State complexity of the multiples of the Thue-Morse set

Célia Cisternino Joint work with Émilie Charlier and Adeline Massuir

July 8, 2019

Numeration and Substitution, Vienna (Austria)

Basics •000	Thue-Morse set 00	Method 00	Constructive Proof	Counting and Conclusion
Basics				

Definition

A DFA is *minimal* iff it is *reduced* and *accessible*.

• Trim minimal

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Definition

The *state complexity* of a regular language is equal to the number of states of its minimal automaton.

00	00 0000000000000

Definition

A DFA has *disjoint states* if, for distinct states p and q, we have $L(p) \cap L(q) = \emptyset$.

Proposition

Any coaccessible DFA having disjoint states is reduced.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000				

Definition

For a base *b*, a subset *X* of \mathbb{N} is said to be *b*-*recognizable* if the language $0^* \operatorname{rep}_b(X)$ is regular.

Proposition

Let $b \in \mathbb{N}_{\geq 2}$ and $m \in \mathbb{N}$. If X is b-recognizable, then so is mX.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000				

Multiplicatively independent integers:

$$(p^a = q^b) \Rightarrow (a = b = 0)$$

Theorem (COBHAM, 1969)

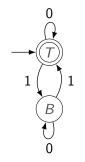
- Let b, b' be two multiplicatively independent bases. Then a subset of N is both b-recognizable and b'-reconnaissable if and only if it is a finite union of arithmetic progressions.
- Let b, b' be two multiplicatively dependent bases. Then a subset of N is b-recognizable if and only if it is b'-recognizable.

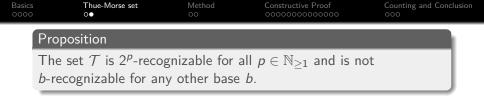
Basics 0000	Thue-Morse set ●0	Method 00	Constructive Proof	Counting and Conclusion
Thue-	Morse set			

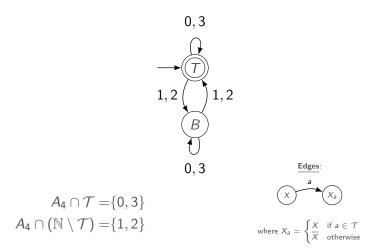
The Thue-Morse set:

$$\mathcal{T} = \{n \in \mathbb{N} \colon |\mathrm{rep}_2(n)|_1 \in 2\mathbb{N}\}$$

Characteristic sequence: 1001011001101001...







Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
		•0		
N /	Th			
Iviain	Theorem			

Lemma

For any $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$, the set $m\mathcal{T}$ is 2^p -recognizable.

Theorem

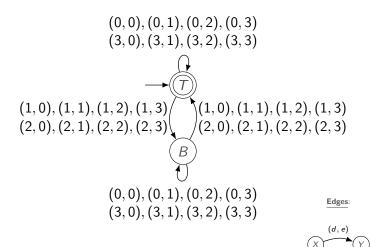
Let $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$. Then the state complexity of the language $0^* \operatorname{rep}_{2^p}(m\mathcal{T})$ is equal to

$$2k + \left\lceil \frac{z}{p} \right\rceil$$

if $m = k2^z$ with k odd.

Basics 0000	Thue-Morse set 00	Method ○●	Constructive Proof	Counting and Conclusion
Method				

Automaton	Language
$\mathcal{A}_{\mathcal{T},2^p}$	$(0,0)^* \{ \operatorname{rep}_{2^p}(t,n) \colon t \in \mathcal{T}, n \in \mathbb{N} \}$
$\mathcal{A}_{m,2^p}$	$(0,0)^* \{ \operatorname{rep}_{2^p}(n,mn) \colon n \in \mathbb{N} \}$
$\mathcal{A}_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p}$	$(0,0)^*\left\{\operatorname{rep}_{2^p}(t,mt):t\in\mathcal{T} ight\}$
$\Pi(\mathcal{A}_{m,2^p} imes\mathcal{A}_{\mathcal{T},2^p})$	$0^* \{ \operatorname{rep}_{2^p}(mt) : t \in \mathcal{T} \}$

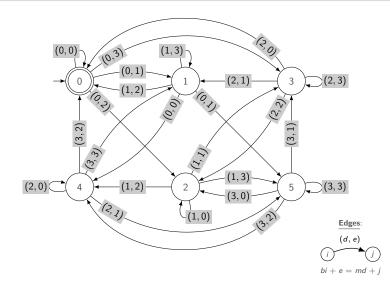


 $Y = X_d$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			00000000000000000	

- The automaton $\mathcal{A}_{\mathcal{T},2^p}$
 - accepts $(0,0)^* \{ \operatorname{rep}_{2^p}(t,n) \colon t \in \mathcal{T}, n \in \mathbb{N} \}$
 - is accessible
 - is coaccessible
 - has disjoint states
 - is trim minimal
 - is complete

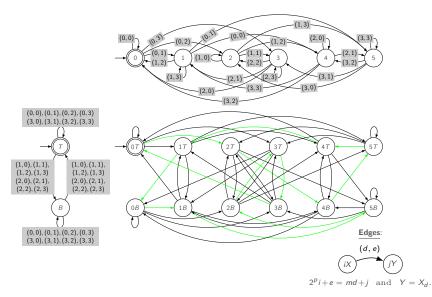
Basics 0000	Thue-Morse set 00	Method 00	Constructive Proof	Counting and Conclusion
The a	utomaton \mathcal{A}_m	, <i>b</i>		



0000 00 00 00 00 0 00000000 000	Basics Tł	hue-Morse set I	Method	Constructive Proof	Counting and Conclusion
				000000000000	

- The automaton $\mathcal{A}_{m,b}$
 - accepts $(0,0)^* \{ \operatorname{rep}_b(n,mn) \colon n \in \mathbb{N} \}$
 - is accessible
 - is coaccessible
 - has disjoint states
 - is trim minimal

Remark: The automaton $\mathcal{A}_{m,b}$ is not complete.

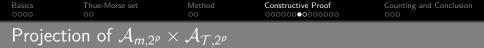


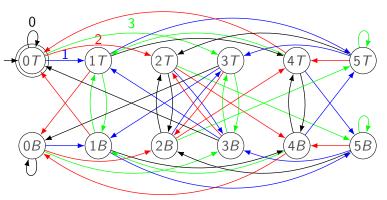
0000 00 00 00000000 000	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
				000000000000000000000000000000000000000	

The automaton $\mathcal{A}_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p}$

- accepts $(0,0)^* \{ \operatorname{rep}_{2^p}(t,mt) : t \in \mathcal{T} \}$
- is accessible
- is coaccessible
- has disjoint states
- is trim minimal

Remark: The automaton $\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p}$ is not complete.





Edges:

 $\begin{array}{rl} \exists d \in A_{2^p}:\\ 2^pi\!+\!e=md\!+\!j \ \text{and} \ Y=X_d. \end{array}$

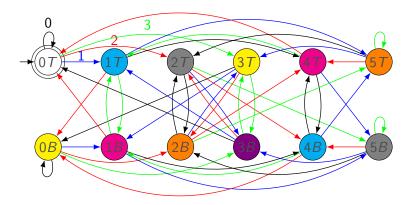
Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			0000000000000	

The automaton $\Pi(\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p})$

- accepts $0^* \{ \operatorname{rep}_{2^p}(mt) : t \in \mathcal{T} \}$
- is deterministic
- is accessible
- is coaccessible
- has disjoint states if m is odd
- is trim minimal if m is odd

Corollary

The state complexity of $m\mathcal{T}$ in base 2^p is 2m if m is odd.



Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			00000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			00000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			00000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			0000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			00000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

©
 O
 O<

Basics 0000	Thue-Morse set 00	Method 00	Constructive Proof	Counting and Conclusion

Let
$$m = k \cdot 2^z$$
 where $k, z \in \mathbb{N}$ with k odd.

For $(j, X) \in (\{1, ..., k - 1\} \times \{T, B\}) \cup \{(0, B)\}$, the class of (j, X) is

$$[(j,X)] = \{(j+k\ell,X_{\ell}) : 0 \le \ell \le 2^{z}-1\}.$$

Moreover, the class of (0, T) is

 $[(0, T)] = \{(0, T)\}.$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

For $\alpha \in \{0, \ldots, z-1\}$, we define a *pre-classe* C_{α} of size 2^{α} :

$$C_{\alpha} = \left\{ \left(\frac{m}{2^{\alpha+1}} + \frac{m}{2^{\alpha}}\ell, B_{\ell} \right) : 0 \le \ell \le 2^{\alpha} - 1 \right\}$$

For all $\beta \in \{0, \dots, \left\lceil \frac{z}{p} \right\rceil - 2\}$, we define

$$\Gamma_{\beta} = \bigcup_{\alpha \in \{\beta p, \dots, (\beta+1)p-1\}} C_{\alpha}$$

and

$$\Gamma_{\left\lceil \frac{z}{p}\right\rceil-1} = \bigcup_{\alpha \in \left\{ \left(\left\lceil \frac{z}{p}\right\rceil - 1 \right) p, \dots, z-1 \right\}} C_{\alpha}$$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000	

In this example $m = 3.2^3$ and b = 4. So, k = 3, z = 3, p = 2, and $\left\lfloor \frac{z}{p} \right\rfloor = 2$. We obtain

$$C_0 = \{(12, B)\}\$$

$$C_1 = \{(6, B), (18, T)\}\$$

$$C_2 = \{(3, B), (9, T), (15, T), (21, B)\}\$$

and

$$\Gamma_1 = C_0 \cup C_1 = \{(6, B), (12, B), (18, T)\}$$

$$\Gamma_2 = C_2 = \{(3, B), (9, T), (15, T), (21, B)\}$$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000	00	00		●00
Counti	ing and Conc	lusion		

Classes	Number of such classes
[(j,X)]	2(k-1)
for $(j, X) \in (\{1, \dots, k-1\} \times \{H, B\})$	
[(0,B)]	1
[(0, <i>H</i>)]	1
Γ _β	$\left\lceil \frac{z}{p} \right\rceil - 1$
for $\beta \in \{0, \ldots, \left\lfloor \frac{z}{p} \right\rfloor - 2\}$	
$\left[\Gamma_{\left[\frac{z}{p} \right] - 1} \right]$	1
	Total = $2k + \left\lceil \frac{z}{p} \right\rceil$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
				000

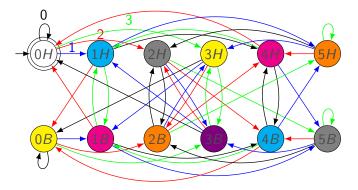
Theorem

Let $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$. Then the state complexity of the language $0^* \operatorname{rep}_{2^p}(m\mathcal{T})$ is equal to

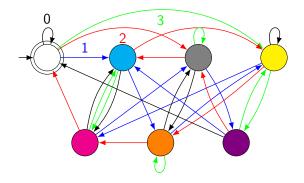
$$2k + \left\lceil \frac{z}{p} \right\rceil$$

if $m = k2^z$ with k odd.

0000 00 00 00 000000000 00	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
					000



Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000	00	00		00●



The state complexity of $6\mathcal{T}$ in base 4 is equal to

$$2.3 + \left\lceil \frac{1}{2} \right\rceil$$
.

Thank you!