
Veri�cation of Security Protocols usingLOTOS { Method and ApplicationG. Leduc, F. GermeauResearch Unit in Networking (RUN), Institut Monte�ore B28, University of Li�ege,B-4000 Li�ege, BelgiumAbstractWe explain how the formal language LOTOS can be used to specify security pro-tocols and cryptographic operations. We describe how security properties can bemodelled as safety properties and how a model-based veri�cation method can beused to verify the robustness of a protocol against attacks of an intruder. We illus-trate our technique on a concrete registration protocol. We �nd an attack, correctthe protocol, propose a simpler yet secure protocol, and �nally a more sophisticatedprotocol that allows a better discrimination between intruder's attacks and classicalprotocol errors.1 IntroductionWith the development of the Internet and especially with the birth of elec-tronic commerce, the security of communications between computers becomesa crucial point. All these new applications require reliable protocols able to per-form secure transactions. The environment of these operations is very hostilebecause no transmission channel can be considered safe. Formal descriptionsand veri�cations can be used to obtain the assurance that a protocol cannotbe threatened by an intruder.Our approach consists of using a generic formal language (LOTOS) and its as-sociated veri�cation methods and tools to verify security protocols. We explainhow LOTOS can be used to specify security protocols and cryptographic oper-ations, and show how security properties can be modelled as safety propertiesand checked automatically by a model-based veri�cation tool. In our methoda simple and powerful intruder process is explicitly added to the speci�cation,so that the veri�cation of the security properties guarantees the robustness ofthe protocol against attacks of such an intruder.Preprint submitted to Elsevier Preprint 23 August 1999

Our approach is similar to [24,25] where authentication protocols were speci-�ed in CSP [17] and checked by the FDR tool by verifying the trace inclusionrelation between the system and the property. This tool and the one we haveused are not classical model-checkers but rather equivalence or preorder check-ers. Model-checkers (e.g. [26,30]) have also been used in similar ways.The model-based methods are extremely powerful at �nding subtle
aws inprotocols, but are less adequate to prove correctness when no bug is found.This is because they are applied on simpli�ed, though realistic, models ofthe systems. On the other hand, theorem provers [19,7,2,32] can provide suchproofs and can also deal more easily with in�nite-state systems. However, theproofs are usually less automated, and when no proof has been derived fora given property, it is not easy to know whether the property is wrong orwhether the tool simply did not �nd it. In particular, an attack that falsi�esthe property is not provided automatically.We illustrate our technique on a concrete registration protocol which is a partof the Equicrypt protocol [21] designed in the ACTS OKAPI project. Wehave already veri�ed and corrected the subscription protocol [22,23] and theregistration protocol [13,14] of Equicrypt. This paper extends our previouswork in two ways: �rstly we present a more complete picture of our approachand secondly we propose an enhanced design in two steps: we �nd a simplerregistration protocol that remains secure, and a more sophisticated protocolthat allows a better discrimination between intruder's attacks and classicalprotocol errors.The paper is organized as follow. In section 2, we will show that the LOTOSlanguage is appropriate to handle the speci�cation of security protocols at ahigh level of abstraction. With its
exibility, a wide range of cryptographicoperations can be modelled. We will describe the establishment of securityproperties and the associated veri�cation process in section 3. The veri�cationis quite automatic and allows one to certify that an intruder cannot break acryptographic protocol with di�erent kinds of attacks. An application of ourmethod on a concrete protocol will be presented in section 4. We will also pointout that it is possible to tune a protocol in order to obtain new properties andimprove its behaviour. Finally we compare our approach with related work.
2 LOTOS speci�cationIn our approach the formal speci�cation of a security protocol is written inLOTOS [4,18] which is a standardized language suitable for the description ofdistributed systems. It is made up of two components :2

� A process algebra, mostly inspired by CCS [29] and CSP [17], with a struc-tured operational semantics. It describes the behaviour of processes andtheir interactions. LOTOS has a rich set of operators (multiway synchro-nization and abstraction like in CSP, disabling, ...), and an explicit internalaction like in CCS.� An abstract datatype language, ACT ONE [10], with an initial semantics.A type is de�ned by its signature (sorts + operation on the sorts) and byequations to give a meaning to the operations.A LOTOS speci�cation is composed of two di�erents parts. The �rst one isdedicated to the description of the abstract data types and the cryptographicoperations in particular. The second part describes the behaviour of the di�er-ent entities involved in the protocol. We will �rstly deal with this description2.1 BehaviourEvery security protocol involves several entities called principals. A principalcan be any object that plays a role in the evolution of the protocol. Exampleof principals are users, hosts or processes. When we address the veri�cationof the security of the protocol, we must make some assumptions on the be-haviour of the principals. Thus principals are quali�ed as trusted or not. Atrusted principal will always react according to the expected behaviour. Anon-trusted principal can try and break the protocol with an unexpected be-haviour although it is considered genuine by the other entities.Principals are linked together with communication channels to exchange mes-sages. These communication channels are generally considered insecure, thatis an intruder can act passively or actively on the transferred information.He can eavesdrop on messages, intercept them, replay old ones, or create newones. The goal followed by the intruder ranges from a simple denial of serviceto the access to prohibited rights.The behaviour section of a LOTOS speci�cation is composed of several pro-cesses which interact with each other through interaction points called gates.Each principal involved in the protocol is modelled by a process that describesits exact behaviour. LOTOS allows the synchronisation of two or more pro-cesses via interactions that can occur at each gate. A one way communicationchannel between two principals is modelled by the synchronisation of the trans-mission gate of one principal with the reception gate of the other principal. Asecond synchronisation handles the other way of the communication channel.For instance, �gure 1 depicts a system with two principals where the com-munication channel is modelled by the synchronisation of the gate A_to_B ofprincipal A with the gate A_to_B of principal B and with the synchronisation3

A B
B_to_A

A_to_B

Fig. 1. Principals without intruder
B_receive_AA_send_B

A B

System_State

Intruder
B_send_AA_receive_BFig. 2. Principals with intruder and environmentof the gate B_to_A of principal A with the same gate of principal B.To introduce the intruder that will try to threaten the protocol we replacethe simple communication channels by one central process that will act asthe intruder. Thus the intruder can intercept all messages and transmit themor not, with or without modi�cation. We will enter into the details of theintruder's behaviour in section 2.3. Back to our example, the principals arenot interacting directly with each other but indirectly through the intruderprocess (�gure 2). The intruder is the only principal considered untrusted. Allother principals are trusted. We model cases where a principal is not trustedby giving enough power to the intruder to act as a genuine principal.Finally, we use an environment to monitor the progress of the protocol. Whena principal reaches a sensitive point, he informs the environment by sending ita message through the System_State gate. These messages are called securityevents and will be developed further in section 3.2. They will be of a greathelp to perform the formal veri�cation. The environment is also responsiblefor the reception of error messages. Figure 2 presents the complete structureof a typical LOTOS speci�cation that models a security protocol between twoprincipals.Each process that represents a principal is parameterized with some initialknowledge. This knowledge includes identi�ers, keys or whatever informationa principal must know or generate locally before running the protocol. As wewill see later, such a knowledge is the core of the intruder's modelling.4

2.2 Abstract data types2.2.1 PrinciplesThe speci�cation of the behaviour only describes the exchange of messages.It does not consider the data transferred by these messages. Abstract datatypes de�ne the elements that are handled by the behavioural part. Theyde�ne which kind of data are used by the protocol but also which operationsare allowed on these data. Only the de�ned operations are permitted. Withthis restriction, complex cryptographic operations can be abstracted awayfrom mathematical details. We will see that only a simple description of theircharacteristics is needed.With LOTOS, abstract data types are written in ACT ONE. Each LOTOSvariable can only have values of a particular sort de�ned during the declara-tion. A LOTOS type is a module composed of one or several sorts, operationsand equations. A sort is the name given to a set of values that belong to thesame domain. Speci�c operations are de�ned on the values of each sort and thesemantics of these operations is provided by speci�c equations. This structureallows for a great
exibility in the handling of data in LOTOS.A lot of mechanisms exist in modern cryptography [33], but only a few of themare actually used in security protocols. We do not intend to make an exhaustivetranslation of cryptographic operations into ACT ONE. We just want to showthe level of abstraction provided by LOTOS and the relative simplicity in thede�nition. Thus we will focus on two examples that represent the most widelyused operations : encryption and signature in public-key cryptography. Moresubtle and complex cryptographic operations can be modelled. In section 4we present a registration protocol that uses a zero-knowledge identi�cationscheme.ACT ONE is not only used to de�ne the data transferred in messages, but alsoto de�ne the internal database of information of each principal. For instance, aregistration principal needs to manage a registration database that will also bede�ned in ACT ONE as a table of records with multiple �elds. This applicationis quite common and will not be developed further in this paper.De�nition of abstract data types can rapidly become very cumbersome to de-sign. Thus our speci�cations are written using data type language extensions,as o�ered by the APERO tool [31] included in the Eucalyptus toolbox. Theoriginal text has to be preprocessed by the APERO translator to get a validLOTOS speci�cation. This provides for a smaller and more readable spec-i�cation and for some level of immunity w.r.t. underlying processing tools.However, some types were written from scratch, hence, it was necessary totake tools restrictions explicitly into account. The other parts of the toolset5

will be explained in section 3.3.2.2.2 Public-key encryption and signatureThe following ACT ONE de�nition models the public-key encryption opera-tion. It does not rely on any particular implementation (e.g. RSA) nor on anyparticular mathematical concept. For simplicity, we assume that public andprivate keys are base values of some sorts and that a match(PublicKey,PrivateKey)operation exists that returns true if the public key corresponds to the privatekey.type EncryptedMessage is Message, PublicKey, PrivateKeysorts EncryptedMessageopnsE (*! constructor *): PublicKey, Message -> EncryptedMessageD: PrivateKey, EncryptedMessage -> Messageeqnsforall msg: Message,pubkey: PublicKeyprvkey: PrivateKeyofsort MessageMatch(pubkey,prvkey) => D(prvkey,E(pubkey,msg)) = msg;not(Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg)) = Message_Junk;endtypeThe encryption function E and the decryption function D are de�ned as ab-stract operations that are the reverse of each other. Decryption with a bad keyis handled explicitly and produces a distinguished value Message_Junk withoutany meaning. Once encrypted, the only way to access the message is throughthe decryption function called with the right private key.The signature operation is de�ned in the same way with a veri�cation functionV that returns true if the signature is correct (i.e. the veri�cation is performedwith the right public key). We consider that a signed message is composed ofthe message in clear and of an encrypted hash of it. Thus our model providesthe GetMessage operation to access the message without any key. Of course,no operation allows the derivation of the private key.type SignedMessage is Message, PublicKey, PrivateKeysorts SignedMessageopnsS (*! constructor *): PrivateKey, Message -> SignedMessageV: PublicKey, SignedMessage -> BooleanGetMessage: SignedMessage -> Messageeqnsforall msg: Message, 6

pubkey: PublicKeyprvkey: PrivateKeyofsort BooleanV(pubkey,S(prvkey,msg)) = Match(pubkey,prvkey);ofsort MessageGetMessage(S(prvkey,msg)) = msg;endtypeWe assume with these de�nitions that no one can break the public key cryp-tosystem by getting the message in clear from the encryted message withouthaving the private key, or forging a signed message from the message in clearwithout having the private key. Note that LOTOS easily provides processesthat transgress this rule, and thus break any cryptosystem. For example, wecan write a process that enumerates all possible messages, encrypts them andtests whether there is some matching between one of them and a given en-crypted message. These kinds of unrealistic LOTOS behaviours should thusbe avoided, because this would break any reasonable assumption about cryp-tography. Hopefully, these unrealistic processes are very special and easilyavoidable. In particular, the tools will reject them because they would con-ceptually generate in�nite-state (or very large) models.2.3 The intruder2.3.1 ModelWe want to model an intruder as a process that can mimic attacks of a real-world intruder. Thus our intruder process shall be able to :� Eavesdrop on and/or intercept any message exchanged among the entities.� Decrypt parts of messages that are encrypted with his own public key andstore them.� Introduce fake messages in the system. A fake message is an old messagereplayed or a new one built up from components of old messages includingcomponents the intruder was unable to decrypt.The intruder merely replaces communication channels linking principals in-volved in the protocol. He behaves in such a way that neither the receiverof a fake message, nor the sender of an intercepted message can notice theintrusion.The LOTOS process that models the intruder manages a knowledge base.Each time the intruder catches a message, he tries to decrypt its encryptedparts. Then he stores each part of the message in separate sets of values,one per data sort. These sets constitute the intruder's knowledge base that7

increases each time a message is received. The intruder tries to collect as muchinformation as he can from the intercepted messages. His behaviour is simpleand repetitive. He does not deduce anything from his knowledge base. He juststores information for future use.When one of the trusted principals is ready to receive a message, the intruderanalyzes his knowledge base to determine the messages he can create. Hebuilds them with values stored in his sets. As he tries every combination ofthese values, the intruder tries to send every possible message he can createwith his knowledge.The intruder is parameterized with some initial knowledge which gives him acertain amount of power. Remember that all principals except the intruder areconsidered trusted. Thus as we want to cover cases where regular principalsare untrusted, the intruder must be able to act as these principals. So hisinitial knowledge must comprise enough information to allow this behaviour.For instance, in a protocol where a user must register with a trusted authority.The intruder must be able to act as a valid user from the point of view of thetrusted authority. But he must also be able to act as a valid trusted authorityfrom the point of view of the user. This example will be explained in moredetails in the example of section 4.The key point is the power given to the intruder. Security protocols are basedon some assumptions provided by the mathematical background of crypto-graphic operations. As we want to be realistic, our intruder will not be powerfulenough to break a cryptosystem. As LOTOS provides processes that trangressthis rule, it would be easy to de�ne an intruder that tries a brute force attackto guess a private key or a random number. The intruder's behaviour is thusdeliberately limited in this respect.2.3.2 Speci�cation of the intruderThe following LOTOS code describes a 3-way exchange between two princi-pals. Its purpose is to show the intruder's interactions with trusted principals.Therefore data types are simpli�ed.Principal A interacts through gates A_Send_B and A_Receive_B and principal Buses gates B_Send_A and B_Receive_A. The intruder is synchronized with eachgate. His behaviour is a loop where each iteration is either a message receptionor a message transmission. The structure of the intruder is thus very simpleand not at all error prone. The body of the loop is merely an enumerationof a couple of possible message receptions, followed by a couple of messagetransmissions. When a message is received, it is segmented into all its �elds,which are stored in separate sets. The encrypted �elds that can be decryptedby one of the known keys are stored in clear. These actions are modelled by the8

insert operation in the speci�cation below. As regards message transmission,LOTOS provides the choice operator that automatically enumerates all thepossible messages that can be built from a set of components. Here, this setis actually a multiset where each element is a set of message �elds, and theselection is modelled by the is_in_knowledge predicate.Although the structure of the LOTOS speci�cation is such that only twoprincipals are present, this does not mean that A and B know a priori thatthey are executing a run between them. This can only be known by executinga correct authentication protocol.behaviourPrincipal_A [A_Send_B,A_Receive_B] (Initial_Knowledge_of_A)|[A_Send_B,A_Receive_B]|Intruder [A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Initial_Knowledge_of_I)|[B_Send_A,B_Receive_A]|Principal_B [B_Send_A,B_Receive_A] (Initial_Knowledge_of_B)whereprocess Principal_A [A_Send_B,A_Receive_B](Knowledge_of_A: Knowledge) :noexit :=A_Send_B !Message_1;A_Receive_B ?Message_2:Type_2;A_Send_B !Message_3;stopendprocprocess Principal_B [A_Send_B,A_Receive_B](Knowledge_of_B: Knowledge) :noexit :=B_Receive_A ?Message_1:Type_1;B_Send_A !Message_2;B_Receive_A ?Message_3:Type_3;stopendprocprocess Intruder [A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I: Knowledge) :noexit :=(A_Send_B ?Message_1:Type_1;Intruder [A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Insert(Message_1,Knowledge_of_I)))[](B_Send_A ?Message_2:Type_2;Intruder [A_Send_B,A_Receive_B,B_Send_A,B_Receive_A]9

(Insert(Message_2,Knowledge_of_I)))[](A_Send_B ?Message_3:Type_3;Intruder [A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Insert(Message_3,Knowledge_of_I)))[](choice Message_1:Type_1 [] [Message_1 is_in Knowledge_of_I] ->B_Receive_A !Message_1;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I))[](choice Message_2:Type_2 [] [Message_2 is_in Knowledge_of_I] ->A_Receive_B !Message_2;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I))[](choice Message_3:Type_3 [] [Message_3 is_in Knowledge_of_I] ->B_Receive_A !Message_3;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I))endproc2.4 Finite modelModel-based veri�cation methods are inherently limited in the sense that theyare powerful at �nding bugs in protocols but fall short in proving full correct-ness. There are several reasons for that. Even though some research work iscarried out to extend model-based methods to in�nite-state systems, practi-cal methods are presently limited to �nite-state systems (of reasonable sizes),whereas most protocols are not, because either their data space is not, ortheir control structure is not (e.g. there may be an arbitrarily large numberof protocol instances running in parallel). Therefore, these methods are onlyapplicable if some abstraction is used that keeps the model �nite-state andalso of reasonable size. However, it is essential that these abstractions be error-preserving, in the sense that an error found on the abstract model is a realerror of the actual protocol. Clearly, the absence of error in the abstract modelis no guarantee about the actual protocol. Knowing that, our objective is tocapture as much as possible of the possible behaviours of the actual protocol.The LOTOS speci�cation will be translated into a labelled transition system(a graph) where the nodes are the states of the LOTOS speci�cation and thetransitions are labelled by the LOTOS actions. This labelled transition system10

(LTS) must ideally comprise all the possible executions of the protocol. Butthis graph must also be kept �nite to be generated.Although some message �elds like random numbers or time stamps are speci�cto one run of the protocol, their number is potentially in�nite. This in�nitymust be controlled by giving some well-chosen properties to these speci�cmessage �elds. Trusted principals will typically use any but a single speci�cvalue in each run they perform, so we give them a limited set of values thatwill be used during their executions. We also give the intruder one such valuebut which is di�erent from those of the trusted principals. When the intruderwill use this value in a particular message �eld, this will, in fact, model allthe possible messages not created by a trusted principal. This is an abstractinterpretation which is often used when the protocol is independent from apiece of data, i.e. when the behaviours of the entities do not depend on theparticular value used. This abstraction still allows the processes to check forequality and inequality of message �elds. Moreover, this reduction is error-preserving: the actual protocol can perform all the traces of the abstract model,because the latter merely reduces the possible values that can be used in themessage �elds.The initial knowledge of principals is large enough to allow them to participatein several runs of the protocol, possibly in parallel. In addition, the intruder isgiven an initial knowledge that allows him to act as other trusted principals.All in all, we believe we cover a large body of the possible behaviours of theactual system, but of course we are never sure we do not preclude a subtleattack which has been �ltered out by our abstraction. As explained above, wedo not aim at proving full correctness, but more modestly to prove very largeparts of the real protocols.Some researchers have complemented their model-based veri�cation by addi-tional proofs, e.g. [24] where the model-based veri�cation based on two princi-pals is further generalized by induction to an arbitrary number of principals.Another research direction is proposed in [3] where an abstraction functionautomates the computation of a correct abstract model. All these methodscan push the limits of model-based veri�cation further.Now that we have presented the complete speci�cation, we will detail theveri�cation process. 11

3 Veri�cation process3.1 Properties to be veri�edMost security properties rely on the fact that the intruder does not know somesecret information or is not able to construct the expected message. Theycan be characterized as safety properties. Informally, safety properties areproperties stating \nothing bad will happen". Authentication, access control,con�dentiality, integrity and non-repudiation are safety properties. Each ofthese security services require that a particular situation cannot occur.The only liveness property is the non-denial of service, which current crypto-graphic protocols do not guarantee. Intuitively, liveness properties are proper-ties stating \something good will happen". A denial of service happens if anintruder succeeds to get a protocol stuck or make it fail, by e.g. interceptingevery message sent on the channel. Thus when a denial of service arises, theliveness property stating that the protocol will succeed is not satis�ed.In order to provide these security services, protocols implement particularmechanisms. The LOTOS speci�cation of trusted principals applies them whilethe intruder process tries to defeat them. A way to verify the robustnessagainst intruder's attacks during the execution of the speci�cation is needed.Thus a formal translation of the properties to be achieved by security servicesis required in order to perform the veri�cation.3.2 Formalizing the propertiesDuring message exchanges of security protocols, critical points are reachedwhere certain security services are assured. The reception of a well-formedmessage can trigger a principal into a state where he trusts some facts. Thisbehaviour needs to be formalized. We must translate the human idea that therequired security service is satis�ed into a precise de�nition of principals state.In order to determine these critical points in the speci�cation, we introducesome special events, called security events. Each time a critical point is reachedby a trusted principal, he informs the environment by sending a speci�c mes-sage that gives information about the internal state of the principal. Theenvironment of the LOTOS speci�cation is responsible for receiving these mes-sages. By executing a security event, a principal declares that he is con�dentof a fact.Let us consider an authentication protocol between two principals where a12

prover must be authenticated by a veri�er. There are two critical points in thisprotocol. The �rst one is when the prover starts his authentication and the sec-ond one is when the veri�er is sure of the prover's identity. Thus we introducetwo special events PROVER_START_AUTHENTICATION and VERIFIER_AUTHENTICATION_SUCCESSFUL.A common property required is that \the prover must have started an au-thentication with the veri�er before the veri�er successfully authenticates theprover". Otherwise, an intruder has been able to be authenticated with theprover's identity. This property will be captured by our security events regard-less of the particular authentication mechanisms used. We just state that \Atleast one PROVER_START_AUTHENTICATION event must have occurred before anyVERIFIER_AUTHENTICATION_SUCCESSFUL event".This technique can be applied to a wide range of security properties. In prac-tice, the security events will have a �ner structure to better identify the proto-col run to which they refer. Parameters of security events can be a principal'sidentity, an authentication token, a particular key, nonce or any other datarelevant to the properties we want to prove. So, the set of security events andtheir structure is linked to the set of properties.This method allows one to abstract away from all the details of security mecha-nisms. We can only focus on the security services achieved. As a matter of fact,these events are some sort of service primitives exchanged with the environ-ment. Some of them request security services, others indicate that a requesthas been issued by another principal, or con�rm that a security service iscompleted. One of the di�culties is to gain the assurance that the securityproperties are translated correctly into properties on security events. But thisis inherent to any veri�cation approach: properties should be expressed in oneway or another and we cannot guarantee that the properties are expressedcorrectly. This process could be made less error-prone by providing guidelinesto express the most common properties. In [1] for example, an approach isproposed to model typical security properties in the framework of the Spi-calculus.3.3 The veri�cation toolboxWhen the LOTOS speci�cation is written and the properties are formalized,we can perform the veri�cation itself. We use the CADP package [11] includedin the Eucalyptus toolbox to carry out the veri�cation of the protocol. As�gure 3 shows, the LOTOS speci�cation with datatype language extensionsis converted into ISO LOTOS with the APERO tool. The next step consistsof applying the Caesar tool to generate a graph called Labelled TransitionSystem (LTS) from the LOTOS speci�cation. This graph contains exactly thepossible execution sequences of the studied protocol. Section 2.4 has addressed13

a

c

b

a

c

b

LTS Generation

Simulation

Verification

Labelled Transition Systems

XSIMULATOR

ALDEBARAN

LOTOS ConversionEditor

PROPERTIES

APERO CAESAR

Fig. 3. The Eucalyptus toolboxthe feasibility of the generation. To gain con�dence into the speci�cation, itis �rst simulated with the XSimulator in step-by-step execution mode.The Aldebaran tool is the last stage of the processing. It performs the compari-son of two labelled transition systems. The veri�cation requires the comparisonof the LTS of the protocol as created by the Caesar tool with the graphs ofour properties. Thus a �nal step in the formalization is needed. The propertiesbased on special events must appear like a �nite-state graph. The process canbe automated using the Caesar tool : each property is modelled as a referenceLTS generated from a simple LOTOS process containing special events only.The property discussed in section 3.2 can be speci�ed in LOTOS as follows.The corresponding LTS generated by the Caesar tool is shown in �gure 4.behaviourSystem_State !PROVER_START_AUTHENTICATION;Property[System_State]whereprocess Property[System_State] :noexit:=System_State !PROVER_START_AUTHENTICATION;Property[System_State][]System_State !VERIFIER_AUTHENTICATION_SUCCESSFUL;Property[System_State]endproc 14

PROVER_START_AUTHENTICATION

PROVER_START_AUTHENTICATION

21

VERIFIER_AUTHENTICATION_SUCCESSFULFig. 4. LTS of the authentication property3.4 The veri�cationBefore any comparison between LTS's is made, they must be minimized tospeed up the computations. The Aldebaran tool can minimize a LTS moduloa particular equivalence. The �rst minimization is always done modulo thestrong bisimulation equivalence, which preserves all the (safety, liveness andfairness) properties of the graph.Consider a LTS = <S;A; T; s0> where S is the set of states, A the alphabetof actions (with i denoting the internal action), T the set of transitions ands0 the initial state.A relation R � S � S is a strong bisimulation i� :If <P;Q> 2 R then, 8 a 2 A,whenever P a! P 0 then 9 Q0 : Q a! Q0 and <P 0; Q0> 2 R;whenever Q a! Q0 then 9 P 0 : P a! P 0 and <P 0; Q0> 2 RTwo LTS's Sys1 = <S1; A; T1; s01> and Sys2 = <S2; A; T2; s02> are relatedmodulo the strong bisimulation denoted Sys1 � Sys2, i� there exists a strongbisimulation relation R � S1 � S2 such that <s01; s02> 2 R.Our security properties being all simple safety properties obviously expressiblein Branching time Safety Logic (BSL) [5], the minimization can be furtherimproved modulo the safety equivalence (de�ned below), which preserves allthe properties expressible in BSL.Not all the observable actions are relevant to verify the properties. In par-ticular, our properties only rely on security events, so that other actions canbe hidden. The minimized LTS of our protocol can be checked against theLTS of a property by verifying the safety preorder relation [5] between them.Formally, the safety preorder (�s) is the preorder that generates the safetyequivalence (�s), and is nothing else than the weak simulation preorder.Consider again a LTS = <S;A; T; s0> and let's de�ne L = A�fig, a relationR � S � S is a weak simulation i� : 15

If <P;Q> 2 R then, 8 a 2 L,if P i�a) P 0, then 9 Q0 : Q i�a) Q0 and <P 0; Q0> 2 RA LTS Sys1 = <S1; A; T1; s01> can be simulated by Sys2 = <S2; A; T2; s02>,denoted Sys1 �s Sys2, i� there exists a weak simulation relation R � S1�S2such that <s01; s02> 2 R. Two LTS's Sys1 and Sys2 are safety equivalent i�Sys1 �s Sys2 and Sys2 �s Sys1.Informally, \behaviour �s property" means that the behaviour (exhibited bythe protocol) is allowed (i.e. can be simulated) by the (safety) property.When a property is not veri�ed, meaning that Aldebaran has not found asafety preorder between the LTS of protocol and the LTS of the property, itproduces a diagnostic sequence of actions. However, this sequence is usuallyof little help as such, because it only refers to the few non hidden actions thatwere kept for their relevance to express the properties. We call it the abstractdiagnostic sequence.To circumvent this di�culty and get a detailed sequence with all actions vis-ible, we have to encode this abstract diagnostic sequence in a format suitablefor input to the Exhibitor tool. This tool is then instructed to �nd a detailedsequence allowed by the speci�cation and matching the abstract one. Thissequence always exists, but is not necessarily unique. This does not matter.It su�ces to have one such trace as diagnostic to clearly identify the scenariothat leads to the undesirable state where the property is not veri�ed. TheExhibitor tool can even be used to �nd the shortest such trace, which helpsunderstand the intruder's attack.The veri�cation process of the properties is then complete. If one or more ofthem are not satis�ed, our method gives diagnostics of enormous help to theredesign of the protocol.
4 An example of veri�cationTo illustrate our method, this section presents an example of veri�cation. Wehave chosen the registration part of the Equicrypt protocol, a conditionalaccess protocol under design in the European ACTS OKAPI project [16]. Itallows a user to subscribe to multimedia services such as video on demand. Theuser must �rst register with a Trusted Third Party (TTP) using a challenge-response exchange. After a successful registration, this TTP issues a public-keycerti�cate which allows the user to subscribe to a service o�ered by a serviceprovider. 16

We concentrate on the veri�cation of the registration protocol. This paperonly presents an overview of the process. Readers interested in more detailscan refer to [14].4.1 The registration protocolThe registration protocol involves a user who wants to access a multimediaservice and a TTP that acts as a notary. The mutual authentication of theuser and the TTP must be achieved by the protocol. The TTP must be surethat the claimed identity of the user is the right one and the user must besure that he registers with the right TTP. The TTP must also receive theright user's public-key during the protocol to issue a corresponding public-keycerti�cate needed for the subscription phase.The authentication of the user by the TTP uses the Guillou-Quisquater (GQ)zero-knowledge identi�cation scheme [15]. Before registering, the user has re-ceived secret personal credentials derived from its real-life identity. These cre-dentials will help him to prove who he is to the TTP but without revealingthem. The authentication of the TTP by the user uses a challenge based on anonce (i.e. a number used once). The user has also received the TTP's public-key to perform the required checks on the messages and to authenticate theTTP. The transmission of the user's public-key to the TTP is possible withan improved version of the GQ algorithm [21]. The registration protocol pre-sented in this paper is, in fact, an enhanced version of the original one foundin [21].The GQ identi�cation scheme is based on complex mathematical relations de-rived from the user's identity, the user's public-key and the secret credentials.It uses a random number issued by the TTP to challenge the user and a sec-ond random number issued by the user to scramble the public-key and protectthe credentials. To specify the algorithm, we have designed an abstract modelwhich is particularly simple while still capturing the essence of it. The keypoint of the authentication is the secret credentials. If we consider them as asecret encryption key and the user's identity together with his public key as acorresponding public decryption key, the GQ algorithm looks like an authen-tication scheme based on a nonce and works as follows. The user sends hispublic decryption key to the TTP and receives back a nonce as a challenge.Then he returns to the TTP the nonce encrypted by his encryption key. TheTTP can then check that the nonce has been encrypted as expected. Thisscheme resists to the \man-in-the-middle" attack because the decryption keyis mathematically linked to the user's identity.In the remainder of this paper, we will present all the messages with the17

following structure :Number : Source! Destination : Message Identifier < Message F ields >A couple (KSA; KPA) will denote the pair of private/public keys of the principalA. Encryption of data will be written fdatagKPA while signature will be writtenfdatagKSA. F (B; d) will represent the special encryption of the GQ modelwhere B is the credentials.The protocol works as follows :The user generates a random nonce n and sends message 1.1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >When the TTP receives message 1, he decrypts the nonce n and signs it,generates a random number d and sends them to the user. The TTP canhandle several registrations at a time. So he maintains an internal table withone entry for each user who has a registration in progress and he records thetuple < UserID;KPU ; n; d >.2 : TTP ! User : Register Challenge < d; fngKSTTP >When the user receives message 2, he checks the signature. If the signature iscorrect, he performs the GQ calculation and sends the result to the TTP.3 : User ! TTP : Register Response < F (B; d) >When the TTP receives message 3, he checks the GQ authentication usingthis message and the data found in his internal table. Then, he sends a re-sponse according to the result. The response is signed and includes both theuser's identity and the nonce n (as an identi�er of the registration run). If theresponse is positive, the TTP registers the tuple < UserID;KPU >4+ : TTP ! User : Register Ack < fY es; UserID; ngKSTTP >4� : TTP ! User : Register Ack < fNo; UserID; ngKSTTP >4.2 Protocol speci�cationUsing the framework presented in previous sections, we have speci�ed the pro-tocol in LOTOS. Abstract data types were designed for all the cryptographicoperations involved including the abstract model of the GQ algorithm. Theuser and the TTP are two trusted principals and the intruder is the untrustedone. The user always tries to perform a valid registration. The intruder's ini-tial knowledge is adjusted to allow him to act as a second untrusted user and18

simultaneously as a second untrusted TTP. It includes :� An identity : IntruderID� Valid credentials : BI� A pair of private/public keys : KSI et KPI� The public key of the user KPU and the public key of the TTP KPTTP� The identity of the user : UserID� Nonces and random numbers di�erent from those of trusted principals.After the step-by-step simulation stage, the labelled transition system (LTS) ofthe protocol has been generated. It is composed of 487446 states and 2944856transitions and has required one hour of computation on a SUN Ultra-2 work-station running Solaris 2.5.1 with 2 CPUs and 832 Mb of RAM. The reductionfactor of the minimization modulo the strong bisimulation was very impor-tant. The minimized LTS of the protocol is made of 3968 states and 37161transitions. The reduction modulo the safety equivalence was not mandatorybecause the graph was small enough to carry out the veri�cation.4.3 Formalizing the propertiesAmong the �ve safety properties we have veri�ed, we only present one of aparticular interest. More details can be found in [14]. This property is necessary(but not su�cient) to achieve the authentication of the TTP by the user, andwe will see later that the current protocol does not satisfy it.� P4 : The verdict of the registration given by the TTP (i.e. registered orfailed) must always be correct and consistent with the acknowledgementreceived by the user.Four security events are required to formalize this property. Two events arerelated to the verdict given by the TTP and two other events to the verdictreceived by the user. A critical point is reached when the TTP decides whetheror not the registration is successful. This decision depends on the correctnessof message 3. Before sending his positive or negative acknowledgement, theTTP generates a security event. The TTP_REG_SUCCEEDED event corresponds tothe positive acknowledgement and the TTP_REG_FAILED event corresponds tothe negative acknowledgement. When the user receives the TTP's response, healso reaches a critical point. Thus, he generates a USER_REG_SUCCEEDED eventor a USER_REG_FAILED according to the response received.Property P4 can be expressed by the graph shown on �gure 5. It shows the tem-poral orderings that we authorize among the TTP_REG_SUCCEEDED, TTP_REG_FAILED,USER_REG_SUCCEEDED and USER_REG_FAILED events. In particular, a USER_REG_SUCCEEDEDmust always be preceded by one TTP_REG_SUCCEEDED because, when the user19

1

2 3

4

TTP_REG_SUCCEEDED TTP_REG_FAILED

TTP_REG_FAILED

TTP_REG_FAILED TTP_REG_FAILED

USER_REG_FAILED

USER_REG_FAILED

TTP_REG_SUCCEEDED

USER_REG_SUCCEEDED

Fig. 5. Labelled transition system modelling property P4learns that he has been successfully registered, the TTP must have success-fully registered him. A USER_REG_FAILED must always be preceded by at leastone TTP_REG_FAILED and no TTP_REG_SUCCEEDED because, when the user learnsthat his registration failed, the TTP must have refused to register him atleast once and the TTP must not have registered that user successfully. AUSER_REG_FAILED must never follow a TTP_REG_SUCCEEDED.For clarity, �gure 4 does not show the parameters of the security events, butit should be clear that this picture focuses on a single run of the protocol. Theproperty should be true for every run. The fact that several TTP_REG_FAILEDare allowed (refer to the loops) by the property means that we allow theintruder to try several fake registrations during the considered run. Such agraph models an upper bound on the possible behaviours which do not falsifythe intended property. Our model is supposed to generate a subset of thisgraph, except if there is a security breach.4.4 A
awAldebaran has discovered that the property P4 was not satis�ed. The be-haviour of the registration protocol cannot be simulated by the graph of theproperty regarding the relevant security events. It has found a sequence wherea USER_REG_FAILED occurs before a TTP_REG_SUCCEEDED. The TTP successfullyregisters the user after the user has learned that his registration failed. We use20

U
PK PKTTPUserID, , {n} U

PK PKTTPUserID, , {n}

KS
TTPd1, {n}

KS
TTP {No, UserID, n}

U
PK PKTTPUserID, , {n}

KS
TTPd2, {n}KS

TTPd2, {n}

KS
TTP {No, UserID, n}

IF(B , d1)

F(B, d2)

F(B, d2)

USER INTRUDER TTP

T_R_F

T_R_SU_R_F Fig. 6. Scenario of the intruder's attackthe Exhibitor tool to produce a diagnostic sequence that immediately showsus how the intruder has built his attack. The scenario is exhibited in �gure 6.When the intruder receives a registration request message from the user, heforwards it to the TTP and makes the �rst challenge fail with a fake response toobtain a negative acknowledgement from the TTP. Then the intruder followson by replaying the registration request message previously recorded. Uponreception, the TTP starts a second registration with the user and sends asecond challenge. This time, the intruder forwards the challenge to the userwho is still waiting for his �rst challenge. The user replies with a valid messageand waits for an acknowledgement. The intruder replays the negative onepreviously received. This acknowledgement is valid and thus the user declaresthat the registration failed. Meanwhile the intruder forwards the valid responseof the user to the TTP who declares the registration successful. Both partieshave �nished their exchange but they do not have the same point of view ofthe situation.For this attack to succeed, the intruder only needs to create a fake responseto the �rst challenge. The strengh of our technique is that the analysis of thediagnostic sequence immediately brings us the reason of the failure. Despitethe presence of the nonce n, the acknowledgement of the TTP is too generalbecause it can be considered valid in two distinct registrations.21

4.5 Corrected protocolA way to prevent the attack is to add to the acknowledgement a unique iden-ti�er of the registration. The random number used in the GQ veri�cation isthe right candidate. This number is meant to be di�erent at each registration.Its integration into the signature of the fourth message will allow the user tocheck its freshness. Here is the corrected version of our registration protocol :1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >2 : TTP ! User : Register Challenge < d; fngKSTTP >3 : User ! TTP : Register Response < F (B; d) >4+ : TTP ! User : Register Ack < fY es; UserID; n; dgKSTTP >4� : TTP ! User : Register Ack < fNo; UserID; n; dgKSTTP >Aldebaran states that all the properties, including P4, are ful�lled with thisversion. Hence, the mutual authentication and the transmission of the publickey succeed despite the attempts of the intruder.4.6 Enhancements of the protocolThis section deals with two improvements of the protocol. Firstly, we will tryto obtain the simplest protocol. Encryptions and signatures were used to havethe assurance that the intruder could not alter messages or parts of them.The formal description we made will help us to establish which cryptographicoperations are really essential. Our guideline is to minimize cryptographicoperations because public key cryptography has a very high computationalcost.Secondly, we will modify the protocol to help the protocol entities to make thedistinction between a normal registration failure due to bad credentials anda registration failure due to a protocol error (caused in fact by an intruder'sinterference). We call the former a failure, and the latter an error. When anentity receives a message, it performs several checks. If one of them fails, amessage indicating the reason of the error is sent to the environment. It is veryimportant to understand the di�erence between the two kinds of interruptionsa registration can encounter. The registration can fail because the TTP hasdecided that the user does not own good credentials. That is what we will calla failure. The other cases are errors. An error occurs when the registrationprotocol stops due to a badly formed message: wrong signature, wrong nonce,... We obviously focus on failures because we want to defeat the intruder whenhe generates good messages. An intruder can always create errors by sendinggarbage in the transmission channel. This separation between failures anderrors helps to determine whether an intruder is disturbing the registration or22

not.4.6.1 The simplest protocolWe have found that the addition of the random number d in the signatureof the fourth message makes the nonce n useless. It was used at �rst for theuser to authenticate the TTP. The TTP's signature of the acknowledgementis su�cient to perform this authentication. The user knows the TTP's publickey so that he can verify that this message originates from the TTP. Therandom number d ensures that it belongs to the current registration and hasnot been replayed by the intruder. Thus, the user has the guarantee that heis talking to the TTP for the registration presently in progress.Section 4.5 demonstrates that the signature of the registration acknowledge-ment message is very important. It can certainly not be removed as it performsthe authentication of the whole registration. Therefore it seems unnecessaryto authenticate the TTP already in the registration challenge (message 2).This suggests to remove the nonce n from the whole protocol.These two simpli�cations lead to a very simple protocol with only one signa-ture (and the GQ calculation):1 : User ! TTP : Register Request < UserID;KPU >2 : TTP ! User : Register Challenge < d >3 : User ! TTP : Register Response < F (B; d) >4+ : TTP ! User : Register Ack < fY es; UserID; dgKSTTP >4� : TTP ! User : Register Ack < fNo; UserID; dgKSTTP >All the �ve properties are satis�ed. This version is as robust as the previousone from the point of view of the mutual authentication. Obviously, the in-truder can more easily disturb the registration. The only di�erence is that theintruder's actions will be discovered later during the protocol run. Regardingthe security events only, a safety preorder exists between the corrected ver-sion of the protocol and this simpli�ed version. Hence, all safety properties,expressible with the security events and veri�ed on the latter are necessarilyveri�ed on the former.4.6.2 Distinction between failures and errorsWith this second improvement, we want to give the entities the ability to knowexactly why a registration does not complete, either because the user has usedbad credentials or because of an intruder's attack. This additional requirementwill introduce complexity in the protocol. The simpli�cation described in 4.6.1led us in the opposite direction, but now we can build our design strategy on23

IF(B , d)

U
PKUserID, U

PKUserID,

KS
TTP {No, UserID, d}KS

TTP {No, UserID, d}

USER INTRUDER TTP

T_R_F

F(B, d)

d d

U_R_F Fig. 7. A failure of the user generated by the intrudersolid bases.Before going further, we de�ne an authentication failure as the occurrenceof a USER_REG_FAILED event, and a protocol error as any other unsuccessfultermination of the protocol due to any sort of invalid message reception (dueto an intruder's interference). When the user or the TTP receive such aninvalid message, they will just raise an error and stop the protocol. Ideally aUSER_REG_FAILED event can only occur when the user owns invalid credentials.In our model, the user owns valid credentials and always initiates a correctregistration. So normally the user should never face a registration failure;which means that the user's registration must always terminate with a positiveanswer from the TTP or possibly with a protocol error. Nevertheless, theveri�cation shows that USER_REG_FAILED events occur in some scenarios. Thisbehaviour can only result from intruder's actions and shows that the usercannot completely distinguish protocol errors from authentication failures. Inother words, some errors are interpreted as failures. Figure 7 exhibits a scenariothat leads to such a failure with the simpli�ed version of the protocol.The user starts his registration and the protocol progresses normally until theintruder replaces the register response message of the user with another one.This new message is wrong because the intruder does not own credentials theTTP is waiting for and thus, a failure is declared and the TTP sends a negativeacknowledgement. The user also declares a failure upon its reception.This scenario is not related to the authentication properties we have previouslyveri�ed. The TTP refuses to authenticate the user due to an intruder's actionbut is not authenticating the user incorrectly. The reason for the failure isrelated to the integrity of the messages transmitted during the protocol. Inthis particular case, the register response message has been changed by theintruder.To achieve the user's distinction between protocol errors and authentication24

failures, we will strengthen the requirements on the protocol and add a newproperty.� P6 : The user must never learn that his registration has been refused by theTTP.or expressed with special events :� P6 : No USER_REG_FAILED event is allowed in the LTS of the system.The same reasoning is valid from the point of view of the TTP: he wouldmake a complete distinction between failures and errors if he never declared afailure of the user, since the user always tries to perform a valid registration.All disturbing elements must come from the intruder and must lead to errors(or possibly to a TTP_REG_FAILED with the intruder's identity). We model thiscase with another new property called P7 that does not allow the TTP torefuse the registration of the user. Formally, no TTP_REG_FAILED event withthe user's identity (TTP_REG_FAILED !USERID_A) is permitted in the LTS ofthe system.We check for the presence of USER_REG_FAILED and TTP_REG_FAILED !USERID_Aevents using the Exhibitor tool. If the veri�cation does not �nd any of theseevents, our new properties are satis�ed. The simplest protocol cannot guar-antee P6 or P7 because the parameters used in the GQ algorithm are notchecked before the GQ veri�cation (see the previous scenario). So we proposea new solution with two new signatures.1 : User ! TTP : Register Request < UserID;KPU >2 : TTP ! User : Register Challenge < fUserID;KPU ; dgKSTTP >3 : User ! TTP : Register Response < fUserID; F (B; d)gKSU >4+ : TTP ! User : Register Ack < fY es; UserID; dgKSTTP >4� : TTP ! User : Register Ack < fNo; UserID; dgKSTTP >The main di�culty to solve comes from the GQ veri�cation. The protocol mustprovide a way to �nd why the GQ calculation is not correct. If the problem isdue to the use of bad credentials, the TTP must declare a failure, otherwisehe must declare an error.The signature of the register challenge message allows the user to verify thatthe data transmitted in the �rst message were correctly received. This couldnot be achieved by signing the register request because the TTP does notknow the user's public key yet. If and only if the user agrees with the registerchallenge, he generates a response F (B; d), signed with his private key. Whenthe TTP receives this third message, he can use the recently received publickey to check the signature. If the signature is incorrect, the TTP declaresan error. Otherwise, and if the result of the GQ computation is correct, that25

KS
TTP

PK I{UserID, , d}

PK IUserID,

I{UserID, F(B , d)}K I
S

INTRUDER TTP

T_R_FFig. 8. A failure of the TTP generated by the intrudermeans that the user has received a valid register challenge message and thusagrees with the public key used in this message. Hence the TTP owns the realpublic key of the user. Both the GQ computation and the signature must becorrect. One of them is not enough to make a good veri�cation.From the TTP's point of view, nothing distinguishes the received result ofthe function F from a random number before the GQ veri�cation. So we haveadded the user's identity in the register response message to allow the TTPto check the user's signature.With this version of the protocol the transmission of the user's public key nolonger needs to be associated with the computations of the GQ veri�cation.Our model of the GQ identi�cation scheme states that the function F acts asa signature veri�ed by the user's identity and the user's public key. In fact,this new version of the registration protocol can be used with a GQ algorithmin which B is only linked to the user's identity and not to its public key. Thisis because the two new signatures in messages 2 and 3 allow the certi�cationof the user's public key. This simpli�ed GQ is in fact the original one [15].Property P6 is satis�ed with this version. There is no possible USER_REG_FAILEDevent. All the intruder's actions are detected by the various checks involvedin the cryptographic operations. Nevertheless, it was not possible to suppressall the TTP_REG_FAILED events. Property P7 is thus not satis�ed. Indeed, thecomplete removal of these events would imply a kind of authentication beforethe authentication itself, and therefore constitutes an unreachable goal. Figure8 will further clarify this. It exhibits a possible attack where the intruderreplaces the user's public key with his own in the �rst message. Withoutknowing the right user's public key before the beginning of the registration (asone of the purposes of the registration is to transfer the public key), the TTPcannot detect the falsi�cation. This means that from the TTP's viewpointwe have to accept that some intruder's interferences will be indistinguishablefrom tentative registrations of users with invalid credentials.26

5 Conclusion and related workThis paper presents a formal veri�cation process for security protocols us-ing LOTOS. We have shown how to specify a protocol with the concept oftrusted and untrusted principals. The
exibility of abstract data types allowsthe description of a wide range of cryptographic operations. We have shownthe modelling of the classical public-key scheme but also a more complex one :the Guillou-Quisquater algorithm. Our approach thus relies on classical for-malisms and tools and contrasts with works that use a dedicated modal logicsuch as the BAN logic [6].We have shown how intrusion can be taken into account by adding an intruderprocess replacing the communication channels. Our model of this intruder isvery simple and powerful. He can mimic very easily real-world non crypto-graphic and non repetitive attacks on the behaviour of the protocol. The ideaof explicitly introducing an intruder was �rst proposed in [8,9] in anothersetting. This idea was then used in the Interrogator system [28], where theparticipants are modelled as communicating state-machines and the networkis assumed to be under the control of an intruder, which can intercept mes-sages, destroy or modify them, or pass them through unmodi�ed. The NRLProtocol Analyser [20,27] is similar to the Interrogator, but the goal is here toprove the unreachability of some undesirable states. It can deal with in�nite-state systems but the search is less automated than in the Interrogator. Thedi�erence between our approach and these methods is that we do not have tode�ne some pathological target states to be searched for by the tool. We justgive safety properties as reference graphs.We have explained the validation process and the formalization of securityproperties as safety properties. These properties are similar to the correspon-dence properties, used in [34], which require that certain events can take placeonly if others have taken place previously. Basically, all properties that areexpressible with security events can be checked with our approach. Our toolveri�es that the safety preorder (i.e. the weak simulation) relation holds be-tween the system and the property. We can check liveness properties is asimilar way, but this is not very useful in practice because they are neversatis�ed as intruders can always intercept all messages in transit.Our method is illustrated on a registration protocol. We have found a
aw thatcould probably not have been discovered, at least so early, by a human-being.The veri�cation is quite automatic and allows one to make e�cient correctionsand improvements. However, as with any model-checking methods, we havehad to simplify the model to keep it �nite-state. There exist ways to extendthe method to in�nite-state systems. In a simpler case [24], an additionalinduction proof has been provided to extend the correctness guarantee to an27

arbitrary number of involved entities. Another possible approach, proposed in[3], is based on an abstraction function and automates the computation of acorrect (�nite) abstract model of the system.Another approach which circumvents the problem of adding an explicit in-truder process is proposed in [1] where the Spi-calculus is used to describesecurity protocols. The idea is to verify that the protocol speci�cation placedin any Spi-calculus context is equivalent to the expected ideal behaviour (i.e.without intruder). Threads expressible in the Spi-calculus are thus implicitlyconsidered among the possible contexts. However, this approach is not so easyto use in practice because the equivalence is sometimes too strong. For exam-ple, some intruder's actions may be such that the equivalence is not ful�lled,while the security of the system is not in danger, because the non equivalencesimply results from the falsi�cation of an irrelevant property.6 AcknowledgementsThis work has been partially supported by the Commission of the EuropeanUnion (DG XIII) under the ACTS AC051 project OKAPI: \Open Kernel forAccess to Protected Interoperable Interactive Services".References[1] M. Abadi and A.D. Gordon, A calculus for cryptographic protocols - Thespi calculus, in: Proceedings of the 4th ACM Conference on Computer andCommunication Security (1997).[2] D. Bolignano, Formal veri�cation of cryptographic protocols, in: Proceedings ofthe 3rd ACM Conference on Computer and Communication Security (1996).[3] D. Bolignano, Towards a mechanization of cryptographic protocol veri�cation,in: Proceedings of CAV 97 (LNCS 1254, Springer-Verlag, 1997).[4] T. Bolognesi and E. Brinksma, Introduction to the ISO speci�cation languageLOTOS, Computer Networks and ISDN Systems 14 (1987) 25{59.[5] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez and J. Sifakis, Safety forbranching time semantics, in: Proceedings of the 18th ICALP (LNCS, Springer-Verlag, Berlin, 1991).[6] M. Burrows, M. Abadi and R. Needham, A logic of authentication, ACMTransactions on Computer Systems 8 (1990).28

[7] P. Chen and V. Gligor, On the formal speci�cation and veri�cation of amultiparty session protocol, in: Proceedings of the IEEE Symposium on Researchin Security and Privacy (1990).[8] D. Dolev, S. Even and R. Karp, On the security of ping-pong protocols,Information and Control 55 (1982) 57{68.[9] D. Dolev and A. Yao, On the security of public key protocols, IEEE Transactionson Information Theory 29(2) (1983) 198{208.[10] H. Ehrig and B. Mahr, Fundamentals of Algebraic Speci�cation 1, equationsand initial semantics, in: W. Brauer, B. Rozenberg, A. Salomaa, eds., EATCS,Monographs on Theorical Computer Science (Springer-Verlag, Berlin, 1985).[11] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier andM. Sighireanu, CAESAR/ALDEBARAN Development Package: A protocolvalidation and veri�cation toolbox, in: R. Alur and T. Henzinger, eds.,Proceedings of the 8th Conference on Computer-Aided Veri�cation (LNCS,Springer Verlag, 1996).[12] H. Garavel, An overview of the Eucalyptus toolbox, in: Proceedings of COST247workshop, June 1996.[13] F. Germeau and G. Leduc, Model-based design and veri�cation of securityprotocols using LOTOS, in: Proceedings of the DIMACS Workshop on Designand Formal Veri�cation of Security Protocols, Rutgers University, Sept. 1997.[14] F. Germeau and G. Leduc, A computer-aided design of a secure registrationprotocol, in: T. Mizuno, N. Shiratori, T. Higashino, A. Togashi, eds., FormalDescription Techniques and Protocol Speci�cation, Testing and Veri�cation(Chapman & Hall, London, 1997), 145{160.[15] L. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol �ttedto security microprocessor minimizing both transmission and memory, in:Proceedings of Eurocrypt 88 (Springer-Verlag, Berlin, 1988) 123{128.[16] J. Guimaraes, J.-M. Boucqueau and B. Macq, OKAPI: a kernel for accesscontrol to multimedia services based on trusted third parties, in: Proceedingsof ECMAST 96, Louvain-la-Neuve, Belgium, May 1996, 783{798.[17] C.A.R. Hoare, Communicating Sequential Processes (Prentice-HallInternational, 1985).[18] ISO/IEC: Information Processing Systems - Open Systems Interconnection,LOTOS, a formal description technique based on the temporal ordering ofobservational behaviour, IS 8807, February 1989.[19] R. Kemmerer, Using formal methods to analyse encryption protocols, IEEEJournal on Selected Areas in Communications 7(4) (1989) 448{457.[20] R. Kemmerer, C. Meadows and J. Millen, Three systems for cryptographicprotocol analysis, Journal of Cryptology 7(2) (1989) 14{18.29

[21] S. Lacroix, J.-M. Boucqueau, J.-J. Quisquater and B. Macq, Providing equitableconditional access by use of trusted third parties, in: Proceedings of ECMAST96, Louvain-la-Neuve, Belgium, May 1996, 763{782.[22] G. Leduc, O. Bonaventure, E. Koerner, L. L�eonard, C. Pecheur and D. Zanetti,Speci�cation and veri�cation of a TTP protocol for the conditional accessto services, in: Proceedings of 12th J. Cartier Workshop on Formal Methodsand their Applications: Telecommunications, VLSI and Real-time ComputerizedControl System, Montreal, Canada, October 1996.[23] G. Leduc, O. Bonaventure, L. L�eonard, E. Koerner and C. Pecheur, Model-based veri�cation of a security protocol for conditional access to services, FormalMethods in System Design 14(2) (1999) 171{191.[24] G. Lowe, Breaking and �xing the Needham-Schroeder public-key authenticationprotocol using FDR, in: T. Margaria and B. Ste�en, eds., Tools and Algorithmsfor the Construction and Analysis of Systems (LNCS 1055, Springer-Verlag,1996).[25] G. Lowe and B. Roscoe, Using CSP to detect errors in the TMN protocol, IEEETransactions on Software Engineering 23 (10) (1997) 659{669.[26] W. Marrero, E. Clarke and S. Jha, A model checker for authentication protocols,in: Proc. of the DIMACS Workshop on Design and Formal Veri�cation ofSecurity Protocols, Rutgers University, Sept. 1997.[27] C. Meadows, The NRL protocol analyser: an overview, Journal of LogicProgramming26(8 (1996) 113-131.[28] J. Millen, S. Clark and S. Freedman, The Interrogator: protocol securityanalysis, IEEE Transactions on Software Engineering SE-13(2) (1987).[29] R. Milner, Communication and Concurrency (Prentice-Hall International,1989).[30] J. Mitchell, V. Shmatikov and U. Stern, Finite-state analysis of SSL 3.0 andrelated protocols, in: Proceedings of the DIMACS Workshop on Design andFormal Veri�cation of Security Protocols, Rutgers University, Sept. 1997.[31] C. Pecheur, Improving the speci�cation of data types in LOTOS (Doctoraldissertation, nr. 171, University of Li�ege, Nov. 1996).[32] S. Schneider, Verifying authentication protocols in CSP, IEEE Transactions onSoftware Engineering 24 (9) (1998) 751{758.[33] B. Schneier, Applied cryptography, Second edition (John Wiley & Sons Eds,1996).[34] Woo and S. Lam, A semantic model for authentication protocols, in: Proc. ofIEEE Symposium on research in security and privacy (1993).
30

