
DELIÈGE A. ET AL.: ORDINAL POOLING 1

Ordinal Pooling

Adrien Deliège1

adrien.deliege@uliege.be

Maxime Istasse2

maxime.istasse@uclouvain.be

Ashwani Kumar3

akumar4@sheffield.ac.uk

Christophe De Vleeschouwer2

christophe.devleeschouwer@uclouvain.be

Marc Van Droogenbroeck1

M.VanDroogenbroeck@uliege.be

1 Montefiore Institute
University of Liège
Liège, Belgium

2 ICTEAM
University of Louvain
Louvain-la-Neuve, Belgium

3 EEE Department
University of Sheffield
Sheffield, UK

Abstract

In the framework of convolutional neural networks, downsampling is often performed
with an average-pooling, where all the activations are treated equally, or with a max-
pooling operation that only retains an element with maximum activation while discard-
ing the others. Both of these operations are restrictive and have previously been shown
to be sub-optimal. To address this issue, a novel pooling scheme, named ordinal pool-
ing, is introduced in this work. Ordinal pooling rearranges all the elements of a pool-
ing region in a sequence and assigns a different weight to each element based upon its
order in the sequence. These weights are used to compute the pooling operation as a
weighted sum of the rearranged elements of the pooling region. They are learned via
a standard gradient-based training, allowing to learn a behavior anywhere in the spec-
trum of average-pooling to max-pooling in a differentiable manner. Our experiments
suggest that it is advantageous for the networks to perform different types of pooling
operations within a pooling layer and that a hybrid behavior between average- and max-
pooling is often beneficial. More importantly, they also demonstrate that ordinal pool-
ing leads to consistent improvements in the accuracy over average- or max-pooling op-
erations while speeding up the training and alleviating the issue of the choice of the
pooling operations and activation functions to be used in the networks. In particu-
lar, ordinal pooling mainly helps on lightweight or quantized deep learning architec-
tures, as typically considered e.g. for embedded applications. Code will be available at
https://github.com/mistasse/ordinal-pooling-layers.

1 Introduction
Convolutional neural networks (CNNs) [12] that are specifically suited for various visual
tasks, such as image classification [11], object detection [17], segmentation [6], and mod-
eling video evolution [3], are one of the main drivers of deep learning. A typical deep

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

https://github.com/mistasse/ordinal-pooling-layers

2 DELIÈGE A. ET AL.: ORDINAL POOLING

CNN architecture consists of three types of layers: 1) convolutional: for extracting various
features or activations from an input image or feature maps, 2) pooling: a downsampling
technique for aggregating elements within a pooling region so that the size of the feature
maps along the spatial dimensions becomes smaller, and 3) fully connected: to carry out
the classification from the extracted features at the end of the network. Many types of
CNNs have been reported in the literature, for instance, network-in-network (NIN) [14],
residual networks (ResNets) [7], inception networks [20], squeeze-and-excitation networks
(SENets) [8], densely connected convolutional networks (DenseNets) [9].

Replicating convolution kernels across the spatial dimensions in CNNs enables weight
sharing across space. This helps achieve equivariance, i.e. a translation of an object in an in-
put image results in an equivalent translation in the activations of the output feature map. The
pooling operation, on the other hand, tends to achieve translational invariance, i.e. a transla-
tion of an object in an input image does not influence the output of the network. This pooling
operation is most commonly performed either by average-pooling (shortened to avg-pooling
in the following), where all the activations in a pooling region are averaged together, or by
max-pooling, where only the element with the maximum activation is retained. A theoretical
analysis on these two pooling operations reveals that none of the techniques is optimal [2].
Yet, it has sometimes been argued that max-pooling achieves better performances over avg-
pooling because avg-pooling treats all the elements equivalently irrespective of their activa-
tions, which results in an undervaluation of the elements with higher activations, while the
elements with smaller activations are overestimated [1, 18].

This work presents an alternative pooling scheme, named ordinal pooling, that general-
izes the classic avg- and max-pooling operations and resolves the issue of unfair valuation
of the elements in a pooling region, while still preserving the information from other activa-
tions. In this scheme, all the elements in a pooling region are first ordered based upon their
activations and then combined together via a weighted sum, where the weights are assigned
depending upon the orders of the elements and are learned with a standard gradient-based
optimization during the training phase. Moreover, a key difference between ordinal pooling
and a classic pooling layer is that while a typical pooling acts upon each feature map in the
same way, ordinal pooling learns a different set of weights for each feature map and therefore
allows much more flexibility in the pooling layer.

2 Related Works
The idea of a rank-based weighted aggregation was first introduced by Kolesnikov et al. [10]
in the context of image segmentation, who proposed a global weighted rank-pooling (GWRP)
in order to estimate a score associated with a segmentation class. However, GWRP is used
only as a global pooling procedure as it acts upon all the elements in a feature map to generate
the score of a particular segmentation class. Also, contrary to ordinal pooling, the weights
that are assigned based on the order of the elements are determined from a hyper-parameter
and therefore do not change during the training.

In addition to GWRP [10], other variants of rank-based pooling have been introduced by
Shi et al. [19], who proposed three pooling schemes based upon the rank of the elements: 1)
average, 2) weighted, and 3) stochastic. Unlike ordinal pooling, all of these schemes require
an additional hyperparameter, which is thus not learned in a differentiable way. Indeed, in
the first scheme, the hyperparameter is fixed to determine the threshold for choosing the
activations to be averaged. In the second scheme, it is fixed to generate the weights to be

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

DELIÈGE A. ET AL.: ORDINAL POOLING 3

applied to the activations, which remain the same across all the feature maps, while in the
third scheme, a set of probabilities is generated based upon this hyperparameter and is used
to select an element in a pooling region.

Other works focus upon generalizing the pooling operation. Gulcehre et al. [5] regard
pooling as a lp norm, where the values of 1 and ∞ for the parameter p correspond to avg-
and max-pooling, whereas p itself is learned during the training. Pinheiro et al. [16] use a
smooth convex approximation of max-pooling, called Log-Sum-Exp, where a hyperparam-
eter controls the smoothness of the approximation, so that pixels with similar scores have a
similar weight in the training process. Lee et al. [13] propose mixing together avg-pooling
and max-pooling by a trainable parameter and also introduce the idea of tree pooling to learn
different pooling filters and combine these filters responsively.

Since a 2× 2 max-pooling with a stride of 2 in each spatial dimension discards 75%
of a feature map upon its application, it is an aggressive operation, which after a series
of applications can result in a significant loss in information. To apply pooling in a gentler
manner, a fractional max-pooling [4] has been proposed, where the dimensions of the feature
map can be reduced by a non-integer factor. In the spirit of allowing information from other
activations within a pooling region to also pass to the next layer, a stochastic version of
pooling has been proposed by Zeiler et al. [21], where an element in a pooling region is
selected based upon its probability within the multinomial distribution constructed from all
the activations inside the pooling region. Another stochastic variant of pooling, S3Pool [22],
is a two-step pooling technique, where in the first step, a 2× 2 pooling with a stride of 1 is
applied, while in the second step, a stochastic downsampling is performed. A combination
of these operations makes S3Pool to work as a strong regularization technique.

3 Method

A pooling operator can be seen as a real-valued function fP defined on the finite non empty
subsets of real numbers Pfin(R) = {A ⊂ R : 0 < |A| < +∞}. In particular, the avg-pooling
and max-pooling operators, noted f avg

P and f max
P , are respectively defined by

f avg
P (A) =

1
|A| ∑a∈A

a, f max
P (A) = max{a : a ∈ A} . (1)

In CNNs, a pooling layer is used to decrease the spatial resolution of the feature maps ob-
tained after the application of a nonlinear activation on responses to trainable convolutional
filters. A pooling layer thus transforms an input tensor s ∈ RH×W×C of spatial resolution
H×W with C feature maps (or channels) to an output tensor t ∈RH ′×W ′×C with H ′ < H and
W ′ <W . This is commonly done via a m×n pooling operation, which consists of slicing s
into I pooling regions Ri ∈Rm×n×C (i≤ I), and applying a same pooling operator fP to each
channel Rc

i ∈ Rm×n (c ≤C) in each Ri. In a conventional CNN, the same pooling operator
fP ∈ { f avg

P , f max
P } is used for all the feature maps and remains fixed as the network trains.

In this work, we introduce the ordinal pooling layer, whose pooling operator involves
trainable weights that are specific to each feature map. In the case of a m×n ordinal pooling
layer, a trainable weight kernel wc ∈ Rm×n is used to pool the regions Rc

i ∈ Rm×n (i ≤ I)
located on the feature map c of the input tensor s. The ordinal pooling operator associated

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

4 DELIÈGE A. ET AL.: ORDINAL POOLING

Figure 1: Example of 2× 2 ordinal pooling with stride 2 in each dimension for one feature
map. The feature map to be pooled is sliced into 2× 2 regions, whose elements are ranked
by decreasing order, i.e. in each region, the largest (resp. smallest) value has rank 1 (resp. 4)
and is colored in dark (resp. light) red. Then, each region is reordered following the ranks
of its elements and is convolved with the learned kernel associated with this feature map.

with wc, defined on Rm×n, is given by

f ord
P,wc(Rc

i) = wc ∗Ord(Rc
i) = ∑

j≤m,k≤n
wc

j,kOrd(Rc
i) j,k , (2)

where Ord() is a function from Rm×n to Rm×n that reorders the values of its input tensor
based upon a given ranking process. In this work, we consider that Ord(A) reorders the
activations of a tensor A ∈ Rm×n based upon the decreasing order of their values, such that
for j, j′ ≤ m and k,k′ ≤ n:

(j < j′)∨ (k < k′)⇒ Ord(A) j,k ≥ Ord(A) j′,k′ . (3)

This implies that, for example, wc
1,1(resp. wc

m,n) always multiplies the largest (resp. small-
est) value of Rc

i , for all i≤ I and c≤C. An illustration of 2×2 ordinal pooling is represented
in Figure 1. In practice, we constrain each kernel wc to contain only positive weights that
sum to 1. This is imposed to adhere to the common principle that a pooling operation is de-
signed to aggregate the values comprised in a tensor and should thus output a value located
in its convex hull. In particular, this guarantees that the output value is comprised between
the minimum and the maximum values of the input tensor. An algorithm of the main work-
flow for the forward pass and the update of the weights is detailed in supplementary material
to show how ordinal pooling can be implemented for the usual 2×2 case. Let us note that,
since ordinal pooling employs a different set of weights for each feature map, the total num-
ber of parameters introduced by this operation is m× n×C, which is negligible compared
with convolutional and fully connected layers.

Ordinal pooling generalizes the commonly used avg- and max- pooling operators. In-
deed, m×n avg-pooling is a particular case of ordinal pooling for which wc

j,k = 1/(mn) for
all j ≤ m, k ≤ n. Likewise, m×n max-pooling corresponds to the case where wc

1,1 = 1 and
wc

j,k = 0 for (j,k) 6= (1,1). Also, compared with the other trainable pooling operations in the
literature, ordinal pooling is the only technique that can lead to a min-pooling behavior.

DELIÈGE A. ET AL.: ORDINAL POOLING 5

4 Experiments

4.1 Proof-of-concept
Setup. We perform the following proof-of-concept experiment on MNIST. Let us consider
a baseline network N comprising average pooling layers and its ordinal counterpart ON,
wherein the average pooling layers are replaced by ordinal pooling layers. Since N and ON
have the same structure, we initialize them exactly in the same way with the same weights
for the non-pooling layers. The sole difference between N and ON is the additional weights
required by ordinal pooling layers. These weights are initialized with “average pooling”
initialization, i.e. for an ordinal pooling kernel of size m× n, each weight is initialized as
1/(mn). This implies that, before starting the training of a baseline network N and its ON
counterpart, the two networks are exactly in the same state, they produce the same output
if they are fed with the same input. Moreover, we fix all the random seeds, so that the two
networks will experience exactly the same batches of images, in the same order, the data
augmentation is the same, at any time, over the course of their training. To guarantee the
reproducibility of the experiments and avoid suffering from GPU-based non-determinism,
these experiments are carried out on CPU. This setting allows us to compare the results
of N and ON pairwise, for each run of the experiment, which provides a fairer and more
significant insight on the intrinsic superiority of one network over the other.

Networks compared. Three “baseline networks” are used in the experiment, described as
follows with standard compact notations:

1. “Baseline”: 5× 5 Conv ×32, 2× 2 pooling, 5× 5 Conv ×64, 8× 8 global pooling,
FC(10), softmax.

2. “Baseline-2”: 3×3 Conv ×16 ZP, 2×2 pooling, 3×3 Conv ×32 ZP, 2×2 pooling,
3×3 Conv ×64 ZP, 7×7 global pooling, FC(10), softmax.

3. “LeNet5”: 5×5 Conv×6 ZP, 2×2 pooling, 5×5 Conv×16, 2×2 pooling, FC(120),
ReLU, FC(84), ReLU, FC(10), softmax.

These networks have their “ordinal” counterpart, e.g. “Ordinal baseline-2”, for which the
layers “(global) pooling” are replaced by “(global) ordinal pooling”. As mentioned above,
“(global) average pooling” are used as pooling layers in the classic pooling setting while “av-
erage pooling initialization” is used to instantiate the weights of the ordinal pooling kernels.
More details about the training of these networks are provided in supplementary material.

Results. Each network is run 100 times, where the runs differ by their initial random seeds.
Figure 2 shows the average learning curves for the network “Baseline” and its “Ordinal
baseline” counterpart. It can be seen that ordinal pooling allows to reach better performances
in terms of accuracy and loss, while it also speeds up the training process.

The pairwise comparison of the performances of the networks versus their ordinal coun-
terpart is represented in Figure 2. As can be seen, the “Baseline” and “Baseline-2” networks
employing ordinal pooling always achieve smaller training loss at the end of the training.
The same is also true for the “LeNet5” network 89% of the time. Regarding test error rates,
the ordinal pooling networks outperform the classic ones 100%, 94%, and 74% of the time
for the “Baseline”, “Baseline-2”, and “LeNet5” cases, respectively. Even though ordinal

6 DELIÈGE A. ET AL.: ORDINAL POOLING

Figure 2: Average learning curves for the “Baseline” network and its “Ordinal baseline”
counterpart and pairwise comparison of different runs (differing in random seeds initializa-
tions) of the networks with and without ordinal pooling having the same instantiation. Points
under the black dotted line indicate better performances for networks with ordinal pooling.

Relative variation in Baseline Baseline-2 LeNet5

average/variance of training loss −59%/−70% −37%/−66% −8%/−25%
average/variance of test loss −25%/−5% −21%/−8% −5%/−23%

average/variance of test error rate −28%/−26% −22%/−18% −4%/−7%
number of parameters +8% +14% +0.14%

Table 1: Relative variation in some metrics when the avg-pooling layers of the baseline
networks are replaced by ordinal pooling layers. Networks with ordinal pooling show a large
decrease in the average and variance of the losses and error rates for a moderate increase in
number of parameters.

pooling seems less beneficial to LeNet5, the results have to be put in perspective with re-
spect to the extra cost in parameters that the ordinal pooling layers require. In fact, as can
be inferred from Table 1, LeNet5 has by far the best ratio between the relative improvement
in performances (both in terms of average and variance in test error rate) and the number of
additional parameters contained in the ordinal pooling layers. Table 1 suggests that overall,
the performances of the networks are boosted with ordinal pooling by a comfortable margin
through a reduced average test error rate, and that ordinal pooling provides a more consis-
tent convergence between different runs, through a reduced variance in test error rate. These
benefits come at a moderate cost in terms of number of parameters.

Distribution of 2× 2 ordinal pooling kernels. The use of ordinal pooling instead of a
classic pooling operation allows to study the distributions of the weight kernels in the ordinal

DELIÈGE A. ET AL.: ORDINAL POOLING 7

Figure 3: Distributions of the kernels of the first (left) and second (right) ordinal pooling
layers of “Ordinal baseline-2” according to their closest template kernel, grouped by number
of promoted values (top), and grouped by the index of their largest weight (bottom).

pooling layers, as learned by the networks, and helps discover how the trained networks
chose to perform the pooling operations. For that purpose, we compare the learned kernels
with some template kernels that characterize various categories of behaviors for the kernels,
including avg- and max-pooling like behaviors. These template kernels are chosen based on
the behavior that they induce as explained below.

In the case of a 2× 2 ordinal pooling layer, a weight kernel w = [w1,w2,w3,w4] leads
to max-pooling if it converges to [1,0,0,0] and to avg-pooling if each wi = 1/4. In the first
case, the network “promotes” only the largest value of each pooling region, while in the
second case, all the values are equally “promoted”. Nevertheless, a network may prefer to
promote, for example, the lowest value of the regions (thus min-pooling behavior) by using
the kernel [0,0,0,1], or its first two largest values with [1/2,1/2,0,0]. The template kernels
are determined based upon this idea of enumerating all the ways that some values can be
promoted by the network. In fact, it has the possibility to promote any of the four ordered
values of the regions by making w converge to one of the following four template kernels:

w1 = [1,0,0,0] , w2 = [0,1,0,0] , w3 = [0,0,1,0] , w4 = [0,0,0,1] .

In the same spirit, it may prefer to promote equally two, three, or the four values of the
ordered regions, making w converge to

w12 =

[
1
2
,

1
2
,0,0

]
, w13 =

[
1
2
,0,

1
2
,0
]
, w14 =

[
1
2
,0,0,

1
2

]
, w23 =

[
0,

1
2
,

1
2
,0
]
, w24 =

[
0,

1
2
,0,

1
2

]
, w34 =

[
0,0,

1
2
,

1
2

]
,

w123 =

[
1
3
,

1
3
,

1
3
,0
]
, w124 =

[
1
3
,

1
3
,0,

1
3

]
,w134 =

[
1
3
,0,

1
3
,

1
3

]
, w234 =

[
0,

1
3
,

1
3
,

1
3

]
, w1234 =

[
1
4
,

1
4
,

1
4
,

1
4

]
.

We note Pi the set of template kernels having i non-zero values. After the training of
a network, for each kernel of a 2× 2 ordinal pooling layer, we identify its closest template
kernel, in term of Euclidean distance. We examine the distribution of the learned kernels
by grouping them by “closest template kernels” to find out how the network chooses to
perform the pooling operations. These distributions for ordinal pooling layers of “Baseline-
2”, grouped by Pi and aggregated for the 100 runs, are displayed in Figure 3 (top left and top
right).

8 DELIÈGE A. ET AL.: ORDINAL POOLING

It can be seen that, even though all the kernels were initialized as w1234, after the training
less than half of them remain closer to w1234 than to any other template kernel. Another
observation is that the network seems to prefer promoting contiguous “extreme” (largest
or smallest) values in the sorted regions, i.e. when 2 (resp. 3) values are promoted, the
associated kernels are preferably closer to w12 or w34 (resp. w123 or w234). The “extreme”
aspect is reinforced in the group P1 of the top right plot, in which almost only w1 and w4 are
present. Hence, some kernels actually display a “min-pooling” behavior.

Also, the network prefers to promote the largest value of the regions, which manifests
by the fact that the argmax of a learned kernel is often 1, thus indicating that a behavior
between average pooling and max-pooling is often desired. This observation is illustrated
in Figure 3 (bottom left and bottom right), where the kernels are first distributed according
to their argmax, then sub-divided following their closest template kernel. Similar trends
are also observed for “Ordinal baseline” and “Ordinal LeNet5” (provided in supplementary
material). A complementary analysis of the kernels related to the global ordinal pooling
layer is presented in supplementary material.

4.2 Influence of ordinal weights initialization

In this section, we examine the performances of the networks under various weight initial-
izations in the ordinal pooling layers. As before, we report average test error rates over 100
runs of each experiment to compare the results in Table 2.

For the 2× 2 ordinal pooling kernels, the initializations investigated are average, max,
min. For the average (resp. max, min) case, each kernel is instantiated as w1234 (resp. w1,w4).
For the global n×n ordinal pooling layers, average pooling (1/n2) is used.

Table 2 shows that the networks with ordinal pooling consistently outperform the classic
ones. Also, the performances are less dependent on the initialization of the ordinal pooling
kernels than they are in the classic setting. Ordinal pooling thus alleviates the problem of
choosing the appropriate type of pooling layer to incorporate in the networks.

Max-pooling initialization performs better in this experiment. However, even with min-
pooling initialization, the ordinal networks are still able to reach performances close to stan-
dard initializations, while it is not as clear for the classic networks. An explanation may
reside in the use of ReLU activations before the pooling layers. In the classic setting, min-
pooling forces the networks to select the lowest value of the pooled regions, hence it can be
assumed that many zero values are propagated in the network, responsible for decreasing the
amount of useful information and thus leading to lower performances. In the ordinal pooling
setting, the network has enough flexibility to circumvent this fixed min-pooling behavior,
and this only requires small variations in the ordinal weights. Indeed, we observed that the
closest template kernel after the training was still most often w4.

We also examined a “uniform” initialization, where for each kernel, all the weights are
randomly initialized with uniform distribution between 0 and 1 and are then normalized so as
to sum to 1. The results do not differ much from those obtained with “average” initialization
and are discussed in supplementary material.

4.3 Influence of activation functions

The case of the ordinal min-pooling initialization raises the question of the influence of the
activation function used before the pooling operation. We thus compare the average test error

DELIÈGE A. ET AL.: ORDINAL POOLING 9

Pooling 2×2 glob. Bas. Bas.-2 LN5
Activation Bas.-2

None ReLU tanh
classic average average 1.22 1.26 0.79 49.50 1.26 1.62
ordinal average average 0.89 1.00 0.75 1.13 1.00 0.99
classic max average 0.98 1.01 0.74 3.69 1.01 1.58
ordinal max average 0.82 0.89 0.71 1.01 0.89 0.90
classic min average 1.48 1.34 0.94 3.82 1.34 1.55
ordinal min average 0.97 1.02 0.84 1.05 1.02 0.90

Table 2: (Left) Average test error rates (in %) for various weight initializations in the pooling
layers. For classic pooling, the weights are not trainable. (Right) Corresponding average test
error rates for “Baseline-2” and its ordinal counterpart with various activation functions.

rates of various initializations and three types of activation functions: “None” (no activation),
“ReLU”, “tanh”. The results for the “Baseline-2” structure are reported in Table 2.

The results obtained for a given initialization with ordinal pooling are less sensitive to
the choice of the activation function than those obtained in the networks with classic pooling
schemes. Conversely, for a given activation, the results with ordinal pooling are less sensitive
to the choice of initialization compared to the networks employing classic poolings.

One of the most striking results may be related to the performances obtained without any
activation. Indeed, while it is well-known that CNNs need non-linear activations to achieve
competitive performances, the networks with ordinal pooling layers still manage to obtain
good performances without activation. In this case, some are even better than others obtained
in the classic setting with activations. The sorting procedure in the ordinal pooling layer is
itself a non-linearity, which explains these results. This is especially true for the avg-pooling
case, where it is known that an avg-pooling layer without prior activation is useless. For
better performances, it still appears that using an activation is beneficial even with ordinal
pooling layers, but the choice of the function may not be as crucial as in the networks with
classic pooling. Similar trends were observed with “Baseline” and “LeNet5” structures.

4.4 Results on other datasets and best use cases

Ordinal pooling can be used in any CNN architecture involving pooling layers. Its benefits
vary from one use case to another, as indicated by the following additional results, reported
as average test error rates on five trials. On CIFAR10, with a CNN made of five Conv(128)-
ReLU-Pooling blocks and a FC layer, ordinal pooling outperforms avg-pooling (13.16%
vs 14.21%). With DenseNet-BC-100-12 [9], the results are mostly equivalent with ordinal
and avg-pooling (5.53% vs 5.45% with ReLU, 6.35% vs 6.85% with tanh) except without
activation (12.51% vs 59.39%), similarly to CIFAR100 (24.73% vs 24.74% with ReLU,
27.01% vs 27.05% with tanh, 37.39% vs 81.61% without activation).

Even though exhaustive performance-related experiments still need to be carried out as
future work, the present results are in line with those reported previously and confirm that or-
dinal pooling mainly helps on relatively simple architectures, as typically considered e.g. for
embedded applications. To further support this statement, we performed experiments with
quantized networks, as described in [15]. It appears that the more the model is quantized,
the more ordinal pooling helps: with quantized versions of ResNet-14 (resp. ResNet-20), on
CIFAR10, ordinal pooling performs up to 3.5 (resp. 1.1%) better than max-pooling. It also

Citation
Citation
{}

Citation
Citation
{}

10 DELIÈGE A. ET AL.: ORDINAL POOLING

reduces the gap between binary ResNet-14 and -20, which is of 0.7%, against 2.7% with
max-pooling, which certainly opens interesting prospects for ordinal pooling, as it helps
simpler models achieve performances comparable with more complex models.

For the record, our experiments on MNIST and CIFAR10 with [13] lead to results com-
parable with those presented above with ordinal pooling (< 1% difference). A comprehen-
sive comparison with the pooling methods present in the literature could be the subject of a
survey article (along with defining benchmark tests to assess the performances of a pooling
method), and is thus beyond the scope of this work.

5 Conclusion

A novel trainable pooling scheme, Ordinal Pooling, is introduced in this work, which op-
erates in two steps. In the first step, all the elements of a pooling region are reordered
in decreasing sequence. Then, a trainable weight kernel is convolved with the rearranged
pooling region to compute the output of the ordinal pooling operation. The usual avg- and
max-pooling operations can be recovered as particular cases of ordinal pooling.

In our experiments, replacing classic avg- and max-pooling operations with ordinal pool-
ing produces large relative improvements in classification performances at a moderate cost in
additional parameters and also leads to a faster convergence. Ordinal pooling allows to per-
form the pooling operation differently in distinct feature maps. The analysis of the learned
kernels reveals that the networks take advantage of this extra flexibility by using various
types of pooling for different feature maps within the same pooling layer. A general trend is
that a hybrid behavior between avg- and max-pooling is often desired, even though the low-
est elements of the pooling regions are not always discarded. Moreover, the performances
of the networks are less inclined to fluctuate when different initializations of the ordinal
pooling kernels are used than when different classic pooling operations are imposed. Be-
sides, even when no non-linear activation function is applied after the convolutional layers,
the intrinsic non-linearity introduced by ordinal pooling alone generally suffices to produce
performances which are better than either avg- and max-pooling used along with activation
functions. Finally, our experiments suggest that ordinal pooling might be of particular in-
terest for lightweight or quantized architectures, as typically considered in e.g. embedded
resource-constrained systems.

As future work, as already mentioned, it will be interesting to perform more experiments
with more datasets and various architectures to determine the configurations which best ben-
efit from the ordinal pooling operation. From a technical point of view, the value of the
elements of the pooling regions is chosen as the criterion for ordering the region. However,
other criteria could also be envisioned to further extend the ordinal pooling scheme. Even-
tually, conducting experiments with our baseline models but with other types of pooling
methods proposed in the literature is certainly our next step in order to rank ordinal pooling
among available pooling operations.

Acknowledgements This research is supported by the DeepSport project of the Walloon
region, Belgium, C. De Vleeschouwer is funded by the F.R.S.-FNRS.

Citation
Citation
{}

DELIÈGE A. ET AL.: ORDINAL POOLING 11

References

[1] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. Lecun. Ask the locals: Multi-way
local pooling for image recognition. In IEEE Int. Conf. Comput. Vision (ICCV), pages
2651–2658, Barcelona, Spain, Nov. 2011.

[2] Y. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in visual
recognition. In Int. Conf. Mach. Learn. (ICML), pages 111–118, Haifa, Israel, June
2010.

[3] B. Fernando, E. Gavves, M. Jose Oramas, A. Ghodrati, and T. Tuytelaars. Modeling
video evolution for action recognition. In IEEE Int. Conf. Comput. Vision and Pattern
Recogn. (CVPR), pages 5378–5387, Boston, MA, USA, June 2015.

[4] B. Graham. Fractional max-pooling. CoRR, abs/1412.6071, Dec. 2014.
[5] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio. Learned-norm pooling for deep feed-

forward and recurrent neural networks. In Machine Learning and Knowledge Discov-
ery in Databases, volume 8724 of Lecture Notes Comp. Sci., pages 530–546. Springer,
2014.

[6] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In IEEE Int. Conf.
Comput. Vision (ICCV), pages 2980–2988, Venice, Italy, Oct. 2017.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In IEEE Int. Conf. Comput. Vision and Pattern Recogn. (CVPR), pages 770–778, Las
Vegas, NV, USA, June 2016.

[8] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. CoRR, abs/1709.01507,
2017.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger. Densely connected convo-
lutional networks. In IEEE Int. Conf. Comput. Vision and Pattern Recogn. (CVPR),
pages 2261–2269, Honolulu, HI, USA, July 2017.

[10] A. Kolesnikov and C. Lampert. Seed, expand and constrain: Three principles for
weakly-supervised image segmentation. In Eur. Conf. Comput. Vision (ECCV), vol-
ume 9908 of Lecture Notes Comp. Sci., pages 695–711. Springer, 2016.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convo-
lutional neural networks. In Adv. in Neural Inform. Process. Syst. (NIPS), volume 25,
pages 1097–1105, 2012.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proc. of IEEE, 86(11):2278–2324, Nov. 1998.

[13] C.-Y. Lee, P. Gallagher, and Z. Tu. Generalizing pooling functions in CNNs: Mixed,
gated, and tree. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):863–875, Apr. 2018.

[14] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, Dec. 2013.
[15] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst. Minimum energy

quantized neural networks. In Asilomar Conference on Signals, Systems, and Comput-
ers, pages 1921–1925, Pacific Grove, CA, USA, 2017.

[16] P. O. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convo-
lutional networks. In IEEE Int. Conf. Comput. Vision and Pattern Recogn. (CVPR), jun
2015.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.,
39(6):1137–1149, June 2017.

[18] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling operations in convo-
lutional architectures for object recognition. In Int. Conf. Artificial Neural Networks
(ICANN), volume 6354 of Lecture Notes Comp. Sci., pages 92–101. Springer, 2010.

12 DELIÈGE A. ET AL.: ORDINAL POOLING

[19] Z. Shi, Y. Ye, and Y. Wu. Rank-based pooling for deep convolutional neural networks.
Neural Networks, 83:21–31, Nov. 2016.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet and
the impact of residual connections on learning. In AAAI Conf. Artificial Intell., pages
4278–4284, San Francisco, CA, USA, Feb. 2017.

[21] M. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. In Int. Conf. on Learn. Rep. (ICLR), Scottsdale, Arizona, May 2013.

[22] S. Zhai, H. Wu, A. Kumar, Y. Cheng, Y. Lu, Z. Zhang, and R. Feris. S3Pool: Pool-
ing with stochastic spatial sampling. In IEEE Int. Conf. Comput. Vision and Pattern
Recogn. (CVPR), pages 4003–4011, Honolulu, HI, USA, July 2017.

