Bayesian parameter inference for PICA devolatilization pyrolysis at high heating rates

Joffrey Coheur

Promotors: M. Arnst1, P. Chatelain2, T. Magin4
Collaborators: P. Schrooyen3, K. Hillewaert3, A. Turchi4,
F. Panerai5, J. Meurisse5, N. N. Mansour.5

1Aerospace and Mechanical Engineering, Université de Liège
2Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain
3Cenaero, Gosselies
4Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics
5NASA Ames Research Center

3rd International Conference on Uncertainty Quantification
in Computational Sciences and Engineering
June 24, 2019
Motivation: atmospheric entry

Thermal protection systems (TPS)

Dragon capsule (Space X)

Space debris

ATV-1 Jules Verne (ESA)
Ablative materials for thermal protection systems

- PICA: Phenolic-Impregnated Carbon Ablator

Mars Science Laboratory thermal protection system (NASA)

Porous thermal protection material

Fibers + resin

[Helber, 2016]

Lawson et al.

Bottom view (after burn)
Modeling the pyrolysis of ablative thermal protection materials

CFD codes require accurate models for ablation [Lachaud, 2014; Schrooyen, 2016], e.g. conservation of mass species

\[\frac{∂\rho_i}{∂t} + \nabla \cdot (\rho_i u_g) = \nabla \cdot (J_i) + ω_{pyro} \]

Objectives: deduce \(ω_{pyro} \) from dedicated pyrolysis experiments

Methodology: Bayesian inference for a robust characterization with uncertainties
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
- Experiments
- Modeling

Challenges
- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
 • Experiments
 • Modeling

Challenges
 • Non-linear posterior and highly-correlated parameters
 • Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Pyrolysis experiments [Wong et al., 2015; Bessire and Minton, 2017]

Phenolic sample (50 mg)

Pyrolysis gases

Heated wall

Temperature, T

Mass yields, mg

Sample mass, mg

Temperature, K

H₂, CO, CO₂, CH₄, H₂O
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
 • Experiments
 • Modeling

Challenges
 • Non-linear posterior and highly-correlated parameters
 • Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Phenomenological laws for pyrolysis mass loss and gas species production

Pyrolysis decomposition of ablative materials follows successive reaction rates [Goldstein, 1969; Trick, 1997]

\[\langle \dot{\omega}_i^{\text{pyro}} \rangle = \sum_{j}^{N_p} F_{ij} \frac{\partial \xi_j}{\partial T} \tau m_0 \]

\[\frac{\partial \xi_j}{\partial T} = (1 - \xi_j)^{n_j} \frac{A_j}{\tau} \exp \left(-\frac{E_j}{R T} \right) \]

\[\xi_j: \text{ advancement of reaction of the fictitious resin component } j \]
Phenomenological laws for pyrolysis mass loss and gas species production

- Pyrolysis decomposition of ablative materials follows successive reaction rates [Goldstein, 1969; Trick, 1997]

\[m = m_0 - \sum_{j} F_j \xi_j m_0 \]

\[\frac{\partial \xi_j}{\partial T} = (1 - \xi_j)^{n_j} \frac{A_j}{\tau} \exp \left(- \frac{E_j}{RT} \right) \]

- \(\xi_j \): advancement of reaction of the fictitious resin component \(j \)
Bayesian inference for parameter calibration

Objective: Infer on a finite set of parameters $\mathbf{p} \in \mathbb{R}^q$ from

▶ A set of measurements $\mathbf{d}^{\text{obs}} = \{d_i \in \mathbb{R}, i = 1, \ldots, n_{\text{obs}}\}$
▶ A model that predicts the measurements

using Bayesian rule for improving our knowledge on \mathbf{p}

\[
\pi(\mathbf{p}|\mathbf{d}^{\text{obs}}) = \frac{\pi(\mathbf{d}^{\text{obs}}|\mathbf{p})\pi_0(\mathbf{p})}{\int_{\mathbb{R}^p} \pi(\mathbf{d}^{\text{obs}}|\mathbf{p})\pi_0(\mathbf{p})d\mathbf{p}} \quad \text{(Bayes’ theorem)}
\]

▶ Choice for the prior $\pi_0(\mathbf{p})$: uniform pdf (bounded support)
▶ Choice for the likelihood $\pi(\mathbf{d}^{\text{obs}}|\mathbf{p})$: additive Gaussian noise

\[
\pi(\mathbf{d}^{\text{obs}}|\mathbf{p}) = \frac{1}{\prod_i (2\pi \sigma_i^2)^{n/2}} \exp \left(-\sum_{i=1}^{n_{\text{s}}} \sum_{k=1}^{n} \frac{(d_{ik}^{\text{obs}} - \eta_i(\mathbf{x}_k, \mathbf{p}))^2}{2\sigma_i^2} \right)
\]
Benchmark: two-equation model

Synthetic data using:

\[\sigma_I = 0.149 \text{ s}^{-1} \]
\[\sigma_{II} = 0.5382 \text{ s}^{-1} \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>E</th>
<th>m</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction I</td>
<td>541218</td>
<td>74046.7</td>
<td>9.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Reaction II</td>
<td>5360000</td>
<td>103680</td>
<td>5.07</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Random-Walk Metropolis-Hastings: bivariate posterior PDFs
Challenges for the inference of pyrolysis kinetic parameters

- Non-linear posterior and highly-correlated parameters: random-walk Metropolis-Hastings may fail or be very slow, tuning of the proposal covariance hard for high dimensional problems

 * Reparametrization of parameters space adapted to the physical model

 * Gradient-based algorithms (Itô-SDE)

- Fitting unimportant data may biased the results

 * Hyperparameter choice

 * Data feature selection
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
- Experiments
- Modeling

Challenges
- Non-linear posterior and highly-correlated parameters
- Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Reparametrization of parameters space adapted to the physical model

- More complex models become prohibitive in terms of number of iterations required
- Need to improve the mixing of the Markov chains

Non-linear transformation of the parameter space

\[
\begin{align*}
\tilde{A}_i &= \ln A_i - E_i/(R \bar{T}_i), \\
\tilde{E}_i &= E_i/E_i, \\
\tilde{m}_i &= m_i/m_i, \\
\tilde{F}_i &= F_{ij}/\bar{F}_{ij}.
\end{align*}
\]

Reaction rate:

\[
k_i = \exp \left(\tilde{A}_i + \tilde{E}_i \tilde{T}_i(t)\right)
\]

Local reciprocal temperature:

\[
\tilde{T}_i = \bar{E}_i/R(1/T + 1/\bar{T}_i)
\]
Benchmark: two-equation model

Synthetic data using:

\[\sigma_I = 0.149 \text{ s}^{-1} \]
\[\sigma_{II} = 0.5382 \text{ s}^{-1} \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>E</th>
<th>m</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction I</td>
<td>541218</td>
<td>74046.7</td>
<td>9.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Reaction II</td>
<td>5360000</td>
<td>103680</td>
<td>5.07</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Bivariate posterior PDFs (initial parameter space)
Bivariate posterior PDFs (rescaled parameter space)
We use the Itô Stochastic Differential Equation (ISDE) introduced by Soize (2008)

\[
d\Xi = [\hat{C}]H dt \\
dH = -\nabla_\Xi \phi(\Xi) dt - \frac{1}{2} \zeta_0 H dt + \sqrt{\zeta_0} [L_{\hat{C}}]^{-T} dW
\]

with \(\phi = -\log(\pi(d^{obs}|p)) \), \([\hat{C}]\): approximation of the covariance matrix, \(\zeta_0 \): free parameter (Arnst, Soize (2019)). Discretization in time using a Stormer-Verlet method (Soize, Ghanem (2016))

\[
\Xi(\ell+\frac{1}{2}) = \Xi(\ell) + \frac{\Delta t}{2} [\hat{C}]H^{(\ell)} \\
H^{(\ell+1)} = \frac{1-b}{1+b} H^{(\ell)} - \frac{\Delta t}{1+b} \nabla_\Xi \phi(\Xi(\ell+\frac{1}{2})) + \frac{\sqrt{\zeta_0}}{1+b} [L_{\hat{C}}]^{-T} \Delta W^{(\ell+1)} \\
\Xi(\ell+1) = \Xi(\ell+\frac{1}{2}) + \frac{\Delta t}{2} [\hat{C}]H^{(\ell+1)}
\]
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
 • Experiments
 • Modeling

Challenges
 • Non-linear posterior and highly-correlated parameters
 • Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Zero variance data in the data-set

- Hyperparameter choice

\[\pi(d_{\text{obs}} | p) = \frac{1}{\prod_i (2\pi \sigma_i^2)^{n/2}} \exp \left(-\sum_{i=1}^{n_s} \sum_{k=1}^{n} \frac{(d_{ik}^{\text{obs}} - \eta_i(x_k, p))^2}{2\sigma_i^2} \right) \]

- Taking all the data might lead to inaccurate results, although zero variance data (before activation temperature or after reaction) are obtained experimentally

- Feedback on the experiments: fit only important features (activation temperature, maximum production peaks)
Illustration using experimental data: two-reaction model with one species

- Observable (data) $d_{H_2k}^{obs}$: mass yields of species H_2 at each temperature. $N_p = 2$.

\[d_{H_2k} = \sum_j^{N_p} F_{H_2j} m_0 \left(\xi_j^{(k)} - \xi_j^{(k-1)} \right), \]

\[\frac{\partial \xi_j^{(k)}}{\partial t} = \left(1 - \xi_j^{(k)} \right)^n_j A_j \exp \left(-\frac{E_j}{RT_k} \right), \]

\[\xi_j^{(0)} = 0. \]

- Simple point-mass model (0D), $k = 1, \ldots, n_T$

- $p = \{ A_1, E_1, n_1, F_{H_2,1}, A_2, E_2, n_2, F_{H_2,2} \}$

- Initial guess obtained from genetic algorithm
Comparison of the different approaches

- Comparison of posterior samples obtained from the Markov chains (length = 1e4) using Itô-SDE (blue dots) and random-walk Metropolis-Hastings in the reparametrized parameter space (orange dots) and in the initial parameter space (green dots)

![Graph showing comparison of different approaches]
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
• Experiments
• Modeling

Challenges
• Non-linear posterior and highly-correlated parameters
• Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Proposed five-equation model (38 unknown parameters):

\[R_1(s) \xrightarrow{k_1} F_{1,1}H_2O + F_{1,2}CO_2 + F_{1,3}(1\text{-propanol}) \]

\[R_2(s) \xrightarrow{k_2} F_{2,1}H_2O + F_{2,2}CO + F_{2,3}CO_2 + F_{2,4}\text{Phenol} + F_{2,5}\text{Cresol} + F_{2,6}(\text{Dimethyl Phenol}) + F_{2,7}(\text{Trimethyl Phenol}) \]

\[R_3(s) \xrightarrow{k_3} F_{3,1}\text{CH}_4 + F_{3,2}H_2O + F_{3,3}CO + F_{3,4}H_2 + F_{3,5}CO_2 + F_{3,6}\text{Xylene} + F_{3,7}\text{Benzene} + F_{3,8}\text{Toluene} \]

\[R_4(s) \xrightarrow{k_4} F_{4,1}H_2 \]

\[R_5(s) \xrightarrow{k_5} F_{5,1}H_2 + F_{5,2}\text{CH}_4 + F_{5,3}H_2O + F_{5,4}CO \]
Propagation results: production rate curves

Temperature, K

Production rate, s^{-1}

H_2O

H_2

CH_4

CO

$3 \cdot 10^{-6}$

$6 \cdot 10^{-6}$
Propagation results: production rate curves

Temperature, K

Production rate, s\(^{-1}\)

- Phenol
- Dimethyl phenol
- Trimethyl phenol

CO\(_2\)
Cresol

Production rate, s\(^{-1}\)

0
0.1
0.2
0.3
0.4

4 \times 10^{-7}

Propagation results: production rate curves

Temperature, K

Production rate, s$^{-1}$

- 1-propanol
- Benzene

- Xylene
- Toluene
Table of Contents

Introduction

Characterization of physico-chemical parameters relevant to pyrolysis reactions
 • Experiments
 • Modeling

Challenges
 • Non-linear posterior and highly-correlated parameters
 • Zero-variance data in the dataset

Application to complex pyrolysis model

Conclusions
Conclusions

- Application of a simple model to simulate pyrolysis experiments.
- Inference on the parameters of pyrolysis reactions using Bayesian approach.
- Efficient method to infer on kinetic parameters and characterize their uncertainties. However, lack of identifiability for A and E.
- Rescaling the parameter space to their posterior distribution based on model features reduce significantly the tuning of the proposal covariance
- Ito-SDE method enables no proposal tuning and samples efficiently the posterior distribution, but requires the computation of gradients
- Simulations of gas production rate and mass loss with error bars lead to good agreement with experimental curves.
Future work

- Apply Itô-SDE method to the full set of experimental data

- Efficient computation of model gradients, e.g. adjoint-based

- Use more general models, e.g. include competitive reaction schemes (F. Torres, J. Blondeau), include more data (different heating rates) → model inference

- Results interpretation and their used in CFD codes; uncertainty propagation for the validation of CFD codes
Acknowledgments

► This work is supported by the Fund for Research Training in Industry and Agriculture (FRIA) provided by the Belgian Fund for Scientific Research (F.R.S-FNRS)

► Scientific stay at NASA ARC was supported by the Wallonie-Bruxelles International grant WBI.World

► F. Torres (VKI), B. Helber (VKI), J. Lachaud (I2M Bordeaux), H.-W. Wong (UMassachusetts Lowell), George Bellas-C. (VKI), J.-B. Scoggins (VKI)
Bayesian parameter inference for PICA devolatilization pyrolysis at high heating rates

Joffrey Coheur

Promotors: M. Arnst1, P. Chatelain2, T. Magin4
Collaborators: P. Schrooyen3, K. Hillewaert3, A. Turchi4, F. Panerai5, J. Meurisse5, N. N. Mansour.5

1Aerospace and Mechanical Engineering, Université de Liège
2Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain
3Cenaero, Gosselies
4Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics
5NASA Ames Research Center

3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering
June 24, 2019
Additional Information
Table of Contents

Bibliography

Mathematical model
 • Model Selection
Bibliography

Simple model for simulating pyrolysis experiments

For point-mass material, conduction is assumed to be instantaneous and \(T \) is uniform inside the material (lumped capacitance model, \(Bi = \frac{Lc h}{k} << 1 \)).

\[T = T_i = \text{cte in } \Delta t = [0, t_f] \]

\[\xi(t) = 1 - \left[(1 - n)(C_i - A \exp \left(-\frac{E}{R T_i} t \right)) \right]^{1/(n-1)}, \quad \text{with } C_i = \frac{(1 - \xi(0))^{1-n}}{1-n} \]

\[T_{\text{out}} = \tau t, \quad \tau \text{ heating rate} \]

\[\xi(T) = 1 - \left\{ (1 - n) \left[-\frac{A}{\tau} T \exp \left(-\frac{E}{R T} \right) - \frac{A E}{\tau R} \text{Ei} \left(-\frac{E}{R T} \right) + C \right] \right\}^{\frac{1}{1-n}} \]

\[C = \frac{(1 - \xi_0)^{1-n}}{1-n} + \frac{A}{\tau} T_0 \exp \left(-\frac{E}{R T_0} \right) + \text{Ei} \left(-\frac{E}{R T_0} \right) \frac{EA}{\tau}, \quad \text{where } \text{Ei}(x) \equiv \int_{-\infty}^{-x} \exp(v) \frac{dv}{v} \]

For more complex temperature evolution, integration should be performed numerically. When \(Bi > 1 \) (\(L_c, h \nearrow \), or \(k \searrow \)) more complex model should be used (Argo).
Numerical set-up: 3 reactants model with 5 species

Observable (data) d_{ik}^{obs} with $i = \{\text{H}_2, \text{CO, CO}_2, \text{CH}_4, \text{H}_2\text{O}\}$: mass yields at each temperature iteration k. $N_p = 3$.

$$d_{ik} = \sum_j N_p F_{ij} m_0 \left(\xi_j^{(k)} - \xi_j^{(k-1)} \right),$$

$$\frac{\partial \xi_j^{(k)}}{\partial t} = \left(1 - \xi_j^{(k)}\right)^{n_j} A_j \exp \left(- \frac{E_j}{RT_k}\right),$$

$$\xi_j^{(0)} = 0.$$

Simple point-mass model (0D), $k = 1, \ldots, n_T$

$$p = \{ \{A_3, E_3, n_3, F_{\text{H}_2\text{O},3}\}, \{A_2, E_2, n_2, F_{\text{CO},2}, F_{\text{CH}_4,2}, F_{\text{H}_2\text{O},2}\}, \{A_1, E_1, n_1, F_{\text{CO},1}, F_{\text{CO}_2,1}, F_{\text{H}_2,1}\}\}$$

$R_1 \rightarrow \text{H}_2\text{O}$

$R_2 \rightarrow \text{CO} + \text{CH}_4 + \text{H}_2\text{O}$

$R_3 \rightarrow \text{CO} + \text{CO}_2 + \text{H}_2$
Posterior predictive checks: 3 reactants model with 5 species
Posterior predictive checks: 3 equations, 5 species
How to select an appropriate model?

- Principle of Parsimony (Occam’s razor): “Shave away all that is unnecessary”

 \[\text{Accuracy} \gg \text{complexity} \]

- Kullback-Leibler information

 \[I(f, g) = \int f(x) \log \left(\frac{f(x)}{g(x|\theta)} \right) \, dx \]

- Information criteria

 \[\text{AIC} = -2 \log(\mathcal{L}(y|\hat{\theta})) + 2K \]
 \[\text{BIC} = -2 \log(\mathcal{L}(y|\hat{\theta})) + K \log n \]
Illustration with the two-equation benchmark

- Approximate model: one-equation model
Illustration with the two-equation benchmark

- Approximate model: two-equation model
Illustration with the two-equation benchmark

- Approximate model: three-equation model

![Graph showing production rate vs. temperature for different models](image-url)
Illustration with the two-equation benchmark

Computation of information criteria:

<table>
<thead>
<tr>
<th>Model</th>
<th>log-like</th>
<th>N_{params}</th>
<th>N_{samples}</th>
<th>AIC</th>
<th>AIC$_c$</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 reaction</td>
<td>−851.59</td>
<td>4</td>
<td>101</td>
<td>1711.172</td>
<td>1711.588</td>
<td>1711.188</td>
</tr>
<tr>
<td>2 reactions</td>
<td>−46.08</td>
<td>8</td>
<td>101</td>
<td>108.1501</td>
<td>109.7153</td>
<td>108.1847</td>
</tr>
<tr>
<td>3 reactions</td>
<td>−46.51</td>
<td>12</td>
<td>101</td>
<td>117.0258</td>
<td>120.5712</td>
<td>117.1078</td>
</tr>
<tr>
<td>3 reactions (2)</td>
<td>−46.27</td>
<td>12</td>
<td>101</td>
<td>116.54</td>
<td>120.0855</td>
<td>116.592</td>
</tr>
</tbody>
</table>