Bayesian parameter inference for PICA devolatilization pyrolysis at high heating rates

Joffrey Coheur

 Promotors: M. Arnst¹, P. Chatelain², T. Magin⁴
 Collaborators: P. Schrooyen³, K. Hillewaert³, A. Turchi⁴, F. Panerai⁵, J. Meurisse⁵, N. N. Mansour.⁵

 ¹Aerospace and Mechanical Engineering, Université de Liège
 ²Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain ³Cenaero, Gosselies
 ⁴Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics ⁵NASA Ames Research Center

> 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering

June 24, 2019

INTERPORT OF THE TOTAL T

Motivation: atmospheric entry

Thermal protection systems (TPS)

Dragon capsule (Space X)

Space debris

ATV-1 Jules Verne (ESA)

Ablative materials for thermal protection systems

▶ PICA: Phenolic-Impregnated Carbon Ablator Porous thermal protection material Fibers + resir Lawson et al. [Helber, 2016] Mars Science Laboratory thermal Bottom view protection system (NASA)

Modeling the pyrolysis of ablative thermal protection materials

CFD codes require accurate models for ablation [Lachaud, 2014; Schrooyen, 2016], e.g. conservation of mass species

$$\frac{\partial \epsilon_{g} \langle \rho_{i} \rangle_{g}}{\partial t} + \nabla \cdot \left(\epsilon_{g} \langle \rho_{i} \rangle_{g} \langle u \rangle_{g} \right) = \nabla \cdot \langle J_{i} \rangle + \langle \dot{\omega}_{i}^{\text{pyro}} \rangle$$

Objectives: deduce (\u03c6 \u03c6 i provide provide pyrolysis experiments
 Methodology: Bayesian inference for a robust characterization with uncertainties

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Pyrolysis experiments [Wong et al., 2015; Bessire and Minton, 2017]

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Phenomenological laws for pyrolysis mass loss and gas species production

 Pyrolysis decomposition of ablative materials follows successive reaction rates [Goldstein, 1969; Trick, 1997]

▶ ξ_j : advancement of reaction of the fictitious resin component j

Phenomenological laws for pyrolysis mass loss and gas species production

 Pyrolysis decomposition of ablative materials follows successive reaction rates [Goldstein, 1969; Trick, 1997]

> ξ_j : advancement of reaction of the fictitious resin component j

Bayesian inference for parameter calibration

Objective: Infer on a finite set of parameters $\mathbf{p} \in \mathbb{R}^q$ from

- ▶ A set of measurements $\mathbf{d}^{obs} = \{ d_i \in \mathbb{R}, i = 1, ..., n_{obs} \}$
- A model that predicts the measurements

using Bayesian rule for improving our knowledge on ${\boldsymbol{\mathsf{p}}}$

$$\pi(\mathbf{p}|\mathbf{d}^{\text{obs}}) = \frac{\pi(\mathbf{d}^{\text{obs}}|\mathbf{p})\pi_0(\mathbf{p})}{\int_{\mathbb{R}^p} \pi(\mathbf{d}^{\text{obs}}|\mathbf{p})\pi_0(\mathbf{p})d\mathbf{p}} \qquad (\text{Bayes' theorem})$$

Choice for the prior π₀(**p**): uniform pdf (bounded support)
 Choice for the likelihood π(**d**^{obs}|**p**): additive Gaussian noise

$$\pi(\mathbf{d}^{\text{obs}}|\mathbf{p}) = \frac{1}{\prod_{i} (2\pi\sigma_{i}^{2})^{n/2}} \exp\left(-\sum_{i=1}^{n_{\text{s}}} \sum_{k=1}^{n} \frac{\left[d_{ik}^{\text{obs}} - \eta_{i}(\mathbf{x}_{k}, \mathbf{p})\right]^{2}}{2\sigma_{i}^{2}}\right)$$

Benchmark: two-equation model

Random-Walk Metropolis-Hastings: bivariate posterior PDFs

Challenges for the inference of pyrolysis kinetic parameters

- Non-linear posterior and highly-correlated parameters: random-walk Metropolis-Hastings may fail or be very slow, tuning of the proposal covariance hard for high dimensional problems
 - Reparametrization of parameters space adapted to the physical model
 - Gradient-based algorithms (Itô-SDE)
- Fitting unimportant data may biased the results
 - Hyperparameter choice
 - Data feature selection

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Reparametrization of parameters space adapted to the physical model

- More complex models become prohibitive in terms of number of iterations required
- Need to improve the mixing of the Markov chains

Non-linear transformation of the parameter space

$$\begin{split} \tilde{A}_i &= \ln A_i - E_i / (\mathcal{R} \overline{T}_i), \\ \tilde{E}_i &= E_i / \overline{E}_i, \\ \tilde{m}_i &= m_i / \overline{m}_i, \\ \tilde{F}_i &= F_{ij} / \overline{F}_{ij}. \end{split}$$

Reaction rate:

$$k_i = \exp\left(ilde{A}_i + ilde{E}_i\, ilde{T}_i(t)
ight)$$

Local reciprocal temperature:

$$\tilde{T}_i = \overline{\tilde{E}}_i / \mathcal{R}(1/T + 1/\overline{T}_i)$$

Benchmark: two-equation model

Bivariate posterior PDFs (initial parameter space)

Bivariate posterior PDFs (rescaled parameter space)

Itô Stochastic Differential Equation based MCMC method

We use the Itô Stochastic Differential Equation (ISDE) introduced by Soize (2008)

$$d\Xi = [\widehat{C}] H dt$$
$$dH = -\nabla_{\xi} \phi(\Xi) dt - \frac{1}{2} \zeta_0 H dt + \sqrt{\zeta_0} [L_{\widehat{C}}]^{-T} dW$$

with $\phi = -\log(\pi(\mathbf{d}^{\text{obs}}|\mathbf{p}))$, $[\widehat{C}]$: approximation of the covariance matrix, ζ_0 : free parameter (Arnst, Soize (2019)). Discretization in time using a Stormer-Verlet method (Soize, Ghanem (2016))

$$\begin{split} &\Xi^{\left(\ell+\frac{1}{2}\right)} = \Xi^{\left(\ell\right)} + \frac{\Delta t}{2} [\widehat{C}] \boldsymbol{H}^{\left(\ell\right)} \\ &\boldsymbol{H}^{\left(\ell+1\right)} = \frac{1-b}{1+b} \boldsymbol{H}^{\left(\ell\right)} - \frac{\Delta t}{1+b} \boldsymbol{\nabla}_{\xi} \phi \left(\boldsymbol{\Xi}^{\left(\ell+\frac{1}{2}\right)}\right) + \frac{\sqrt{\zeta_{0}}}{1+b} \left[L_{\widehat{C}}\right]^{-\mathrm{T}} \Delta \boldsymbol{W}^{\left(\ell+1\right)} \\ &\Xi^{\left(\ell+1\right)} = \Xi^{\left(\ell+\frac{1}{2}\right)} + \frac{\Delta t}{2} [\widehat{C}] \boldsymbol{H}^{\left(\ell+1\right)} \end{split}$$

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Zero variance data in the data-set

Hyperparameter choice

$$\pi(\mathbf{d}^{\text{obs}}|\mathbf{p}) = \frac{1}{\prod_{i} (2\pi\sigma_{i}^{2})^{n/2}} \exp\left(-\sum_{i=1}^{n_{\text{s}}} \sum_{k=1}^{n} \frac{\left[d_{ik}^{\text{obs}} - \eta_{i}(\mathbf{x}_{k}, \mathbf{p})\right]^{2}}{2\sigma_{i}^{2}}\right)$$

Taking all the data might lead to inaccurate results, although zero variance data (before activation temperature of after reaction) are obtained experimentally

 Feedback on the experiments: fit only important features (activation temperature, maximum production peaks)

Illustration using experimental data: two-reaction model with one species

▶ Observable (data) $d_{H_2k}^{obs}$: mass yields of species H₂ at each temperature. $N_p = 2$.

$$d_{\mathsf{H}_{2}k} = \sum_{j}^{N_{\mathsf{p}}} \mathcal{F}_{\mathsf{H}_{2},j} m_0 \left(\xi_j^{(k)} - \xi_j^{(k-1)}\right),$$

$$\frac{\partial \xi_j^{(k)}}{\partial t} = \left(1 - \xi_j^{(k)}\right)^{n_j} \mathcal{A}_j \exp\left(-\frac{\mathcal{E}_j}{\mathcal{R} \mathcal{T}_k}\right),$$

$$\xi_j^{(0)} = 0.$$

Simple point-mass model (0D), k = 1,..., n_T
 p = {A₁, E₁, n₁, F<sub>H₂,1, A₂, E₂, n₂, F_{H₂,2}}
 Initial guess obtained from genetic algorithm
</sub>

Comparison of the different approaches

Comparison of posterior samples obtained from the Markov chains (length = 1e4) using Itô-SDE (blue dots) and random-walk Metropolis-Hastings in the reparametrized parameter space (orange dots) and in the initial parameter space (green dots)

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Application to pyrolysis experiments [Bessire and Minton, 2015]

Proposed five-equation model (38 unknown parameters):

$$R_{1}(s) \xrightarrow{k_{1}} F_{1,1}H_{2}O + F_{1,2}CO_{2} + F_{1,3}(1\text{-propanol})$$

$$k_{2} = F_{2,1}H_{2}O + F_{2,2}CO_{2} + F_{2,3}CO_{2} + F_{2,3}CO_{2} + F_{2,3}CO_{3} + F_{3,3}CO_{3} + F_{3,3}CO$$

$$R_{2}(s) \xrightarrow{k_{2}} F_{2,1}H_{2}O + F_{2,2}CO + F_{2,3}CO_{2} + F_{2,4}Phenol + F_{2,5}Cresol + F_{2,6}(Dimethyl Phenol) + F_{2,7}(Trimethyl Phenol)$$

$$\mathbf{R}_{3}(s) \xrightarrow{k_{3}} \xrightarrow{F_{3,1}\mathrm{CH}_{4} + F_{3,2}\mathrm{H}_{2}\mathrm{O} + F_{3,3}\mathrm{CO} + F_{3,4}\mathrm{H}_{2} + F_{3,5}\mathrm{CO}_{2} + F_{3,6}\mathrm{Xylene} + F_{3,7}\mathrm{Benzene} + F_{3,8}\mathrm{Toluene}$$

$$\mathbf{R}_4(s) \xrightarrow{k_4} F_{4,1}\mathbf{H}_2$$

$$R_5(s) \xrightarrow{k_5} F_{5,1}H_2 + F_{5,2}CH_4 + F_{5,3}H_2O + F_{5,4}CO$$

Propagation results: production rate curves

Propagation results: production rate curves

Propagation results: production rate curves

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions

- Experiments
- Modeling

Challenges

- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions

Conclusions

- > Application of a simple model to simulate pyrolysis experiments.
- ▶ Inference on the parameters of pyrolysis reactions using Bayesian approach.
- ▶ Efficient method to infer on kinetic parameters and characterize their uncertainties. However, lack of indentifiability for A and E.
- Rescaling the parameter space to their posterior distribution based on model features reduce significantly the tuning of the proposal covariance
- Ito-SDE method enables no proposal tuning and samples efficiently the posterior distribution, but requires the computation of gradients
- Simulations of gas production rate and mass loss with error bars lead to good agreement with experimental curves.

Apply Itô-SDE method to the full set of experimental data

▶ Efficient computation of model gradients, e.g. adjoint-based

► Use more general models, e.g. include competitive reaction schemes (F. Torres, J. Blondeau), include more data (different heating rates) → model inference

Results interpretation and their used in CFD codes; uncertainty propagation for the validation of CFD codes

Acknowledgments

- This work is supported by the Fund for Research Training in Industry and Agriculture (FRIA) provided by the Belgian Fund for Scientific Research (F.R.S-FNRS)
- Scientific stay at NASA ARC was supported by the Wallonie-Bruxelles International grant WBI.World

 F. Torres (VKI), B. Helber (VKI), J. Lachaud (I2M Bordeaux), H.-W. Wong (UMassachusetts Lowell), George Bellas-C. (VKI), J.-B. Scoggins (VKI)

Bayesian parameter inference for PICA devolatilization pyrolysis at high heating rates

Joffrey Coheur

 Promotors: M. Arnst¹, P. Chatelain², T. Magin⁴
 Collaborators: P. Schrooyen³, K. Hillewaert³, A. Turchi⁴, F. Panerai⁵, J. Meurisse⁵, N. N. Mansour.⁵

 ¹Aerospace and Mechanical Engineering, Université de Liège
 ²Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain ³Cenaero, Gosselies
 ⁴Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics ⁵NASA Ames Research Center

> 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering

June 24, 2019

INTERPORT OF THE TOTAL T

Additional Information

Bibliography

Mathematical model

• Model Selection

Bibliography

- M. Bruns. Inferring and propagatin kinetic parameter uncertainty for condensed phase burning models. Fire Technology, 52:93–120, 2016.
- B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, D. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 2017. DOI 10.18637/jss.v076.i01
- J. Coheur, A. Turchi, P. Schrooyen and T. Magin. Development of a unified model for flow-material interaction applied to porous charring ablators. In 47th AIAA Thermophysics Conference, AIAA Aviation Forum 2017.
- N. Galagali and Y. Marzouk. Bayesian inference of chemical kinetic kinetics model from proposed reactions. Chemical Engineering Science, 123:170–190, 2015.
- H. E. Goldstein. Pyrolysis Kinetics of Nylon 6-6, Phenolic Resin, and Their Composites. Journal of Macromolecular Science: Part A Chemistry, 3:649–673, 1969.
- B. Helber, A. Turchi, J. Scoggins, A. Hubin and T. Magin. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas. International Journal of Heat and Mass Transfer, 100:810–824, 2016.
- J. Lachaud and N. N. Mansour. Porous-material analysis toolbox based on Open-FOAM and applications. Journal of Thermophysics and Heat Transfer, 28(2):191–202, 2014.
- P. Schrooyen, K. Hillewaert, T. E. Magin, P. Chatelain. Fully Implicit Discontinuous Galerkin Solver to Study Surface and Volume Ablation Competition in Atmospheric Entry Flows. International Journal of Heat and Mass Transfer, 103:108–124, 2016.
- K. A. Trick, T. E. Saliba, and S. S. Sandhu. A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon, 35:393–401, 1997.
- H.-W. Wong, J. Peck, R. Bonomi, J. Assif, F. Panerai, G. Reinish, J. Lachaud and N. Mansour. Quantitative determination of species production from phenol-formaldehyde resin pyrolysis. *Polymer Degradation and Stability*, 112:122–131, 2015
- C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering 76 (2008).
- C. Soize, R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics 321 (2016) 242-258

Simple model for simulating pyrolysis experiments

For point-mass material, conduction is assumed to be instantaneous and T is uniform inside the material (lumped capacitance model, $\text{Bi} = \frac{L_c h}{k} << 1$). $T = T_i = \text{cte in } \Delta t = [0, t_f]$

$$\xi(t) = 1 - \left[(1-n)(C_i - A \exp\left(-\frac{E}{RT_i}\right)t) \right]^{1/(n-1)}, \text{ with } C_i = \frac{(1-\xi(0))^{1-n}}{1-n}$$

▶ $T_{out} = \tau t$, τ heating rate

$$\xi(T) = 1 - \left\{ (1-n) \left[-\frac{A}{\tau} T \exp\left(\frac{-E}{RT}\right) - \frac{A}{\tau} \frac{E}{R} \operatorname{Ei}\left(-\frac{E}{RT}\right) + C \right] \right\}^{\frac{1}{1-n}}$$
$$C = \frac{(1-\xi_0)^{1-n}}{1-n} + \frac{A}{\tau} T_0 \exp\left(\frac{-E}{RT_0}\right) + \operatorname{Ei}\left(\frac{-E}{RT_0}\right) \frac{EA}{\tau}, \quad \text{where } \operatorname{Ei}(x) \equiv \int_{-\infty}^{-x} \frac{\exp(v)}{v} dv$$

For more complex temperature evolution, integration should be performed numerically. When Bi > 1 ($L_c, h \nearrow$, or $k \searrow$) more complex model should be used (Argo).

Numerical set-up: 3 reactants model with 5 species

Observable (data) d_{ik}^{obs} with i = {H₂, CO, CO₂, CH₄, H₂O}: mass yields at each temperature iteration k. N_p = 3.

~ ~

Simple point-mass model (0D), $k = 1, \ldots, n_T$

$$\mathbf{p} = \{ \{A_3, E_3, n_3, F_{H_2O,3}, \} \\ \{A_2, E_2, n_2, F_{CO,2}, F_{CH_4,2}, F_{H_2O,2} \}, \\ \{A_1, E_1, n_1, F_{CO,1}, F_{CO_2,1}, F_{H_2,1} \} \}$$

 $\begin{array}{l} R_1 \rightarrow \mathsf{H}_2\mathsf{O} \\ R_2 \rightarrow \mathsf{CO} + \mathsf{CH}_4 + \mathsf{H}_2\mathsf{O} \\ R_3 \rightarrow \mathsf{CO} + \mathsf{CO}_2 + \mathsf{H}_2 \end{array}$

Posterior predictive checks: 3 reactants model with 5 species

Posterior predictive checks: 3 equations, 5 species

How to select an appropriate model?

- Principle of Parsimony (Occam's razor): "Shave away all that is unnecessary" Accuracy >< complexity</p>
- Kullback-Leibler information

$$I(f,g) = \int f(x) \log\left(\frac{f(x)}{g(x|\theta)}\right) dx$$

Information criteria

$$\mathsf{AIC} = -2\log(\mathcal{L}(\mathbf{y}|\hat{\theta})) + 2K$$

 $\mathsf{BIC} = -2\log(\mathcal{L}(\mathbf{y}|\hat{\theta})) + K\log n$

Illustration with the two-equation benchmark

► Approximate model: one-equation model

Illustration with the two-equation benchmark

► Approximate model: two-equation model

Illustration with the two-equation benchmark

► Approximate model: three-equation model

► Computation of information criteria:

Model	log-like	$N_{ m params}$	$N_{\rm samples}$	AIC	AIC _c	BIC
1 reaction	-851.59	4	101	1711.172	1711.588	1711.188
2 reactions	-46.08	8	101	108.1501	109.7153	108.1847
3 reactions	-46.51	12	101	117.0258	120.5712	117.1078
3 reactions (2)	-46.27	12	101	116.54	120.0855	116.592