Accepted Manuscript

Effects of stinging nettle (*Urtica dioica*) powder on laying performance, egg quality, and serum biochemical parameters of Japanese quails

Nassim Moula, Ahmed Sadoudi, Leghel Touazi, Pascal Leroy, Fikremariam Geda

PII: \$2405-6545(19)30012-5

DOI: https://doi.org/10.1016/j.aninu.2019.05.002

Reference: ANINU 284

To appear in: Animal Nutrition Journal

Received Date: 15 January 2019

Revised Date: 25 April 2019 Accepted Date: 2 May 2019

Please cite this article as: Moula N, Sadoudi A, Touazi L, Leroy P, Geda F, Effects of stinging nettle (*Urtica dioica*) powder on laying performance, egg quality, and serum biochemical parameters of Japanese quails, *Animal Nutrition Journal*, https://doi.org/10.1016/j.aninu.2019.05.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1 Effects of stinging nettle (Urtica dioica) powder on laying performance, egg quality, and serum biochemical parameters of Japanese quails 2 3 Nassim Moula^{a, *}, Ahmed Sadoudi^a, Leghel Touazi^b, Pascal Leroy^a, Fikremariam Geda^a 4 5 ^a Department of Animal Production, Fundamental and Applied Research for Animal and 6 Health, Faculty of Veterinary Medicine, Liege University, Quartier Vallée 2, Liege B-4000, 7 Belgium 8 ^b Ecole Nationale Supérieure Vétérinaire, Rue Issad Abbes, Oued Smar, Algiers 16000, 9 10 Algeria 11 *Corresponding author. 12 Email address: Nassim.Moula@uliege.be (N. Moula) 13

15 **Abstract**

14

The aim of this experiment was to evaluate the effects of dietary supplementation of stinging 16 nettle powder (SNP) on laying performance, egg quality, and some selected serum 17 biochemical parameters of quails. One hundred and forty-four 10-wk-old Japanese quails 18 (initial body weight = 199 ± 18 g) were divided into 3 dietary treatment groups (basic diet 19 without SNP [SNP0], SNP0 with 3% SNP [SNP3], SNP0 with 6% SNP [SNP6]) with 4 20 21 replicates of 12 quails for a rearing period of 12 wk. At 22 wk of age, the final body weights of the SNP3 and SNP6 groups were significantly (P = 0.001) reduced compared to that of the 22 SNP0 group. Daily feed intake was not statistically different among the groups. The mean 23 number of eggs laid ranged from 65 to 69 with laying rates from 76.8% to 82.1%. The 24 percentage of cracked eggs was not significantly different among the groups and ranged from 25 1.6% to 1.9%. The egg weight was similar and the feed conversion ratio was closer among 26 the groups. The egg yolk cholesterol, serum cholesterol and serum triglyceride levels in the 27 SNP6 group were significantly reduced (P < 0.001) compared to those of the SNP0 group. 28 Serum Ca, P and Mg were not significantly influenced by the supplementation. In conclusion, 29 the results demonstrated that the supplementation of SNP to the quail diet at the level of 6% 30 31 reduced quail egg yolk cholesterol, serum total cholesterol and serum triglyceride levels and did not negatively influence quail performance. 32

Keywords: Stinging nettle; Japanese quail; Performance; Egg quality; Serum parameters

1. Introduction

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Antibiotic growth promoters were added in poultry diets to promote growth rate, feed conversion and reduce mortality through improved intestinal microbiota (Miles et al., 2006; Pfaller, 2006). The continuous use of antibiotics in diets could possibly lead to crossresistance and development of antibiotic resistant bacteria in humans (Goodarzi et al., 2014; Nanekarani et al., 2012). This has brought the ban of antibiotics in poultry diets and exposed poultry producers to decrease the use of antibiotics and find potential alternatives in the poultry diet (Kadykalo et al., 2018). In food industry, phytogenic feed additives, most of which are medicinal plants in origin have been recognized by consumers as safe, nonantibiotic substances with potential alternatives to the antibiotics in poultry diets (Brenes and Roura, 2010; Castanon, 2007; Landy et al., 2011a, b; Toghyani et al., 2015; Varel, 2002). The phytogenic feed additives possess active components, the secondary metabolites of the medicinal plants, known as phytobiotics or botanicals in such a way that they have positive effects on animal performance and health (Ghazaghi et al., 2014; Windisch et al., 2008). Traditional medicinal herbs were the most acceptable as possible alternatives to antibiotic growth promoters because of their natural property, growth-promoting, and anti-oxidative effects (Liu et al., 2006; Park and Yoo, 1999). Thus, research efforts continued on a number of medicinal herbs to evaluate their potential alternatives to antibiotic growth promoters in poultry industry (e.g., Mehri et al., 2015; Kheiri et al., 2018; Yan et al., 2011; Mousavi et al., 2017). One of such medicinal herbs is a stinging nettle (*Urtica diocia*; Sharma et al., 2018), which to the knowledge of the authors, was evaluated in limited studies as phytogenic feed additive in poultry diets.

Stinging nettle is a wild, herbaceous, perennial flowering plant whose leaves and stems are covered by stinging hairs (trichomes) containing a fluid of formic acid and histamine, which causes blisters when entering the skin (Adhikari et al., 2016; Bisht et al., 2012; Bourgeois et al, 2016). Nettle is used in several fields such as agriculture, cosmetics, textiles, medicine and food (Adhikari et al., 2016; Bacci et al., 2009; Bourgeois et al., 2016; Łuczaj et al., 2012; Said et al., 2015; Uprety et al., 2012). Nettle was reported as a food with high nutritional and functional values (Rutto et al., 2013); nettle leaves are rich in proteins, fats, carbohydrates, vitamins, minerals and trace elements (Said et al., 2015). On dry matter basis, nettle contains 30% protein with a much better amino acid profile than other leafy plants. According to Rutto et al. (2013), 8 essential amino acids are necessary for the human body, including 6 largely available in stinging nettle (isoleucine, leucine, lysine, phenylalanine, threonine and valine), methionine and tryptophan. Nettle is also a good source of

polyunsaturated fatty acids (60%) whose 50% corresponds to linoleic acid (C18:2), an omega-6 and it can strengthen the immune system, body resistance against bacterial or viral infections and antioxidant activity (Rutto et al., 2013). This is because nettle possesses antioxidant, antimicrobial, antifungal and antiviral properties (Rutto et al., 2013; Upton, 2013).

According to Hashemi et al. (2018), stinging nettle had a strong growth promoting ability and potential to impact the hemoglobin and hematocrit in broiler chickens. This indicates the functional and nutritional roles of the stinging nettle could be an alternative potential to evaluate its effects as supplementation in the poultry diet. The aim of this experiment was to evaluate the effects of feeding stinging nettle powder (SNP) supplemented diet on laying performance, egg quality, and some selected serum biochemical parameters of quails.

2. Materials and methods

2.1 Ethical considerations

The ethical procedures, experimentation and housing were carried out according to guidelines of the Ethics Committee of Liege University (Belgium) for the humane care and use of animals in research. There is no need for explicit approval of the Ethical Committee for such an experiment according to the Decree of 29 May 2013. The quails were fed 3 different (nontoxic) diets, subjected to no invasive procedures and there was no induction of pain or suffering during the trial or sampling.

2.2 Animals and experimental set up

This experiment was carried out for a period of 12 wk in a private farm located in Chemini, Bejaia, Algeria. One hundred and forty-four 10-wk-old female Japanese quails (*Coturnix coturnix japonica*) with an average body weight of $(199 \pm 18 \text{ g})$ were divided into 3 treatments (4 replicates per treatment, 12 birds per replicate) in a complete randomized design. The quails were housed in floor pens $(60 \text{ cm} \times 60 \text{ cm} \times 50 \text{ cm})$, enriched with wood shavings. The building was ventilated and temperatures ranged from 16 to 28 °C and the mean was between 18 and 22 °C. The quails were housed under identical conditions and provided lighting 16 h per day using fluorescent lights controlled by timers until the end of the experiment. Quails are important species for the production of meat and eggs due to their rapid growth, early sexual maturity (start laying eggs at 6 to 8 wk), production rate (180 to

300 eggs per year) and their short incubation period (Moula et al., 2014; Reddish et al., 2003).

2.3 Experimental diets and treatments

The stinging nettle leaves were collected from field, near the private farm located in Chemini, Bejaia (Algeria). The collected samples were air-dried under shade, crushed to coarse using mortar and pestle and transformed to a powder using a small feed mill grinder. The basic control diet was analyzed for nutrient composition at Laboratory of Forage Analysis (Department of Agricultural and Environmental Analyses, Province of Liege, Belgium). The parameters measured were dry matter (DM), crude protein (CP), crude fiber (CF), ash, Ca and P (Table 1). The diet was analyzed according to AOAC Official Methods (Horwitz, 2006): DM, by drying the samples at 105 °C for 16 h (AOAC 930.15); ash, by combustion in a muffle furnace at 550 °C for 6 h (AOAC 990.03); CP, as total nitrogen (N) using the Kjeldahl method (N × 6.25) (AOAC 990.03); and CF was determined using the AOAC Methods (Method 962.09 and 985.29, 1995). There were 3 dietary treatments: 1) basic diet without SNP (SNP0), 2) basic diet with 3% SNP (SNP3), and 3) basic diet with 6% SNP (SNP6) (Table 1). The formulation of the basic diet was adopted according to the nutrient requirements of poultry (NRC, 1994). The diets contained no growth promoters or antibiotics. Diet and water were provided *ad libitum* throughout the 12 wk of the experiment.

2.4 Laying performance and egg quality

The quails were weighed at the beginning the end of the experiment. Feed intake was recorded per pen on a weekly basis, corrected for mortality that was recorded on a daily basis. The quails were daily monitored throughout the experiment: eggs were collected, counted, weighed and checked for integrity. A total of 288 eggs (8 eggs per test period and per pen; 32 eggs per experimental group) were harvested from 14 to 22 wk of age with an interval of 4 wk in between and evaluated for physical quality parameters as previously described (Moula et al., 2010, 2014; Zita et al., 2013). For the determination of egg yolk cholesterol level, 4 eggs were collected per pen, hard-boiled for 15 min, cooled and stored at 2 to 8 °C. For the egg yolk cholesterol analysis, the yolks were separated and yolk lipids were extracted from 0.1 g yolk with 4 mL of isopropanol, vortexed, centrifuged at 1,300 \times g for 10 min and filtered. The filtered samples were spectrophotometrically (Schimadzu model

134 1208 spectrophotometer) analyzed using a commercial kit (Biosystems, Spain) and egg yolk 135 cholesterol was determined. Finally, the cholesterol content was calculated according to 136 Boehringer (1989).

2.5 Serum biochemical parameters

At the end of the 12-wk period of the experiment, the quails were starved overnight, and blood samples were taken from 48 quails (16 per treatment or 4 per replicate). Serum was separated by centrifugation at $1,300 \times g$ for 15 min, incubated for 1 h at room temperature, stored at -20 °C and analyzed in less than a week. Serum levels of total cholesterol, triglycerides (Biosystems, Spain), Ca, P and Mg (Chema Diagnostica, Italy) concentrations were measured by a spectrophotometer (Schimadzu, model 1208) using commercial colorimetric diagnostic kits.

2.6 Statistical analysis

Statistical analysis was performed using SAS for Windows (version 9.4; SAS Institute). The pen was the experimental unit for growth and laying performances. For egg quality parameters and serum biochemical parameters, the corresponding average values were used as experimental units. All data were checked for normality and outliers of the residuals. Normality of sample distribution was assessed and confirmed with the Kolmogorov-Smirnov test. Effects of age (14, 18 and 22 wk), diet (SNP0, SNP3 and SNP6) and age-diet interactions on egg quality parameters were statistically analyzed as a 2×2 factorial design using the General Linear Model (GLM) procedure of SAS, as indicated below:

$$Y_{ijk} = \mu + A_i + D_j + (AD)_{ij} + e_{ijk},$$

where μ is the overall mean; A_i is the *i*th main effect of age (i=14, 18, 22); D_j is the *j*th main effect of diet (j=SNP0, SNP3, SNP6); (AD)_{ij} is the *ij*th interaction effect between age and diet; and e_{ijk} is the random error. Effects of diets on growth performance, egg production and serum biochemical parameters were subjected to GLM Univariate ANOVA. When there was a statistically significant effect (an interaction for egg quality parameters) between treatments, a Tukey post-hoc test was used to determine the significantly differed treatments. The chi-square test was used to compare the percentage of broken eggs between different groups. Results are reported as means and standard error of the means (SEM). Statistical significance was accepted at P < 0.05.

3. Results

3.1 Laying performance

The mean initial body weights of the 10-wk-old quails were similar among the 3 dietary treatment groups at the beginning of the experiment (Table 2). However, the mean final body weights of the quails fed the SNP3 and SNP6 were significantly (P = 0.001) reduced, compared to that of the SNP0 group at the end of the rearing period of 12 wk. Daily feed intake was not statistically different among the 3 groups, but in total each quail consumed an average of 3,600, 3,598 and 3,573 g for SNP0, SNP3 and SNP6 groups, respectively. The mortality was 6.25% for the SNP0 group, 8.33% for the SNP3 group and 4.17% for the SNP6 group, but it was not significantly affected by the SNP supplementation. Laying performances were not significantly different among the 3 groups. The mean number of eggs laid during the experimental period ranged from 65 to 69 eggs with laying rates from 76.8% to 82.1%. The percentage of cracked eggs was not significantly different and ranged from 1.6% to 1.9% depending on the group. The mean egg weight was similar among the 3 groups and the overall mean was 12.4 g. The feed conversion ratio was 3.43, 3.47 and 3.48 for the SNP0, SNP3 and SNP6 groups, respectively.

3.2 Egg quality

The effects of SNP on egg quality parameters of Japanese quail (14, 18 and 22 wk of age) are reported in Table 3. Remarkably, egg yolk cholesterol of quails was significantly affected by age (P < 0.001), diet (P < 0.001) and the age-diet interaction (P < 0.001). The eggs in the SNP6 group had less cholesterol levels than those of the SNP0 and SNP3 groups by 5.40% and 2.63%, respectively.

The effects of SNP on some selected serum biochemical parameters of 22-wk-old Japanese quails are shown in Table 4. The SNP supplementation significantly (P < 0.001) reduced serum concentrations of total cholesterol and triglycerides. The supplementation of SNP at 6% in diet decreased (P < 0.001) both total cholesterol and triglycerides, but SNP at 3% reduced (P < 0.001) total triglyceride without affecting cholesterol. Serum Ca, P and Mg were not significantly influenced by the diet.

4. Discussion

In the fastest and intensively growing global poultry industry, layers experience reduced performance and egg quality, possibly due to increasing nutrient metabolism during egg formation or weakened immune systems, shifting the function of dietary nutrients to health-maintenance. For instance, egg laying birds have chronic hyperglycemic and they require high amounts of lipid synthesis during egg formation (Pál et al., 2002), suggesting evaluation of potential feed ingredients and development of target functional nutrients.

In this experiment of the 12-wk period, a quail was laying a mean of 67 eggs, which corresponds to a mean laying rate of 79.7%. This rate was higher than previously reported (Garwood and Diehl, 1987; Moula et al., 2014; Schwartz and Allen, 1981), in which the annual laying rate of a quail ranged from 49% to 74.4%. In this study, only the egg weight but no other parameters of the egg physical quality were significantly affected by age of the quails. In consistent with this, Moula et al. (2014) and Zita et al. (2013) studied in quails and reported a significant effect of age on the weight of the whole egg. The present and previous studies confirm the linear relationship between the weight of whole egg and age of quails. Although the stinging nettle had a growth promoting ability (e.g., Hashemi et al., 2018), the reduction in the final body weights of quails observed in the present study could attribute to other factors. Chowdhury et al. (2002) and Reddy et al. (1991) reported that egg production, egg weight, feed intake and feed conversion ratio were not affected by diets. Mortality was not different between the 3 groups and the rates obtained were lower than reported in other studies (Moula et al., 2014; Yalçin et al., 2007) ranging from 10% to 16%. The reasons for high mortality remain unclear and further analysis including post mortem examinations will be necessary.

In the literatures, egg quality parameters can be classified into 2 main groups: external (egg weight and shell thickness) and internal (albumin index, yolk index and Haugh unit) traits (Song et al., 2000; Toussant and Latshaw, 1999; Wolanski et al., 2007). The external egg qualities are important for acceptability by consumers while the interior qualities are basic parameters for the egg production industry. The present study showed that the effect of SNP was limited on the egg quality parameters, but remarkably and significantly reduced the concentration of egg yolk cholesterol. The present finding is in agreement with nettle supplementation of layer diets that showed no considerable effect on general egg quality (Loetscher et al., 2013).

Eggs are a major source of dietary cholesterol, which may cause coronary heart disease (Bragagnolo and Rodriguez-Amaya, 2003), retinal abnormalities, and lipid peroxidation that improves lipid profile (Fernández-Robredo et al., 2008). To reduce the cholesterol and lipid profile and to enhance the nutritional value of egg, several studies have been conducted in the laying hens (Carrillo-Domìnguez et al., 2005; Chen et al., 2005; Milinsk et al., 2003; Raes et al., 2002; Zotte et al., 2006). With similar focus, in the present study, the reduced levels of the total cholesterol and triglycerides showed the potential effects of the stinging nettle to regulate these blood metabolites in quails. The present study is in consistent with the findings of Mansoub (2011) in which 2% nettle powder supplementation to the diet of laying hens reduced the total cholesterol and triglycerides, but in contrast to the limited effects reported by Keshavarz et al. (2014).

The present findings showed that the SNP in the quail diet improved egg quality and serum biochemical parameters without negative effect on laying performance. The SNP contains phytosterol (Di Virgilio et al., 2015), which has low density lipid cholesterol lowering effects. Therefore, the SNP could be a potential ingredient to the quail diet with its positive effect of reducing the concentration of egg yolk cholesterol, serum total cholesterol, and serum triglycerides.

5. Conclusions

The results demonstrated that the supplementation of SNP to the quail diet at the level of 6% reduced concentrations of quail egg yolk cholesterol, serum total cholesterol, and serum triglycerides and did not negatively influence quail performance. The results also suggest that the SNP could be added to the diets of quails to improve quail egg quality and serum biochemical profile.

Conflict of interest

255 The authors declare that they have no conflict of interest.

Acknowledgement

- The authors thank Moula Hachemi, Moula Samir, and Moula Mokrane for their help during
- 258 the conduct of this study in the private farm.

References

- 260 Adhikari BM, Bajracharya A, Shrestha AK. Comparison of nutritional properties of stinging
- nettle (*Urtica dioica*) flour with wheat and barley flours. *Food Sci Nutr 2016*; 4:119–124.
- Bacci L, Baronti S, Predieri S, di Virgilio N. Fiber yield and quality of fiber nettle (Urtica
- dioica L.) cultivated in Italy. Ind Crop Prod 2009; 29:480–484.
- Bisht S, Bhandari S, Bisht NS. *Urtica dioica* (L): an undervalued, economically important
- 265 plant. *Agric Sci Res J* 2012; 2:250–252.
- Boehringer. Methods of biochemical analysis and feed analysis. Boehringer Mannheim
- GmbH Biochemical, Germany 1989; 26–28.
- Bourgeois C, Leclerc EA, Corbin C, Doussot J, Serrano V, Vanier J, Seigneuret J, Auguin D,
- Pichon C, Laine E, Hano C. Nettle (Urtica dioica L.) as a source of antioxidant and anti-
- aging phytochemicals for cosmetic applications. CR Chimie 2016; 19:1090–1100.
- 271 Bragagnolo N, Rodriguez-Amaya DB. Comparison of the cholesterol content of Brazilian
- chicken and quail eggs. *J Food Compost Anal 2003*; 16:147–153.
- Brenes A, Roura E. Essential oils in poultry nutrition. Anim Feed Sci Technol 2010; 158:1-
- 274 14.
- 275 Carrillo-Dominguez S, Carranco-Jauregui ME, Castillo Domínguez RM, Castro-González
- MI, Avila-González E, Pérez-Gil F. Cholesterol and n-3 and n-6 fatty acid content in eggs
- from laying hens fed with red crab meal (*Pleuroncodes planipes*). *Poult Sci 2005*; 84:167–
- 278 172.
- 279 Castanon J. History of the use of antibiotic as growth promoters in European poultry feeds.
- 280 *Poult Sci* 2007; 86:2466–2471.
- 281 Chen YC, Nakthong C, Chen TC. Effects of chicory fructans on egg cholesterol in
- commercial laying hen. Int J Poult Sci 2005; 4:109–114.
- 283 Chowdhury SR, Chowdhury SD, Smith TK. Effects of dietary garlic on cholesterol
- metabolism in laying hens. *Poult Sci* 2002; 81:1856–1862.
- Di Virgilio N, Papazoglou EG, Jankauskiene Z, Di Lonardo S, Praczyk M, Wielgusz K. The
- potential of stinging nettle (*Urtica dioica* L.) as a crop with multiple uses. *Ind Crop Prod*
- 287 2015; 68:42–49.
- Fernández-Robredo P, Rodríguez JA, Sádaba LM, Recalde S, García-Layana A. Egg yolk
- improves lipid profile, lipid peroxidation and retinal abnormalities in a murine model of
- genetic hypercholesterolemia. *J Nutr Biochem* 2008; 19:40–48.
- 291 Garwood AA, Diehl RCJ. Body volume and density of live Coturnix quail and associated
- 292 genetic relationship. *Poult Sci 1987*; 66:1264–1271.
- 293 Ghazaghi M, Mehri M, Bagherzadeh-Kasmani F. Effects of dietary Mentha spicata on
- 294 performance, blood metabolites, meat quality and microbial ecosystem of small intestine
- in growing Japanese quail. *Anim Feed Sci Technol* 2014; 194:89–98.

- 296 Goodarzi M, Nanekarani SH, Landy N. Effect of dietary supplementation with onion (Allium
- 297 cepa L.) on performance, carcass traits and intestinal microflora composition in broiler
- 298 chickens. *Asian Pac J Trop Dis* 2014; 4:297–301.
- 299 Hashemi SM, Soleimanifar A, Sharifi SD, Vakili N. Growth promoting effects of dried nettle
- extracts and its impact on hematology and antibody titter in broiler chickens. *Int J Anim*
- 301 *Sci* 2018; 2:1016.
- Horwitz W. Official Methods of Analysis of AOAC International, 2006; 18. AOAC
- 303 (Association of Official Analytical Chemists) International, Gaithersburg, Maryland,
- 304 USA.
- 305 Kadykalo S, Roberts T, Thompson M, Wilson J, Lang M, Espeisse O. The value of
- anticoccidials for sustainable global poultry production. Int J Antimicrob Agents 2018;
- 307 51:304–310.
- 308 Keshavarz M, Rezaeipour V, Asadzadeh S. Growth performance, blood metabolites,
- antioxidant stability and carcass characteristics of broiler chickens fed diets containing
- nettle (Urtica dioica. L) powder or essential oil. Int J Adv Biol Biom Res 2014; 2:2553–
- 311 2561.
- 312 Kheiri F, Faghani M, Landy N. Evaluation of thyme and ajwain as antibiotic growth
- promoter substitutions on growth performance, carcass characteristics and serum
- biochemistry in Japanese quails (*Coturnix japonica*). *Anim Nutr 2018*; 4:79–83.
- Landy N, Ghalamkari Gh, Toghyani M. Performance, carcass characteristics, and immunity
- in broiler chickens fed dietary neem (Azadirachta indica) as alternative for an antibiotic
- 317 growth promoter. *Livest Sci 2011a*; 142:305–309.
- Landy N, Ghalamkari Gh, Toghyani M, Moattar F. The effects of Echinacea purpurea L.
- 319 (purple coneflower) as an antibiotic growth promoter substitution on performance, carcass
- characteristics and humoral immune response in broiler chickens. J Med Plants Res
- 321 2011b; 5:2332–2338.
- 322 Liu B, Li W, Chang Y, Dong W, Ni L. Extraction of berberine from rhizome of Coptis
- 323 chinensis Franch using supercritical fluid extraction. J Pharm Biomed Anal 2006;
- 324 41:1056–1060.
- Loetscher Y, Kreuzer M, Messikommer RE. Utility of nettle (*Urtica dioica*) in layer diets as
- a natural yellow colorant for egg yolk. *Anim Feed Sci Technol* 2013; 186:158–168.
- 327 Łuczaj Ł, Pieroni A, Tardío J, Pardo-de-Santayana M, Sõukand R, Svanberg I, Kalle R. Wild
- food plant use in 21st century Europe: the disappearance of old traditions and the search
- for new cuisines involving wild edibles. *Acta Soc Bot Pol 2012*; 81:359–370.
- 330 Mansoub NH. Effect of nettle (Urtica dioica) on performance, quality of eggs and blood
- parameters of laying hens. Adv Environ Biol 2011; 5:2718–2721.

- 332 Mehri M, Sabaghi V, Bagherzadeh-Kasmani F. Mentha piperita (peppermint) in growing
- Japanese quails' diet: Serum biochemistry, meat quality, humoral immunity. Anim Feed
- 334 *Sci Technol 2015*; 206:57–66.
- 335 Miles RD, Butcher GD, Henry PR, Littell RC. Effect of antibiotic growth promoters on
- broiler performance, intestinal growth parameters, and quantitative morphology. *Poult Sci*
- *2006;* 85:476–485.
- 338 Milinsk MC, Murakami AE, Gomes STM, Matsushita M, de Souza NE. Fatty acid profile of
- egg yolk lipids from hens fed diets rich in n-3 fatty acids. *Food Chem* 2003; 83:287–292.
- Moula N, Philippe FX, Kaki AA, Touazi L, Antoine-Moussiaux N, Leroy P. Laying and eggs
- quality of quails in semi-intensive conditions in eastern Algeria. Arch Zootec 2014;
- 342 63:693–696.
- Moula N, Antoine-Moussiaux N, Decuypere E, Farnir F, Mertens K, De Baerdemaeker J,
- Leroy P. Comparative study of egg quality traits in two Belgian local breeds and two
- commercial lines of chickens. *Arch Geflügelk* 2010; 74:164–171.
- Mousavi A, Mahdavi AH, Riasi A, Soltani-Ghombavani M. Synergetic effects of essential
- oils mixture improved egg quality traits, oxidative stability and liver health indices in
- laying hens fed fish oil. *Anim Feed Sci Technol* 2017; 234:162–172.
- Nanekarani S, Goodarzi M, Heidari M, Landy N. Efficiency of ethanolic extract of
- peppermint (Mentha piperita) as an antibiotic growth promoter substitution on
- performance, and carcass characteristics in broiler chickens. Asian Pac J Trop Biomed
- 352 *2012*; 2:S1–4.
- NRC. Nutrient requirements of poultry. National Academy Press, Washington DC 1994;
- 354 9:44–45.
- Pál L, Grossmann R, Dublecz K, Husvéth F, Wagner L, Bartos A, Kovács G. Effects of
- glucagon and insulin on plasma glucose, triglyceride, and triglyceride-rich lipoprotein
- concentrations in laying hens fed diets containing different types of fats. *Poult Sci 2002*;
- 358 81:1694–1702.
- Park SJ, Yoo SO. Effects of supplementation of Chinese medicine refuse on performance and
- physiology in broiler chicks. *Korean J Poult Sci 1999*; 26:195–201.
- 361 Pfaller MA. Flavophospholipol use in animals: positive implications for antimicrobial
- resistance based on its microbiologic properties. Diagn Microbiol Infect Dis 2006;
- 363 56:115–121.
- Raes K, Huyghebaert G, De Smet S, Nollet L, Arnouts S, Demeyer D. The deposition of
- conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid
- 366 profile. J Nutr 2002; 132:182–189.
- Reddish JM, Nestor KE, Lilburn MS. Effect of selection for growth on onset of sexual
- maturity in random bred and growth-selected lines of Japanese quail. *Poult Sci 2003*;
- 369 82:187–191.

- 370 Reddy RV, Lightsey SF, Maurice DV. Research note: Effect of feeding garlic oil on
- performance and egg yolk cholesterol concentration. *Poult Sci 1991*; 70:2006–2009.
- Rutto LK, Xu Y, Ramirez E, Brandt M. Mineral properties and dietary value of raw and
- processed stinging nettle (*Urtica dioica* L.). *Int J Food Sci 2013*; 857120.
- 374 Said AAH, Otmani ISE, Derfoufi S, Benmoussa A. Highlights on nutritional and therapeutic
- value of stinging nettle (*Urtica dioica*). *Int J Pharm Sci* 2015; 7:8–14.
- 376 Schwartz RW, Allen NK. Effect of aging on the protein requirement of mature female
- Japanese quail for egg production. *Poult Sci 1981*; 2:342–348.
- 378 Sharma S, Singh DK, Gurung YB, Shrestha SP, Pantha C. Immunomodulatory effect of
- 379 Stinging nettle (*Urtica dioica*) and Aloe vera (*Aloe barbadensis*) in broiler chickens. Vet
- 380 *Anim Sci 2018*; 6:56–63.
- 381 Song KT, Choi SH, Oh HR. A comparison of egg quality of pheasant, chukar, quail and
- 382 guinea fowl. *Asian-Australas. J Anim Sci* 2000; 13:986–990.
- Toghyani M, Mosavi SK, Modaresi M, Landy N. Evaluation of kefir as a potential probiotic
- on growth performance, serum biochemistry and immune responses in broiler chicks.
- 385 *Anim Nutr* 2015; 1:305–309.
- Toussant MJ, Latshaw JD. Ovomucin content and composition in chicken eggs with different
- interior. J Sci Food Agric 1999; 79:1666–1670.
- Upton, R. Stinging nettles leaf (*Urtica dioica* L.): extraordinary vegetable medicine. *J. Herb*.
- 389 *Med.* 2013; 3:9–38.
- Uprety Y, Poudel RC, Shrestha KK, Rajbhandary S, Tiwari NN, Shrestha UB, Asselin H.
- 391 Diversity of use and local knowledge of wild edible plant resources in Nepal. J Ethnobiol
- 392 Ethnomed 2012; 8:16.
- 393 Varel VH. Livestock manure odor abatement with plant-derived oils and nitrogen
- conservation with urease inhibitors (review). J Anim Sci 2002; 80:1–7.
- Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed
- additives for swine and poultry. J Anim Sci 2008; 86:E140–E148.
- Wolanski NJ, Renema RA, Robinson FE, Carney VL, Fancher BI. Relationships among egg
- characteristics, chick measurements, and early growth traits in ten broiler breeder strains.
- 399 *Poult Sci 2007*; 86:1784–1792.
- 400 Yalçin S, Onbasilar I, Sehu A, Yalcin S. The effects of dietary garlic powder on the
- 401 performance, egg traits and blood serum cholesterol of laying quails. Asian-Australas J
- 402 *Anim Sci 2007*; 20:944–947.
- 403 Yan L, Meng QW, Ao X, Wang JP, Jang HD, Kim IH. Evaluation of dietary wild-ginseng
- adventitious root meal on egg production, egg quality, hematological profiles and egg yolk
- fatty acid composition in laying hens. *Livest Sci 2011*; 140:201–205.

	ACCEPTED MANUSCRIPT
406 407	Zita L, Ledvinka Z, Klesalová L. The effect of the age of Japanese quails on certain egg quality traits and their relationships. <i>Vet Arch 2013</i> ; 83:223–232.
408 409 410 411	Zotte AD, Berzaghi P, Jansson LM, Andrighetto I. The use of near infrared reflectance spectroscopy (NIRS) in the prediction of chemical composition of freeze dried egg yolk and discrimination between different n-3 PUFA feeding sources. <i>Anim Feed Sci Technol</i> 2006; 128:108–121.
412 413 414	

2 Table 1

3 Dietary ingredients, nutrient composition and metabolizable energy of the experimental diet (%)

Item	SNP0	SNP3	SNP6
Ingredients			
Corn	50.00	50.00	50.00
Wheat	12.00	12.00	12.00
Soybean meal	32.00	32.00	32.00
Vegetable oil	2.00	2.00	2.00
Limestone	1.55	1.55	1.55
Dicalciumphosphate	0.50	0.50	0.50
Salt	0.50	0.50	0.50
Methionine	0.50	0.50	0.50
Lysine	0.20	0.20	0.20
Mineral-vitamin premix ¹	0.75	0.75	0.75
Stinging nettle powder (SNP)	0	0.03	0.06
Calculated nutrient composition			
Dry matter	90.60	90.60	90.60
Crude protein	19.00	19.00	19.00
Crude fibre	3.90	3.90	3.90
Crude ash	2.35	2.35	2.35
Calcium	3.00	3.00	3.00
Phosphorus	0.6	0.6	0.6
Metabolizable energy, MJ/kg	11.3	11.3	11.3

SNP0 = basic diet without SNP; SNP3 = SNP0 with 3% SNP; SNP6 = SNP0 with 6% SNP.

¹ Provided per kg of diet: Mn from MnSO₄.H₂O 80 mg; Fe from FeSO₄.7H₂O 30 mg; Zn from ZnO 60 mg; Cu from CuSO₄.5H₂O 5 mg; Co from Co₂O₃ 0.5 mg; I from Ca (IO₃)₂.H₂O 0.2 mg; vitamin A 6,000 IU; vitamin D3 600 IU; vitamin E 20 IU; vitamin K 2 mg; vitamin B1 2 mg; vitamin B2 2.4 mg; vitamin B6 2 mg; vitamin B12 1.2 mg; niacin 19 mg; folic acid 3 mg; pantothenic acid 14 mg; biotin 0.50 mg.

Table 2
 Effect of stinging nettle powder on laying performance of Japanese quails from 10 to 22 wk of age

Item	SNP0	SNP3	SNP6	SEM	P-value
Initial body weight, g	195.90	199.35	202.31	1.54	0.234
Final body weight, g	245.29 ^a	235.77 ^b	231.31 ^b	1.61	0.001
Feed intake, g/d	42.86	42.83	42.54	0.49	0.964
Egg production, n	67.00	69.00	65.00	1.12	0.275
Egg production, %	80.06	82.14	76.79	1.33	0.275
Cracked eggs, %	1.85	1.82	1.57	0.31	0.933
Egg weight, g	12.49	12.34	12.23	0.11	0.653
FCR, g diet/g egg	3.43	3.47	3.48	0.04	0.870

SNP0 = basic diet without SNP; SNP3 = SNP0 with 3% SNP; SNP6 = SNP0 with 6% SNP; FCR = feed conversion ratio; ^{a, b} Within a row, mean values with different letters were significantly different (*P*<0.05).

Table 3
 Effect of age (A), stinging nettle powder (diet, D), and age-diet interaction (A×D) on egg quality
 parameters in Japanese quails

Itam	Age	Diet			CEM	<i>P</i> -value		
Item	(wk)	SNP0	SNP3	SNP6	SEM	A	D	A×D
Egg weight, g	14	12.25	12.37	12.19	0.09	< 0.001	0.372	0.450
	18	12.50	12.81	12.50	0.10			
	22	12.97	12.78	12.78	0.06			7
	Mean	12.67	12.69	12.56	0.05			
Shell thickness (0.01	14	18.90	19.21	19.24	0.11	0.636	0.037	1.000
mm)	18	18.75	19.06	19.09	0.11			
	22	18.82	19.13	19.17	0.08			
	Mean	18.83^{a}	19.13 ^b	19.17^{ab}	0.10) ′		
Albumen index, %	14	5.44	5.63	6.00	0.11	0.523	0.783	0.092
	18	6.06	5.75	5.69	0.11			
	22	5.72	5.94	5.81	0.08			
	Mean	5.73	5.81	5.83	0.05			
Yolk index, %	14	43.68	43.13	43.29	0.50	0.789	0.883	0.990
	18	43.15	43.08	43.26	0.30			
	22	43.47	43.41	43.51	0.20			
	Mean	43.44	43.26	43.39	0.18			
Haugh, unit	14	83.00	82.56	82.56	1.30	0.140	0.826	0.967
	18	80.50	80.75	82.12	1.02			
	22	80.47	78.75	80.19	0.85			
	Mean	81.11	80.20	81.27	0.60			
EYC, mg/g	14	14.67 ^a	14.90 ^a	13.21 ^b	0.12	< 0.001	< 0.001	< 0.001
	18	14.42 ^a	12.61 ^b	14.47°	0.14			
	22	12.86 ^a	12.86 ^a	12.07^{b}	0.07			
	Mean	13.70 ^a	13.31 ^b	12.96 ^c	0.08			

SNP0 = basic diet without SNP; SNP3 = SNP0 with 3% SNP; SNP6 = SNP0 with 6% SNP; Albumen index = albumen height/ [albumen length + albumen width] \times 100; Yolk index = yolk height/ yolk diameter \times 100; Haugh unit = log (albumen height + 7.57-1.7 \times egg weight^{0.37}) \times 100; EYC = egg yolk cholesterol; ^{a, b, c} Within a row, mean values with different letters were significantly different (P<0.05).

61

62

Table 4

Effect of stinging nettle powder on some selected serum biochemical parameters of Japanese quails at 22-wk of age (mg/dL)

Item	SNP0	SNP3	SNP6	SEM	<i>P</i> -value
Calcium	23.64	23.52	23.33	0.21	0.829
Phosphorus	13.45	13.52	13.33	0.20	0.927
Magnesium	3.45	3.52	3.33	0.20	0.927
Total cholesterol	108.44 ^a	105.50 ^a	95.13 ^b	1.35	< 0.001
Triglycerides	867.5 ^a	738.5 ^b	380.5°	30.89	< 0.001

SNP0 = basic diet without SNP; SNP3 = SNP0 with 3% SNP; SNP6 = SNP0 with 6% SNP; a, b, c Within a row, mean values with different letters were significantly different (*P*<0.05).

Conflict of interest

The authors declare that they have no conflict of interest.

Funding of the study

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.