
5. Conclusion

Find the codes on my Github: 
github.com/hadrienmichel/BEL1D

BEL1D promises a shift towards a larger use of stochastic 
methods for the interpretation of geophysical data in terms of 
physical properties. The method has been successfully applied to 
both SNMR and surface waves dispersion curves and permits an 
easy transformation to any other type of geophysical experiment, 
as long as an efficient forward model does exist. 

In the case of SNMR, BEL1D performed similarly to the QT-
inversion (Mueller-Petke et al., 2016) when considering time, but 
provided a much more complete set of information based on the 
same data-set. Moreover, the process did not require the difficult 
determination of regularization parameters, needed in inversion 
processes to stabilize the computation and ensure convergence.
In the case of surface waves, the results showed the data-set did 

not enable a significant reduction of uncertainty for some 
insensitive parameters (the density for example).

Finally, we developed a series of MATLAB codes (available on 
Github) that performs BEL1D for both SNMR and surface waves 
(as well as a generalized case) in a graphical environment, 
making the use of BEL1D straightforward.

4. Application 2: Surface Waves

Fig. 3: Results of BEL1D on the synthetic surface wave dispersion 
curve. The prior is defined by the dashed black lines.

The same model (Table 1) was used to produce a synthetic 
dispersion curve. BEL1D was then applied and resulted in the 
models distributions in Fig. 3. This case shows that BEL1D 
performs in accordance with the theory, as the reduction of 
uncertainty is mainly observed in the shear-wave velocity, 
whereas no reduction is observed in the density profiles, a 
parameter not significantly impacting the dispersion curve.

3. Application 1: SNMR

Fig. 2(b): Results of BEL1D and QT-
inversion on the synthetic SNMR 

data-set. The prior is defined by the 
dashed black lines.

We applied BEL1D to a synthetic model (Table 1). The results 
showed the method is able to successfully reproduce the test 
model with uncertainties (Fig. 2) related to insensitivity rather 
than to a lack of accuracy of BEL1D as shown by the RMS.

Fig. 2(a): Results of BEL1D on the synthetic SNMR 
data-set: model parameters space.

2. Application: test model and experiments
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Table 1: Description of the synthetic model

Two geophysical experiments are tested:
- SNMR: geophysical experiment sensitive to water.
               o Water content and decay time distributions
                  with depth
- Surface waves (SW): seismic waves that propagate parallel to 
         the surface whose geometric dispersion is modeled 
         thought dispersion curves.
               o P- and S- waves velocities and density distributions 
                  with depth 

Uncertainty appraisal is a key concern to geophysicists when 
imaging the subsurface. This issue is classically handled by 
stochastic inversion (costly CPU) or by error propagation 
(unrealistic uncertainty). However, those methods suffer from 
an important CPU cost, due to the need for many runs of 
inversions.

Bayesian Evidential Learning 1D imaging (BEL1D) is a 
Bayesian method that enables the stochastic interpretation of 
1D geophysical data, with a reasonable CPU cost and realistic 
uncertainty estimations.

The method relies on the constitution of statistical 
relationships between model parameters and the associated 
data-sets from prior realizations (Fig. 1). The method offers 
the advantage not to require the input of biasing information 
through regularization parameters as is often the case in 
classical inversion processes. However, the consistent 
definition of a prior is still required. Nonetheless, the method 
handles as efficiently large priors as smaller ones, thus 
making the use of unbiased priors easy.

Above all, the method enables the quantification of 
uncertainty for the model parameters.

1. Bayesian Evidential Learning 1D imaging
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Fig. 1: Schematic illustration of BEL1D

Fo
rw

a
rd

m
o
d

e
lin

g

Set of p models

1D geological imaging of the subsurface 
from geophysical data with 

Bayesian Evidential Learning

Hadrien MICHEL (1,2,3) (hadrien.michel@uliege.be), Thomas HERMANS (3) and Frédéric NGUYEN (1)

(1) University of Liège, Faculty of Applied Sciences, Urban and Environmental Engineering Departement, Liège, Belgium, (2) F.R.S.-FNRS (Fonds 
de la Recherche Scientifique), Brussels, Belgium, (3) Ghent University, Faculty of Sciences, Department of Geology, Ghent, Belgium


