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Abstract
Background  Matrix-Gla-protein (MGP) is an inhibitor of vascular calcification. Its dephosphorylated and uncarboxylated 
inactive form, dpucMGP, is a marker of vitamin K status and of cardio-vascular outcomes in chronic kidney disease. We 
hypothesized that higher serum dpucMGP would be a biomarker of kidney stone disease.
Methods  We measured serum dpucMGP in incident symptomatic kidney stone-formers and non-stone formers at a base-
line visit. Symptomatic stone recurrence was assessed in the stones formers over a 5-year period. The association of dpuc-
MGP with incident or recurrent kidney stones was assessed with and without adjustment for clinical, blood, and urine 
characteristics.
Results  There was no significant difference in serum dpucMGP level between 498 stone formers and 395 non-stone former 
(510 vs 501 pmol/L; p = 0.66). In a multivariable model adjusting for clinical, blood and urine chemistries, higher MGP 
was associated with lower risk of stone formation (OR = 0.674, 95% CI 0.522–0.870), contrary to previous reports. Among 
375 stone formers with 5 years of follow-up, 79 (21%) had symptomatic recurrence. No difference in serum dpucMGP was 
evident in recurrent versus non-recurrent stone-formers (482 vs 502 pmol/L; p = 0.26). Serum dpucMGP was correlated with 
cystatin C levels in non stone-formers, incident stone-formers and recurrent stone-formers (r > 0.3, p < 0.0001).
Conclusion  Elevated serum dpucMGP was not associated with incident or recurrent symptomatic kidney stone events. How-
ever, higher level of dpucMGP was associated with lower risk of kidney stone in a multivariable logistic regression model.

Keywords  Nephrolithiais · Matrix-Gla-protein · Biomarker · Cystatin C

Introduction

Matrix-Gla-protein (MGP) is a small endogenous protein 
that inhibits vascular calcifications [1]. MGP is expressed 
in many tissues, including heart, bone, and kidney [2]. It 
contains five γ-carboxyglutamate amino-acid residues that 
require post-translational carboxylation to be activated. In 
addition to carboxylation, phosphorylation of the serine 
residues is important to MGP role in inhibition of calcifica-
tions. The inactive form of MGP is the dephosphorylated 
and uncarboxylated MGP (dpucMGP) [3, 4]. MGP inhibits 
calcification, and high dpucMGP levels have been associated 
with increased risk of vascular calcifications. Further, dpuc-
MGP correlates with cardiovascular outcomes in patients 
with CKD and diabetes, as well as in healthy women [5–7].

MGP is expressed in the kidney, where it plays a potential 
role to inhibit crystallization. When exposed to calcium oxa-
late crystals, MGP expression was upregulated in NRK-52E 
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tubular cells (in vitro) and in rat kidneys (in vivo) [8, 9]. 
Genetic studies have identified MGP gene polymorphisms 
that associate with nephrolithiasis in humans [10]. Only one 
study has investigated a possible association between human 
kidney stone risk and serum dpucMGP. Wei et al. reported 
that higher serum dpucMGP concentration was associated 
with a past medical history of kidney stones and with future 
incident or recurrent stones in the general population [11].

Thus, the aim of this study was to determine whether 
higher serum dpucMGP concentration is associated with 
incident (first-time) symptomatic kidney stones or is pre-
dictive of recurrent symptomatic kidney stones over a 5 year 
period.

Material and methods

Study population

We studied 498 incident (first-time) symptomatic kidney 
stone-formers and 395 matched non-stone formers who had 
a baseline study visit to collect and bank serum at Mayo 
Clinic in Minnesota and Florida (USA), as previously 
described [12]. Symptomatic stone events required both the 
presence of symptoms (pain or gross hematuria) and a con-
firmed stone (obstructing the ureter on imaging or a voided 
stone) in the medical records. This cohort has been enroll-
ing since the 1st January 2009 and all participants signed 
informed consent for participation in the study. Among 
incident symptomatic stone formers, there were 375 with 
5 years follow-up for symptomatic stone recurrence. Medical 
records and a survey were used to ascertain baseline comor-
bidities. The non-stone former cohort was recruited using 
local mailings and community flyers. Participants answered 
a survey during the visit about stone risk and other comor-
bidities. Non-stone formers were sampled to be matched on 
age and sex to the stone former cohort (both cohorts were 
predominately white). Both stone formers and non-stone 
formers were sampled from the local populations of the two 
sites of the Mayo Clinic.

Methods

All participants were prospectively recruited for the study 
during the same time period and samples were collected 
using the same protocol and stored in freezer. For this study, 
we measured dpucMGP from previously frozen EDTA 
serum obtained at the baseline visit using an automated 
method based on dual-antibody chemiluminescence using 
the inaKtif MGP kit for IDS-iSYS (IDS, Boldon, UK) at 
the University hospital of Liège (Belgium). The established 
CV of the test was < 5%. The lower limit of quantification 
was 300 pmol/L and the upper reference range 521 pmol/L 

(CI 513–550 pmol/L). The other laboratory parameters 
were previously assessed at the Mayo Clinic in Minnesota 
(USA) as previously described [12]. Serum creatinine was 
measured by standardized isotope dilution mass spectrom-
etry traceable enzymatic assay (Roche), and serum cystatin 
C by particle-enhanced turbidimetric assay (Gentian AS). 
Blood and urine analytes including calcium, magnesium, 
phosphate, uric acid, chloride, potassium, sodium, citrate 
(enzymatic, citrate lyase) and oxalate (enzymatic, oxalate 
oxidase) were all measured on a Roche Cobas autoanalyzer 
using previously validated assays.

Statistical analysis

Univariate comparisons were performed with Fisher’s 
Exact Test for binary data and Wilcoxon rank sum test for 
continuous data. Logistic regression was used to identify 
independent characteristics associated with incident stone 
formers (versus non-stone formers), and separately among 
stone former, independent characteristics associated with 
symptomatic recurrence in 5 years (versus not recurrence 
in 5 years). Backward and forward selection of variables for 
the multivariable regression analysis was limited to vari-
ables that were significant in unadjusted analysis. All analy-
ses were performed in SAS 9.4 (SAS Institute Inc., Cary, 
NC, USA).

Ethics

This study is in accordance with the Declaration of Hel-
sinki and has been approved by the Mayo Clinic Institutional 
Review Board.

Results

Stone formers versus non stone formers

A total of 498 stone-formers and 395 non stone-formers 
were analyzed. The demographics, blood, and urine param-
eters are compared between both groups and are shown in 
Table 1. In univariate comparison, there was no detectable 
difference in serum dpucMGP measurement between both 
groups (Fig. 1).

However, in a multivariable logistic regression anal-
ysis (both in a forward and backward procedure, enter-
ing all available covariates), we found that cases with 
higher serum dpucMGP were less likely to have kidney 
stones (OR = 0.674, with 95% CI of [0.522–0.870] for a 
1 SD increment, p = 0.0024) (Table 2). Cystatin C was 
the most important parameter in this logistic regression 
model (OR = 2.25, 95% CI 1.77–2.85). In addition, in 
an intermediate model adjusting only for sex, race, age 
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Table 1   Demographics, blood 
and urine parameters of non 
stone-formers s and stone 
formers

dpucMGP dephosphorylated and uncarboxylated matrix-gla-protein
For unit conversion of dpucMGP from pmol/L into µg/L, divide by 94.299

Non stone-formers Kidney stone formers p value

Number of subjects 395 498
Biometrics
 Gender
  Males (n [%]) 196 (49.6) 273 (54.8) 0.14

 Race
  Caucasian (n [%]) 347 (87.8) 482 (96.8)  < 0.0001

 Age (y) 45.7 ± 14.7 48.2 ± 14.3 0.0086
 Systolic blood pressure (mmHg) 117.5 ± 16.7 121.2 ± 21.2 0.004
 Diastolic blood pressure (mmHg) 74.8 ± 15.8 76.7 ± 9.9 0.044
 Height (cm) 171.9 ± 9.7 171.6 ± 10.0 0.71
 Weight (kg) 82.7 ± 18.9 91.6 ± 23.6  < 0.0001
 Body mass index (kg/m2) 27.9 ± 5.6 31 ± 7.4  < 0.0001
 Waist circumference (cm) 90.5 ± 15.2 101 ± 19.4  < 0.0001
 Hip circumference (cm) 103.1 ± 12.2 110.6 ± 16.5  < 0.0001

Comorbidities (n [%])
 Relatives with stones 77 (19.6) 189 (39)  < 0.0001
 Chronic kidney disease 0 (0) 4 (0.8) 0.13
 Gout 9 (2.3) 25 (5.1) 0.036
 Diabetes mellitus 31 (7.9) 60 (12.1) 0.045
 Urinary infection 126 (32.1) 201 (40.9) 0.0077
 Chronic diarrhea 21 (5.4) 56 (11.4) 0.0025
 Weight loss surgery 12 (3.1) 27 (5.4) 0.10
 Heat cramps 27 (7.0) 70 (14.2) 0.0007

Blood
 dpucMGP (pmol/L) 501 ± 155.3 510 ± 205.1 0.66
 Creatinine (mg/dL) 0.82 ± 0.20 0.9 ± 0.45 0.0026
 Cystatin C (mg/L) 0.74 ± 0.17 0.87 ± 0.22  < 0.0001
 Calcium (mg/dL) 9.25 ± 0.64 9.37 ± 0.55 0.013
 Uric acid (mg/dL) 5.05 ± 1.51 5.64 ± 1.42  < 0.0001
 Phosphate (mg/dL) 3.41 ± 0.52 3.73 ± 1.89 0.25
 Bicarbonate (mmol/L) 26.7 ± 2.15 26.1 ± 2.27 0.0003

24 h urine
 Calcium (mg/24 h) 159.4 ± 114.7 205.4 ± 124.4  < 0.0001
 Chloride (mmol/24 h) 120.8 ± 97.0 129.1 ± 72.1 0.022
 Citrate (mg/24 h) 581.2 ± 447.0 620.1 ± 382.4 0.11
 Magnesium (mg/24 h) 94.2 ± 61.4 100.8 ± 51.8 0.0041
 Oxalate (mmol/24 h) 0.28 ± 0.21 0.24 ± 0.17  < 0.0001
 Phosphate (mg/24 h) 661.5 ± 560.2 738.9 ± 373.3  < 0.0001
 Potassium (mmol/24 h) 53.9 ± 46.0 50.1 ± 24.7 0.88
 Sodium (mmol/24 h) 131.6 ± 111.7 141.2 ± 75.5 0.013
 Uric acid (mg/24 h) 450.8 ± 437.5 455.5 ± 224.0 0.12
 Volume (mL) 1851.8 ± 1273.4 1770.7 ± 794.5 0.62
 Creatinine (mg/24 h) 1095 ± 876.0 1159.5 ± 546.9 0.0034
 Albumin (mg/24 h) 9.43 ± 107.9 14.47 ± 61.13  < 0.0001
 pH 6.3 ± 0.58 6.1 ± 0.55 0.0003
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and comorbidities, higher dpucMGP lower risk of kidney 
stones (OR = 0.47, 95% CI 0.35–0.62).

Recurrent versus non recurrent stone formers

Among the 498 stone formers, 375 had 5 years of follow-
up to assess for symptomatic recurrence resulting in clini-
cal care. Seventy-nine (21%) of the stone formers had at 
least one recurrence within the 5 year follow-up period. 
There was no difference in dpucMGP between recurrent 
and non-recurrent stone formers (483 vs 502  pmol/L, 
p = 0.26). In a multivariable logistic regression analysis 
adjusting for all other factors in Table 1, dpucMGP was 
not associated with symptomatic recurrence (OR = 1.102, 
95% CI [0.671–1.809] for a 1 SD increment, p = 0.702).

Correlation

In addition, dpucMGP was significantly correlated (r > 0.25) 
with cystatin C levels in non stone-formers, incident kidney 
stone-formers and recurrent stone-formers (Table 3). It was 
also associated with the age of patients at the inclusion of 
the study in non stone-formers and recurrent stone-formers, 
while not in incident stone-formers. Serum dpucMGP levels 
didn’t correlate with any other serum or urine parameters.

Discussion

In this prospective study, we found that dpucMGP levels 
were not associated with either incident symptomatic kid-
ney stones or recurrent symptomatic stones over a 5 year 
period among incident stone formers. Thus, these data did 
not support a role of dpucMGP in the biology of kidney 
stone formation.

In contrast, several in vitro studies have shown that NRK-
52 and MDCK renal tubular cells exposed to calcium oxalate 
crystals had an increase of MGP expression [8, 13]. Simi-
larly, the kidney of hyperoxaluric rats fed with hydroxyl-L-
proline or ethylene glycol had higher expression of MGP 
[9, 13–16]. However, a high concentration of calcium sup-
pressed the expression of MGP in NRK-52 cells [17]. Yet, 
these studies assessed MGP expression by PCR or Western 
blot in renal cells, and thus may not correlate with serum 
dpucMGP levels. Indeed, we assessed serum dpucMGP in 
the present study which is dependent on vitamin K activa-
tion [18].

Goiko et  al. have synthesized different segments of 
human MGP that were phosphorylated, γ-carboxylated, 
post-translationally modified or non-modified forms. Some 
of them selectively inhibited the growth of hydroxyapatite 
or calcium oxalate monohydrate crystals while promoting at 
the same time the growth of calcium oxalate dihydrate crys-
tals [19]. Thus, different post-translationally modified MGP 
forms may play different roles according to crystal nature. 
As previously reported, about 94% of kidney stones with a 
known composition in the community are hydroxyapatite or 
calcium oxalate [20].

So far, there are few papers about MGP in stone-formers. 
One genetic variant of MGP, rs4236, has been significantly 
associated with higher risk of nephrolithiasis in several 
Asian populations (Indian [21], Japanese [22] and Chi-
nese [10]), as well as in a Belgian cohort [11]. In addition, 
Wei et al. also identified the polymorphs rs2430692 and 
rs2098435 that were associated to higher dpucMGP levels 
in stone formers [11]. Yet, the prevalence of the rs4236 vari-
ant is unknown in our American population.

One Chinese study showed a decreased expression of 
MGP mRNA in the renal papillary tissue of stone-formers 

Fig. 1   Box plot of dpucMGP distribution in non stone-formers and 
stone formers. The dpucMGP median (Q1–Q3) was 475.8 (412.4–
543.8) in non stone-formers and 471.2 (402.9–556.1) pmol/L in 
stone-formers. Dots represent < 5% and > 95% outliners

Table 2   ORs for 1 SD increment of the significant variables in the 
multivariable logistic regression model for incident kidney stone risk

dpucMGP Dephosphorylated and uncarboxylated matrix-gla-protein

Odds ratio 95% CI

Body mass index 1.56 1.27–1.93
Race (other race vs Caucasian) 0.30 0.13–0.69
dpucMGP 0.67 0.522–0.87
Phosphate (blood) 1.45 1.09–1.93
Cystatin C (blood) 2.25 1.77–2.85
Potassium (urine) 0.50 0.35–0.71
Calcium (urine) 1.37 1.08–1.73
Phosphate (urine) 1.53 1.07–2.17
Oxalate (urine) 0.65 0.49–0.86
Relatives with stones (no vs yes) 0.38 0.26–0.56
Heat cramps (no vs yes) 0.42 0.24–0.76
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compared to patients with renal cancer [23]. However, the 
expression level of MGP protein measured by Western blot 
was not significantly different between both groups.

In our study, there was no significant difference in 
serum dpucMGP level between incident symptomatic 
stone formers and non-stone former, or between recur-
rent and non recurrent SF. Higher level of dpucMGP was 
actually associated with lower risk of kidney stone in a 
multivariable logistic regression model (OR = 0.674; 95% 
CI 0.522–0.870; p = 0.0024), which differs from previ-
ous studies on prevalent stone formers. Until now, only 
Wei et al. directly assessed serum dpucMGP in humans 
[11]. They found that the risk of being a prevalent stone 
former to be 1.5 higher per doubling of dpucMGP level 
in a large Belgian population. They also found the risk 
of a subsequent stone (incident or recurrent) to be 2.2 
higher per doubling of dpucMGP. On the contrary, we 
found that a doubling of dpucMGP was associated with 
a threefold decreased risk of incident nephrolithiasis in a 
multivariable logistic regression model (OR: 0.315; 95% 
CI 0.179–0.554, p < 0.0001). In our study, dpucMGP was 

not significant in the univariate logistic regression, but 
was found to be significant in a multivariable model. Since 
MGP is a new biomarker, it is difficult to know the relevant 
confounders. By fully considering all potential confound-
ers in the model we avoided making prior assumptions. 

The different findings may be explained by some dif-
ferences in the studied populations. Wei’s study had only 
16 incident stone formers during follow up and they were 
combined with recurrence among prevalent stone formers 
during follow up. The current study compared a much larger 
sample of 498 incident stone formers to non stone-formers 
s and recurrence was assessed among incident stone form-
ers rather than among prevalent stone formers. By study-
ing incident stone formers, and recurrence in incident stone 
formers, the temporal relationship between dpucMGP levels 
and stone episodes is more clearly delineated. The overall 
dpucMGP levels in our American subjects were higher than 
in the Belgian population. Finally, considering that genet-
ics may impact both dpucMGP levels and nephrolithiasis, 
there could be a selection bias in that the Wei study included 
mostly related subjects from the same families [11].

Table 3   Correlation coefficient 
of dpucMGP with other 
parameters

dpucMGP Dephosphorylated and uncarboxylated matrix-gla-protein
All variables were log transformed for the correlation

dpucMGP

Non stone-formers Stone-formers Recurrent stone-formers

Correlation 
coefficient

p value Correlation 
coefficient

p value Correlation 
coefficient

p value

Number of stones NA 0.11 0.093 – 0.094 0.51
Age at inclusion 0.31  < 0.0001 0.19  < 0.0001 0.27 0.015
24 h urine parameters
 pH − 0.089 0.078 – 0.10 0.038 – 0.17 0.15
 Sodium – 0.11 0.023 – 0.024 0.63 – 0.079 0.50
 Potassium – 0.11 0.035 – 0.071 0.14 – 0.20 0.089
 Calcium – 0.13 0.011 – 0.15 0.0034 0.0080 0.95
 Magnesium – 0.089 0.079 – 0.077 0.12 – 0.023 0.84
 Chloride – 0.12 0.021 – 0.018 0.71 – 0.084 0.47
 Phosphate – 0.064 0.21 – 0.071 0.15 – 0.15 0.19
 Citrate – 0.12 0.013 – 0.14 0.0041 – 0.21 0.069
 Oxalate 0.0042 0.93 0.062 0.20 – 0.089 0.44
 Uric acid – 0.16 0.0019 – 0.15 0.0017 – 0.14 0.24
 Creatinine – 0.088 0.081 – 0.071 0.15 – 0.16 0.16
 Albumin 0.16 0.050 0.13 0.030 0.20 0.18
 Volume – 0.015 0.76 – 0.047 0.34 – 0.056 0.63

Serum parameters
 Calcium – 0.094 0.062 – 0.023 0.66 – 0.092 0.43
 Uric acid 0.10 0.045 0.13 0.0032 0.11 0.31
 Creatinine 0.050 0.32 0.13 0.0051 0.098 0.38
 Phosphate – 0.092 0.070 – 0.087 0.059 0.0046 0.97
 Bicarbonate – 0.054 0.29 – 0.17 0.0002 – 0.054 0.63
 Cystatin C 0.38  < 0.0001 0.30  < 0.0001 0.41 0.0001
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However, a similar finding was that higher dpucMGP 
was associated to higher creatinine levels and lower eGFR 
in Wei population, as it was slightly correlated to higher 
levels of cystatin C in our population (r > 0.3, p < 0.0001). 
Indeed, other recent publications demonstrated a correla-
tion between dpucMGP and kidney function, leading to 
the hypotheses that kidney disease may lead to vitamin 
K deficiency or conversely, that vitamin K deficiency is 
a risk factor of kidney damage [24, 25]. As shown previ-
ously, stone formers have an increased cystatin C levels 
that may be associated with the risk of chronic kidney 
disease [12]. While no study has directly reported an 
association between vitamin K status and urolithiasis, it 
is well-known that higher vegetables intake decrease the 
risk of urolithiasis [26]. Because vitamin K is essentially 
found in green vegetables, it is possible that vitamin K 
may indirectly associate with dietary factors that affect 
stone risk. However, there is no report of increased risk of 
nephrolithiasis associated to vitamin K antagonist intake 
to our knowledge.

It would also be of interest to assess MGP directly in 
the urine, as it is where stone formation occurs, and where 
MGP could act in inhibiting crystal growth. The urine con-
centration of MGP is unknown in human or rats, but it has 
been demonstrated that MGP is expressed at the apical 
membrane of renal cells in rats [9]. Thus it will be of inter-
est to develop an assay for MGP in urine to have further 
insight into stone formation mechanisms.

The main limitation of the current study is the absence 
of genetic testing in order to estimate the prevalence of 
rs4236 variant in this cohort, which is associated with 
higher serum dpucMGP concentrations, and higher kid-
ney-stone risk [10, 11, 22]. The comorbidities we adjusted 
for in the analysis were based on a survey and patients may 
have been unaware of certain conditions or have recall 
bias; this may have caused residual confounding in the 
association between MGP and kidney stones.

Conclusion

There was no association between serum dpucMGP con-
centration and risk of incident or recurrent kidney stones 
in this study. This outcome differs from the only other 
study on dpucMGP in stone-formers. Thus, further studies 
are required to determine if serum dpucMGP can be used 
as a biomarker of nephrolithiasis risk. It would be of inter-
est to evaluate dpucMGP in human urine, and in group of 
stone-formers with a higher number of recurrences.
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