ] − 1

43 l a s t = t f . g a t h e r ( va l , l a s t _ i n d e x )

44

45 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( l a s t , i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , \

46 a c t i v a t i o n _ f n = t f . nn . tanh , scope =" FCPred " )

Code A.5 for model 5

Refers to Sec. A.5.2 for presentation of variable names previously presented. The others are:
• conv_chan is the number of maps C in a Convolutional Reduction (CR) layer.

• conv_strides is a vector that gathers the different stride sizes S of the different CR layers.

• conv_size is a vector gathering the lengths of kernels for the CR layers.

Comments:

• Lines 26-29: describe the convolutional reduction (CR) layer. The input tensor should
have a shape given by batch_size× length×width× depth which gives in our case
batch_size×num_step×1×1.

• Lines 30-33: describe the second CR layer, this time, the depth is the number of maps
num_chan of the first CR layer. The input tensor has shape:

batch_size× ceil(num_step/conv_strides[0])×1×num_chan

and the output tensor has shape:

batch_size× ceil(ceil(num_step/conv_strides[0])/conv_strides[1])×1×num_chan.

• Lines 34-38: reshape the output of the second CR layer into num_step×batch_size×
num_chan before to send it to the LSTM layer. The rest of the model is then identical to
the model 1.
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A.5.7 Code defining the structure of the graph for model 6

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 150

5 num_hidden = [ 1 0 0 0 , 5 0 0 ]

6 num_out = 1

7 n u m _ f e a t u r e = 1

8 b a t c h _ s i z e = 1000

9

10 # ######################

11 # Graph C o n s t r u c t i o n

12 # ######################

13 G = t f . Graph ( )

14 wi th G. a s _ d e f a u l t ( ) :

15 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

16 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

17 name =" d a t a " )

18 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

19 name = " t a r g e t " )

20

21 wi th t f . v a r i a b l e _ s c o p e ( " DNNLayers " ) :

22 FC1 = f u l l y _ c o n n e c t e d ( da t a , num_hidden [ 0 ] , \

23 a c t i v a t i o n _ f n = t f . nn . r e l u , scope ="FC1" )

24 FC2 = f u l l y _ c o n n e c t e d ( FC1 , num_hidden [ 1 ] , \

25 a c t i v a t i o n _ f n = t f . nn . r e l u , scope ="FC2" )

26

27 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( FC2 , i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , \

28 a c t i v a t i o n _ f n = t f . nn . tanh , scope =" FCPred " )

Code A.6 for model 6

Refers to Sec. A.5.2 for presentation of variable names previously presented.
Comments:

• Line 22: maps the input tensor data of shape batch_size×num_step to a feed forward
layer of 1000 hidden units.

• Line 24: maps the output tensor from layer 1 to a feed forward layer of 500 hidden units.



A.5 Structure of the neural network models in Tensorflow 205

• Line 27: maps the output tensor from layer 2 into a prediction of shape batch_size×1.

A.5.8 Code defining the structure of the graph for model 7

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 150

5 num_hidden = 1000

6 num_out = 1

7 conv_chan = [35 , 70]

8 c o n v _ s i z e = 12

9 s i z e _ p o l l = 3

10 b a t c h _ s i z e = 1000

11

12 # ######################

13 # Graph C o n s t r u c t i o n

14 # ######################

15 G = t f . Graph ( )

16 wi th G. a s _ d e f a u l t ( ) :

17 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

18 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

19 name =" d a t a " )

20 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

21 name = " t a r g e t " )

22

23 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , num_step , 1 , 1 ] )

24 d a t a S h a p e d = t f . t r a n s p o s e ( da taShaped , [ 0 , 3 , 1 , 2 ] )

25

26 wi th t f . v a r i a b l e _ s c o p e ( " ConvLayers " ) :

27 conv1 = t f . l a y e r s . conv2d ( i n p u t s = da taShaped , \

28 f i l t e r s = conv_chan [ 0 ] , k e r n e l _ s i z e = ( c o n v _ s i z e , 1 ) , \

29 s t r i d e s = ( 3 , 1 ) , padd ing =" same " , a c t i v a t i o n = t f . nn . r e l u , \

30 d a t a _ f o r m a t = ’ c h a n n e l s _ f i r s t ’ , name=" conv1 " )

31

32 poo l1 = t f . nn . max_pool ( conv1 , k s i z e = [ 1 , 1 , s i z e _ p o l l , 1 ] , \

33 s t r i d e s = [ 1 , 1 , 2 , 1 ] , d a t a _ f o r m a t = ’NCHW’ , padd ing = ’ same ’ )
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34

35 conv2 = t f . l a y e r s . conv2d ( i n p u t s = pool1 , \

36 f i l t e r s = conv_chan [ 1 ] , k e r n e l _ s i z e = ( c o n v _ s i z e / 2 , 1 ) , \

37 s t r i d e s = ( 1 , 1 ) , padd ing =" same " , a c t i v a t i o n = t f . nn . r e l u , \

38 d a t a _ f o r m a t = ’ c h a n n e l s _ f i r s t ’ , name=" conv2 " )

39

40 poo l2 = t f . nn . max_pool ( conv2 , k s i z e = [ 1 , 1 , s i z e _ p o l l , 1 ] , \

41 s t r i d e s = [ 1 , 1 , 2 , 1 ] , d a t a _ f o r m a t = ’NCHW’ , padd ing = ’ same ’ )

42

43 d a t a S h a p e = i n t ( np . prod ( poo l2 . g e t _ s h a p e ( ) [ 1 : ] ) )

44 d a t a R e s h a p e d = t f . r e s h a p e ( pool2 , [−1 , d a t a S h a p e ] )

45 FC1 = f u l l y _ c o n n e c t e d ( da taReshaped , num_hidden , \

46 a c t i v a t i o n _ f n = t f . nn . r e l u , w e i g h t s _ r e g u l a r i z e r =None , scope ="FC1" )

47

48 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( FC1 , i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , \

49 a c t i v a t i o n _ f n = t f . nn . tanh , scope =" FCPred " )

Code A.7 for model 7

Refers to Sec. A.5.2 for presentation of variable names previously presented. The others are:
• conv_chan is the number of maps C in the convolutional layers

• conv_size is the length of the convolutional kernels.

• size_poll is the length of the receptive field where the polling is made.

Comments:

• Line 27: the input shape of the first convolutional layer is batch_size× num_chan×
num_step×num_ f eature = 1. There are num_chan[0] kernels of length conv_size com-
puted with a stride size of 3.

• Line 32: a pooling of size size_pool is made along the num_step dimension with a stride
size of two.

• Line 35: the second convolutional layer has the same principle than the first one but the
length of the kernels are divided by two, the number of maps is multiplied by two and
the stride size is equal to 1.
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• Line 40: the second pooling layer is the same than the first one. The output of pool2 has
shape batch_size×num_chan[1]×Nout ×num_ f eature= 1, where Nout can be computed
as proposed in Eq. (4.12).

• Lines 43, 44: the output of pool2 is flatten to obtain a shape batch_size×num_chan[1].Nout

• Line 48: the data are mapped in a prediction vector ŷ[n].

A.5.9 Code defining the structure of the graph for model 8

1 # ############################

2 # Model p a r a m e t e r s

3 # ############################

4 num_step = 150

5 num_hidden = 150

6 num_out = 1

7 n u m _ f e a t u r e = 1

8 conv_chan = [ 3 5 ]

9 c o n v _ s t r i d e s = [ 4 , 3 ]

10 c o n v _ s i z e = 12

11 b a t c h _ s i z e = 1000

12

13 # ######################

14 # Graph C o n s t r u c t i o n

15 # ######################

16 G = t f . Graph ( )

17 wi th G. a s _ d e f a u l t ( ) :

18 wi th t f . name_scope ( " p l a c e H o l d e r " ) :

19 d a t a = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_step ] , \

20 name =" d a t a " )

21 t a r g e t = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , num_out ] , \

22 name = " t a r g e t " )

23 d a t a S h a p e d = t f . r e s h a p e ( da t a , [ t f . shape ( d a t a ) [ 0 ] , num_step , 1 , 1 ] )

24

25 wi th t f . v a r i a b l e _ s c o p e ( " ConvLayers " ) :

26 da taReduced = t f . l a y e r s . conv2d ( i n p u t s = da taShaped , \

27 f i l t e r s = conv_chan [ 0 ] , k e r n e l _ s i z e = ( c o n v _ s i z e , 1 ) , \

28 s t r i d e s =( c o n v _ s t r i d e s [ 0 ] , 1 ) , padd ing = " same " , \
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29 a c t i v a t i o n = t f . nn . e lu , name = "C1" )

30 da taReduced = t f . l a y e r s . conv2d ( i n p u t s = dataReduced , \

31 f i l t e r s = conv_chan [ 0 ] , k e r n e l _ s i z e = ( c o n v _ s i z e , 1 ) , \

32 s t r i d e s =( c o n v _ s t r i d e s [ 1 ] , 1 ) , padd ing = " same " , \

33 a c t i v a t i o n = t f . nn . e lu , name="C2" )

34 da taReduced = t f . r e s h a p e ( da taReduced , [ t f . shape ( d a t a ) [ 0 ] , \

35 t f . shape ( da taReduced ) [ 1 ] , conv_chan [ 0 ] ] )

36

37 RNN = t f . k e r a s . l a y e r s . SimpleRNN ( num_hidden , a c t i v a t i o n = ’ t a n h ’ , \

38 r e t u r n _ s e q u e n c e s = F a l s e , r e t u r n _ s t a t e = F a l s e , u n r o l l =True )

39

40 wi th t f . name_scope ( " ex t rac tLas tVa lueLSTM " ) :

41 v a l = RNN( da taReduced )

42

43 p r e d i c t i o n = f u l l y _ c o n n e c t e d ( va l , i n t ( t a r g e t . g e t _ s h a p e ( ) [ 1 ] ) , \

44 a c t i v a t i o n _ f n = t f . nn . tanh , scope =" FCPred " )

Code A.8 for model 5

Refers to Sec. A.5.2 for presentation of variable names previously presented. The others are:
• conv_chan is the number of maps C in a Convolutional Reduction (CR) layer.

• conv_strides is a vector gathering the different stride sizes S of the different CR layers.

• conv_size is a vector gathering the lengths of the kernels for the different CR layers.

Comments:

The code is the same than for model 5 except for:

• Lines 37: the function simpleRNN defines a simple RNN network, the parameter re-

turn_sequences=False enables to return the last state vector of the num_step RNN
cells.

• Line 41: uses the RNN by sending to it a tensor of shape batch_size× num_step×
conv_chan. It returns the last state of the RNN of shape batch_size×num_hidden.
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Additional developments for the third
chapter

B.1 Development of Eq. (3.7)

The phase grows exponentially as:

φ [n] = ω1
R
fs
.(e

n
R −1) ∀n ∈ [0,N −1]. (B.1)

Assuming that: 
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(B.2)

A multiple m of the phase can be written such that:
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B.2 Development of Eq. (3.9)

Considering the following ESS with a unit amplitude:

ss[n] = sin(φ [n])

= sin
(

ω1
R
fs

(
e

n
R −1

))
,

(B.4)

with R = (N − 1).log
(

ω2
ω1

)−1
. In the following, it is more convenient to consider the sine

sweep in the continuous time domain, such that:
ss(t) = Asin

(
ω1L

(
e

t
L −1

))
with L =

R
fs
,

(B.5)

Let the analytic signal z(t) of ss(t) be:

z(t),−H {ss(t)}+ jss(t)

= cs(t)+ jss(t) = es(t)

= e jω1L
(

e
t
L −1

)
.

(B.6)

where:

• the Hilbert Transform H {.} [Zwillinger, 2002; Qin et al., 2008] has the following
property:

H {sin(u(t))}= sin(u(t))∗ h̄(t) =−cos(u(t)), (B.7)

with h̄(t) = 1
πt .

• cs(t) = cos(φ(t)) = cos
(

ω1L
(

e
t
L −1

))
.

The Fourier transform of the analytic signal can then be written as:

Z(ω) =
∫ +∞

−∞

e jω1L
(

e
t
L −1

)
e− jωtdt

=
∫ +∞

−∞

e j
(

ω1L
(

e
t
L −1

)
−ωt

)
dt

= e− jω1L
∫ +∞

−∞

e jζ (t)dt,

(B.8)
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where:
ζ (t) = ω1Le

t
L −ωt.

The approximation of the integral has been analytically computed in [Novak et al., 2015]
using Taylor series and the stationary phase approximation [Courant and Hilbert, 1953]. The
Fourier transform of the sine sweep analytic signal is then given by:

Z(ω) = e jL
(

ω

(
1−log

(
ω

ω1

))
−ω1

)√
2πL
ω

e j π

4

=

√
2πL
ω

e j
[
L
(

ω

(
1−log

(
ω

ω1

))
−ω1

)
+ π

4

]
.

(B.9)

It is also recalled [Novak et al., 2015] that the Fourier transform of real signal and the
Fourier transform of its analytic signal are linked by the following properties:{

z(t), jss(t)−H {ss}(t)

F{z}(ω) = Z(ω) = jSS(ω)−F{H {ss}(t)}(ω),
(B.10)

where:
F{H {ss}(t)}(ω),− j sgn(ω)F{ss(t)}(ω) (B.11)

and

sgn(ω) =


1, if ω > 0

0, if ω = 0

−1, if ω < 0,

(B.12)

which gives:
Z(ω) = 2 j.SS(ω) for ω > 0. (B.13)

Therefore, the Fourier transform of the ESS is equal to:

SS(ω) =

√
πL
2ω

e j
[
L
(

ω

(
1−log

(
ω

ω1

))
−ω1

)
− π

4

]
. (B.14)

Finally, the Fourier transform of the inverse ESS is given by:

SS(ω) =
1

SS(ω)
=

√
2ω

πL
e− j

[
L
(

ω

(
1−log

(
ω

ω1

))
−ω1

)
− π

4

]
. (B.15)
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B.3 Development of Eq. (3.15)

The output of the nonlinear system is expressed in Eq. (3.14) as:

y[n] = ss[n]∗h1[n]

+
A
2
(ss[n+∆2]cos(B)∗ h̄[n]− ss[n+∆2]sin(B))∗h2[n]

+
A2

4
(3ss[n]− ss[n+∆3]cos(2B)− ss[n+∆3]sin(2B)∗ h̄[n])∗h3[n].

(B.16)

The transition into the frequency domain is obtained using the property of the Fourier transfor-
mation of the Hilbert transform (B.11). The Eq. (B.16) can then be expressed in the frequency
domain (for ω > 0) by considering that:

F {H {ss[n+∆2]}}(ω) =− jF {ss[n+∆2]}(ω)

=− je jω∆2/ fsSS(ω),
(B.17)

this gives:

Y (ω) = SS(ω).H1(ω)

+
A
2

(
SS(ω)e jω∆2/ fs cos(B).(− j)−SS(ω)e jω∆2/ fs sin(B)

)
.H2(ω)

+
A2

4

(
3SS(ω)−SS(ω)e jω∆3/ fs cos(2B)−SS(ω)e jω∆3/ fs sin(2B).(− j)

)
.H3(ω).

(B.18)

Then, using euler formula : e jx = cos(x)+ j sin(x), Eq. (B.18) becomes:

Y (ω) = SS(ω).H1(ω)

− A
2

(
SS(ω). j.e− jB.e

ω∆2
fs

)
.H2(ω)

+
A2

4

(
3.SS(ω)−SS(ω).e− j2Be

jw∆3
fs

)
.H3(ω).

(B.19)

B.4 Matrix of phase correction presented in Sec. 3.3.3

The correction to apply to each power of the sweep is immediate if it is noticed that the phase
property given in Eq. 3.6 applied to a sine gives:
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sin(m.φ [n]) = sin(φ [n+∆m]−B(m−1)). (B.20)

In the frequency domain, it can be written:

F{sin(m.φ [n])}= e− jB(m−1)F{sin(φ [n+∆m])}. (B.21)

Each power of the ESS given by Eq. 3.24 can then be corrected to take this B factor into
account.
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