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Foreword

This Colloquium is a follow-up of the meetings on the same topics, held at the
University of Liége, Belgium, in 2009, at the Eindhoven University of Technology,
The Netherlands, in 2012 and at the University of Minnesota, U.S.A., in 2014.
The “control” part of the name was added at the second Colloquium to underline
the two main themes.

For this Colloquium, four main domain themes were specified:

• Underbalanced Operations & Managed Pressure Drilling (UBO/MPD)

• Drill String Vibrations & Drilling Mechanics

• Geosteering & Borehole Propagation

• Drilling Automation & ROP Optimization

In keeping with the previous incarnations, however, most submissions have been
focused on drill-string vibrations.

It has been the aim of the organizing committee to strive for the correct
blend between industry and academia participation, and between the theoretical
depth and the practical relevance of the submissions. This to ensure that the
colloquium can provide an arena where the practitioners can learn what relevant
theoretical tools are available, while providing feedback so as to keep the research
focused and relevant to applications where it can provide value. Judging from the
content of these proceedings, we believe we have succeeded in this goal. It con-
tains both descriptions of problems encountered in the field, new developments
on known problems, as well as proposing novel solutions through employment
of sophisticated mathematical methods. Together, these proceedings, we truly
believe, reflect the state of the art of Nonlinear Dynamics and Control of Deep
Drilling Systems.
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State-Dependent Delay Effect in Drilling

Xie Zheng, Vipin Agarwal and Balakumar Balachandran

Department of Mechanical Engineering, University of Maryland, College Park, USA

1 Introduction

Systems described by delay-differential equations arise in many science and engi-
neering fields (i.e., networked systems, biological systems). One example in the
engineering field is rotary drilling dynamics [1, 2, 3]. As shown in earlier work,
the state-dependent delay can arise in the description of the cutting action of the
drill bit blade on the rock interface. This delay can play an important role in de-
termining stick-slip behavior of the system. In related previous work conducted
in the authors’ group, reduced-order models, finite-element based discretization,
and the presence of the state-dependent delay have been discussed [3, 4]. In the
current work, the authors carry out a nonlinear analysis and numerical studies
with a reduced-order model to further our understanding of the state-dependent
delay effect.

The remaining part of this paper is organized as follows. In Sections 2 and 3,
the authors follow their earlier work reported in reference [5] and set the stage for
the analyses to follow. A reduced-order model is presented to describe the axial-
torsion dynamics of drilling. For the sake of analyses, a nondimensionalized
form of the governing equations is provided. Later, linear stability analysis
is conducted by using the D-subdivision scheme. In Section 4, the solutions
of the nonlinear system are examined by using a continuation method. The
implicit state-dependent delay is rewritten as an explicit function by using a
Taylor expansion to facilitate the analysis. Hopf bifurcations of fixed points
are determined and it is found that the nature of these bifurcations can be
subcritical or supercritical depending on the parameter values. It is found that
the state-dependent delay can have a destabilizing effect in certain cases. The
axial damping ratio and torsion damping ratio are found to have a significant
influence in determining the effect of the state-dependent delay on the system
dynamics.
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2 Modeling and nondimensionalization

In Figure 1(a), an illustrative model of a drill-string system is provided. The
axial and torsion motions of interest are also shown. At the top end of the drill
sting, a constant axial speed V0 and a rotation speed Ω0 are imposed on the
system. The governing equations of motion take the form

MZ̈(t) + CaŻ(t) +Ka(Z(t)− V0t) = Ws −Wb(t)

IΦ̈(t) + CtΦ̇(t) +Kt(Φ(t)− Ω0t) = −Tb(t)
(1)

Here, M and I are the respective translational and rotational inertias, Ka and
Kt are the respective translational stiffness and torsion stiffness, and Ca and Ct
represent the respective translational damping and torsion damping. Further-
more, Ws is the sum of the weight of both the drill pipe and drill collar. Wb

and Tb respectively denote the weight and torque on the bit, and they are both
determined by bit-rock interactions. Each of them can be decomposed in terms
of cutting and friction components, as follows.

Wb(t) = Wbc(t) +Wbf (t)
Tb(t) = Tbc(t) + Tbf (t)

(2)

The subscripts bc denotes the cutting component of the drill bit and bf denotes
the friction components on the drill bit, respectively. Following the earlier work
of Detournay and Defourny[6], those components can be expressed as

Wbc(t) = εaζR(d(t))H(Φ̇(t)) Tbc(t) =
1

2
εa2R(d(t))H(Φ̇(t)) (3)

Wbf (t) = σalH(d(t))H(Ż(t)) Tbf (t) =
1

2
µγa2σlsgn(Φ̇)H(d(t))H(Ż(t)) (4)

where the R(.) function is the unit ramp function and H(.) is the Heaviside
step function. In Figure 1, two successive blades of a polycrystalline diamond
compact drill bit are shown along with the delayed states. For an individual
blade, the instantaneous depth of cut can be determined as

dn(t) = Z(t)− Z(t− τ) (5)

Assuming that the cutting action is uniform across the N blades, then, the cutting
depth is

d(t) = Ndn(t) (6)

where the delay τ is given by

Φ(t)− Φ(t− τ) =
2π

N
(7)
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Figure 1: (a) Representative reduced-order model of drill-string system. (b) Two
successive blades of a drill bit.

The state-dependent delay τ(Φ(t)) is the elapsed time for the drill bit to rotate
over an angle of 2π

N , and this delay depends only on the state Φ. Next, the
equations of motion are cast into dimensionless form. Following earlier work [2],
the characteristic time t∗ =

√
I/Kt and characteristic length L∗ = 2Kt/εa

2 are
introduced. Then, once can write the nondimensional variables as

z =
Z − Z̄
L∗

ϕ = Φ− Φ̄ t̂ = t/t∗ τ̂ = τ/t∗ (8)

Here, Z̄, and Φ̄ correspond to the equilibrium solution of Eq.(1), which is a
trivial solution in the absence of vibrations. The axial state z and angular state
ϕ are functions of dimensionless time t̂. With the nondimensional variables, the
governing equations can be recast as

z̈(t̂) + 2ξηż + η2x(t̂) = −ψδ(t̂)
ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −δ(t̂) (9)

The dimensionless parameters are defined as

ξ =
Ca

2
√
KaM

κ =
Ct

2
√
KtI

(10)

ψ =
εaζI

KtM
η2 =

Ka

M
t2∗ =

KaI

KtM
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Table 1: Parameters used for drilling operations (values adopted from references
[1, 4])

Parameter Symbol Value Unit

Mass M 3.4× 104 kg
Axial damping Ca 1.56× 104 N s/m
Axial stiffness Ka 7.0× 105 N/m
Moment of inertia I 116 kg m2

Torsion damping Ct 32.9 N s m/rad
Torsion stiffness Kt 938 N/m
Radius of drill bit a 0.108 m
Wear flat length l 0.0012 m
Intrinsic specific energy of rock ε 0− 110 MPa
Contact strength σ 60 Mpa
Cutter face inclination ζ 0.6 -
Friction coefficient µ 0.6 -
Geometry parameter of drill bit γ 1 -
Number of blades on drill bit N 4 -

The parameters ξ and κ are the damping ratios associated with axial and tor-
sional motions, respectively. η represent the ratio of axial natural frequency to
torsional natural frequency. The quantity ψ is dependent upon the rock strength
and drill-bit geometry.

δ is the dimensionless perturbation of cutting depth δ, and this can be written
as

δ(t̂) = N [z(t̂)− z(t̂− τ̂) + (τ̂ − τ̂0)v0] (11)

where v0 is the dimensionless penetration rate, ω0 is the dimensionless angular
speed, and τ̂0 is the constant steady-state time delay. These quantities take the
forms

ω0 = Ω0/t∗ v0 =
V0/L∗

Ω0
=

εa2

2KtΩ0
V0 τ̂0 =

2π

Nω0
(12)

The dimensionless state-dependent delay is given by

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− τ̂)) (13)

After substituting Eq.(11) and Eq.(13) into Eq.(9), the governing equations
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can be rewritten as

z̈(t̂) + 2ξηż(t̂) + η2z(t̂) = −Nψ(z(t̂)− z(t̂− τ̂)) +Nψv0(ϕ(t̂)− ϕ(t̂− τ̂))

ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −N(z(t̂)− z(t̂− τ̂)) +Nv0(ϕ(t̂)− ϕ(t̂− τ̂)) (14)

3 Linear stability

According to the work of Hartung [7], a true linearization of the system with
state-dependent delay is not possible due to the fact that the solution of the
system is not differentiable with respect to state-dependent delay. Hence, one
needs to find a constant delay model which has the same local stability properties
as the original system. Making use of the method discussed by Insperger and
Stepan [8],and letting τ̂ = τ̂0, the resulting linearized system is

z̈(t̂) + 2ξηż(t̂) + η2z(t̂) = −Nψ(z(t̂)− z(t̂− τ̂0)) +Nψv0(ϕ(t̂)− ϕ(t̂− τ̂0))

ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −N(z(t̂)− z(t̂− τ̂0)) +Nv0(ϕ(t̂)− ϕ(t̂− τ̂0)) (15)

From these linearized equations, the characteristic equation is determined as

P0(s) + P1(s)(1− e−τ̄ s) = 0 (16)

where P0 and P1 are polynomials in the eigenvalue s. These polynomials can be
determined as

P0(s) = s4 + (2ξη + 2κ)s3 + (η2 + 4κξη + 1)s2 + (2ξη + 2κη2)s+ η2

P1(s) = (Nψ −Nv0)s2 + (2κNψ − 2ξηNv0)s+ (Nψ −Nη2v0) (17)

Following the procedure of the D-subdivision method, the authors substitute
s = iω and τ̄ = 2π/ω0 into Eqs.(17) and separate the real and imaginary parts.
After a rather lengthy calculation, one obtains the stability crossing set in the
ω0-v0 domain as

v0SDD =
1

N [α(ω2 − η2) + 2βξηω]
[
α2 + β2

2
+ (α(1− ω2) + 2βκω)Nψ]

ω0SDD =
2πω

N(Θ1 + (2k − 1)π)
, k = 1, 2, ..., (18)

Here,

α = Real(P0) β = Imag(P0) Θ1 = ∠ −P1

P0 + P1
(19)

Results obtained on the basis of stability boundaries in the ω0 − v0 parameter
space is shown in Figure 2. From the plots, it is evident that the damping ratios
play an important role in determining the stability boundaries. The results
obtained agree well with the numerical findings reported in an earlier work by
the authors’ group [4].
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Figure 2: Stability charts in the plane of the drive speed ω0 and the penetration
speed v0, for different values of ξ and κ.

4 Nonlinear analysis of the system with the state-
dependent delay

In Eq.(14), the state-dependent delay term is the only source for nonlinearity
of our nondimensionalized system and it is in term of implicit function. The
software DDE-BIFTOOL [10] can be used to carry out continuation of solution
branches of systems with delays. Here, this tool is used to study the bifurcations
of solution of the nonlinear systems with constant delay and state-dependent
delay. However, to use this tool, the state-dependent delay must be in an explicit
form. To address this, the state-dependent delay in Eq.(13) is rewritten as a three
level, nested constant delay in the form

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− (τ̂0 −

ϕ(t̂)− ϕ(t̂− τ̂0)

ω0
))) (20)

By using a Taylor expansion and only keeping the first two orders, the explicit
form of state dependent delay is determined as

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− τ̂0))− 1

ω2
0

(ϕ(t̂)− ϕ(t̂− τ̂0))ϕ̇(t̂− τ̂0) (21)

After combining the nondimensionalized governing system Eqs. (14) together
with the explicit state-dependent delay function Eq.(21) and using the DDE-
BIFTOOL, the authors generate the bifurcation diagram with different dimen-
sionless damping ratios as shown in Figure 3. The continuation of the periodic
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orbits is stopped, when the state-dependent delay τ̂ < 0. Along the y axis, the
maximum value of the dimensionless ϕ of the orbit is shown.

Similarly to the turning case [9], when a subcritical Hof bifurcation of a fixed
point occurs, an unstable limit cycle (periodic orbit) coexists with the stable
equilibrium. When a supercritical Hopf bifurcation of a fixed point occurs, an
stable limit cycle (periodic orbit) coexists with the unstable equilibrium. From
the figures, it can be discerned that when the dimensionless axial and torsional
damping ratios are small, branches of periodic motions bend to the left locally;
this is a characteristic of a subcritical bifurcation. However, as the damping
ratios are increased, the periodic solution branches start to bend to the right;
this menas that the nature of the Hopf bifurcation has changed from subcritical
to supercritical.

5 Concluding remarks

In this work, the effect of the state-dependent delay on drilling dynamics has
been elucidated by considering a representative reduced-order model for coupled
axial and torsion dynamics. The linear stability of the equilibrium solution of
the system was analyzed by using the D-subdivision method, and the nonlinear
stability analysis was conducted with the aid of a continuation scheme. From the
results, it can be inferred that both the axial damping ratio and torsion damping
ratio play a significant role in determining the linear stability of the equilibrium
solution and the nature of the Hopf bifurcation of the equilibrium solution.
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Effects of latency, motor inertia and filtering on stick-slip
mitigation control

Roman J. Shor1, Ulf Jakob F. Aarsnes2 and Florent di Meglio3

1University of Calgary, Calgary, Canada
2International Research Institute of Stavanger (IRIS), Oslo, Norway

3Mines ParisTech, Paris, France

1 Introduction

Exploration and production of oil and gas in the deep subsurface, where hydro-
carbon reservoirs are found at depths between 2,000 and 20,000 feet, requires
that a narrow borehole, between 4 and 24 inches in diameter, be drilled using
a slender drill string through a varied downhole environment and along an of-
ten snaking wellpath. Drill string vibrations, and their negative consequences
on ROP and equipment, is a well known phenomenon when drilling for hydro-
carbons. In particular, the torsional oscillations known as stick slip, which are
considered to be the most destructive vibrations, are to be avoided.

Significant literature exists which seeks to explain the incidence of stick slip
through various implementations of bit-rock interaction and various complexities
of drill string dynamic models. The simplest models impose bit-rock interaction
as a discontinuous frictional force at the bit and abstract the drill string as a
lumped mass, representing the bottom hole assembly (BHA) inertia, and a tor-
sional spring, representing the drill-string stiffness [5, 6]. These models may be
confounded by introducing higher complexity dynamics at the bit-rock inter-
action or through higher order models along the drill-string [12, 13], but still
assume that stick slip is incided due to the non-linearity of the frictional force
at the bit. pAll these models have used to demonstrate the occurrence of the
limit cycle which exhibits itself as stick-slip and may be used to various types of
stick-slip mitigation controllers, including simple tuned PID controllers [11, 15],
impedance matching controllers [7], H-infinity controllers [16], sliding mode con-
trollers [14], and others.
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2 Model

We use a distributed model, similar to [4, 3, 8] and described in detail in [2],
where we consider only the torsional dynamics of the drill string. For angular
motion, angular velocity and torque are denoted as as ω(t, x), τ(t, x), respectively,
with (t, x) ∈ [0,∞)× [0, L]. See Fig. 1 for a schematic indicating locations. For
an infinitesimal element dx, the torque is found as the shear strain, or twist
per unit length. Letting φ denote the angular displacement in the string s.t.
∂φ(t,x)
∂t = ω(t, x), we have τ(t, x) = JG

(
φ(t, x)− φ(t, x+dx)

)
/dx, where J is the

polar moment for inertia and G is the shear modulus. Hence the equations for
the angular motion are given by

∂τ(t, x)

∂t
+ JG

∂ω(t, x)

∂x
= 0 (1)

Jρ
∂ω(t, x)

∂t
+
∂τ(t, x)

∂x
= S(ω, x), (2)

where the source term S is modeled as

S(ω, x) = −ktρJω(t, x)−F(ω, x), (3)

where kt is a damping constant representing the viscous shear stresses and F(ω)
is a differential inclusion, to be described, representing the Coulomb friction
between the drill string and the borehole. The viscous shear stress coefficient kt
represnts the combined damping effects of the viscous shear of the drilling mud
and the rolling contact between drill string and the cuttings bed.

The lowermost section of the drill string is typically made up of drill collars
which may have a great impact on the drill string dynamic due to their added
inertia. In particular, the transition from the pipes to collars in the drill string
will cause reflections in the traveling waves due to the change in characteristic
line impedance [4]. We split the drill string into a pipe section with polar moment
of inertia and lengths Jp, Lp and a collar section with the same parameters given
as Jc, Lc.

2.1 Coulomb friction as an inclusion

The Coulomb friction is modeled as an inclusion





F(ω, x) = Fd(x), ω > ωc,

F(ω, x) ∈ [−Fc(x), Fc(x)], |ω| < ωc,

F(ω, x) = −Fd(x), ω < −ωc,
(4)

12



ωTD

τ(t,x)
ω(t,x)

x

INC x=L

S

ωc

ω

Fc

Fd
1

kt

Figure 1: Schematic indicating the distributed drill string lying in deviate bore-
hole (left). Schematic illustrating the four parameters determining the friction:
the coulomb friction parameters ωc, Fc, Fd and the viscous friction coefficient kt,
with the shaded region indicating the region of static torque, and the red curve
the dynamic torque (right).

where ωc is the threshold on the angular velocity where the Coulomb friction
transitions from static to dynamic, Fd is the dynamic Coulomb torque, Fc is the
static Coulomb torque, and F(ω) ∈ [−Fc, Fc] denotes the inclusion where

F(ω, x) = −∂τ(t, x)

∂x
− ktρJω(t, x) ∈ [−Fc(x), Fc(x)], (5)

and take the boundary values ±Fc(x) if this relation does not hold. We define
the non-dimensional coefficient frat = Fc/Fd to help characterize the magnitude
of the oscillations. The shape of the friction source term is illustrated in Fig. 1.

3 Model comparison with field data

To validate the modeling approach taken in the present work, a simulation study
was undertaken to compare the behavior of the model to that of recorded field
data. A field comparison is presented which exhibits inerita dominated oscilla-
tions, as categorized in [2]. Field data for a deviated well, the survey of which
is shown in Figure 2, is considered. Rotational data – rotary rpm and torque
– is recorded at 100 Hz and includes both setpoints and realized values. The
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Figure 2: Wellbore survey of the field well

drill-string starts at rest with zero torque at the surface. However, the stored
torsional energy within the drill-string is not known. The drill-string design is a
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Figure 3: Recorded and simulated drill-string response at a bit depth of 1,733
m, using fitting parameters: µ = 0.34, frat = 0.55, ωc = 19 (RPM).
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Figure 4: Control diagram for a ZTorque system with direct pipe torque mea-
surement. For ZTorque Z = 1/ζp is used. If Z = 0, the control diagram is
equivalent to a SoftTorque or stiff speed controller system.

simple directional assembly which is simplified to a 230 meter 53
4” OD BHA and

monodiameter drillpipe to the surface. Downhole rpm and vibration data was
collected for drilling performance improvement and control system verification
and included continuous low frequency (0.5Hz) data as well as occasional burst
sequences of high frequency data (125 Hz).

Recorded field data and a model fit for 1,733 m depth is shown in Figure 3.
The top plot shows the surface (in red) and downhole (dashed) recorded data
as well as the modeled data (in blue and yellow, respectively). The bottom plot
shows surface torque, with recorded data in red and simulated data in blue.

4 Stick-slip Mitigation Controllers

A majority of drilling rigs in the field utilize AC electric top drives controlled
using a variety of variable frequency drives – or inverters – which are capable
of highly accurate, and often high frequency (> 20 Hz), rotary speed control.
A majority of these controllers are simple stiff PI controllers, but two types of
stick-slip mitigation controllers are widely deployed – the older SoftTorque /
SoftSpeed systems and the newer ZTorque systems.

The behavior of a control system may evaluated through the use of a top-
side reflection coefficient – a reflection of ’1’ indicates all energy is reflected back
downhole, while a reflection of ’0’ means all energy is absorbed by the topdrive.
Assuming for the moment a constant set-point, and defining the controller trans-
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fer function C(s) ≡ τm
ω0

we obtain the relation:

τ0(s)

ω0(s)
= C(s) + ITDs ≡ C̄(s), (6)

while the topside reflection coefficient is given as [11]

R(ω) =

∣∣∣∣
C̄(s)− ζp
C̄(s) + ζp

∣∣∣∣
s=jω

. (7)

4.1 Stiff controller

The industry standard controller that is most often used is a high gain PI control
to ensure rapid tracking of the top drive set-point. For this study, we use the
gains

Kp = 100ζp, Ki = 5ITD. (8)

which is similar to gains typically used in the field.

4.2 SoftTorque

The current industry standard in handling torsional vibrations are the two prod-
ucts NOV’s SoftSpeed [11, 9] and Shell’s SoftTorque [7, 15]. The essential ap-
proach of all these solutions is to reduce the reflection coefficient at the top drive
in a certain key frequency range [10].

The approach of SoftSpeed [11] is to set the proportional action to

Kp = 4ζp, (9)

and then tune the integral gain according to

Ki = (2πfc)
2I2TD, (10)

where fc is the frequency (in Hertz) where the minimum of R(ω) is achieved.
Since the transfer funciton of an ideal PID controller writes C(s) = Kp+

Ki
s +Kds,

the minimum of the reflection coefficient is obtained at

argmin
ω

R(ω) =

√
Ki

ITD +Kd
≡ fc2π. (11)
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Figure 5: Topside reflection coefficient of the three considered controllers.

4.3 ZTorque

A newer embodiment of stick-slip mitigation control developed by Shell, ZTorque,
seeks to minimize the reflection coefficient of the top drive for a wider range of
frequencies by measuring the torque from between the drill string and top-drive
τ0, and using this in the feedback controller to “artificially” have the top-drive
match the impedance of the drill-pipe ζp. The drill pipe impedance is given as
ζp = Jp

√
Gpρ where ζp is the characteristic line impedance of the drill string.

For a given pipe torque, the instantenous top drive rotary velocity necessary
to match the pipe impedance is given by:

ω0(t) =
1

ζp
· τ0(t) (12)

To ensure set point tracking, the control system uses a bandpass filter on the
impedance matching rotary velocity – to exclude high frequency noise and low
frequency set point changes – by combining a high-pass and low pass filter.
Therefore, the PI controller acts on a combination of the tracking error ωSP−ω0 ,
and the band-pass filtered measured pipe torque Z 1

s+ 1
thps

1
s+tlps

τ0, i.e. the input
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to the PI controller is

ePI = ωSP − ω0 − Z
s

(s+ 1
thp

)(1 + tlps)
τ0 (13)

where thp, tlp are the high pass, low pass filter time constants. Note that the ω0

measurement passes through an encoder, illustrated in Fig. 4 as a low-pass filter
with time constant ten. Typically, tlp and ten are around 1 to 10 milliseconds and
thp is around 2 to 10 seconds but must be greater than the period of the first mode
of stick-slip. The implementation studied in this talk assumes the presence of a
torque sensor between the top drive and drillstring which is capable of real-time
measurement of pipe torque, τ0.

Topside reflection coefficient of the three considered controllers is shown in
Fig. 5. The SoftTorque controller uses Kp = 4ζp, fc = 0.2(Hz) and the ZTorque
controller a 1 ms speed and low pass filters and a 10 second high pass filter.

5 Simulation study

We consider a rotation startup such as is required after each pipe connection
procedure while drilling a well. In this scenario the stationary drill string is
initially kept in place by the Coulomb friction until enough torque is built up to
overcome it. At which point, pipe-rotation is initiated and the Coulomb friction
is reduced as it changes from static to dynamic. The resulting release of the
stored energy potentially pushes the drill string into a destructive stick slip limit
cycle. We refer to [2] for a more detailed description of this phenomena, where
it is shown that the simulation model used in the present talk is capable of
effectively replicating this type of stick-slip phenomenon.

Figure 6 depicts time series of the bottom rotational velocity and topside
torque for two sets of friction parameters µ and frat. It is clear from these
simulations that ZTorque yields a much slower controller, but one that effectively
avoids reflections in the relevant frequency range, thus mitigating the tendency
of stick slip. The length of time necessary to reach the setpoint rotation speed
is directly related to the time costant of the high pass filter in the ZTorque
system. It is also clear that the severity of the stick slip, and the tendency of
such oscillation to be initiated, is highly dependent on the friction parameters
µ, frat. A thorough treatise of the topic is presented in [1].

6 Sensitivity to filtering and latency

Latency and filtering in rig systems may be included directly in the control
system model presented above, and by evaluating the topside reflectivity as a
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Figure 6: Bottom velocity (top) and topside torque (bottom) as a function of
time, for µ = 0.2 and frat = 0.75 (top) and µ = 0.3 and frat = 0.85 (bottom),
for each of the three controllers.
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function of frequency, their effects on performance may be quantified. During
this talk, a series of examples will be presented which will include the effects of
top drives with large inertias, highly filtered torque or speed sensors and delays in
inverter - control system communication. Every increase in filtering or latency
leads to a decrease in system performance, but this performance degradation
may still yield an effective system in certain scenarios.
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1 Introduction

The drilling process involves transport phenomena: mechanical deformation waves,
pressure waves propagating into the drilling fluid, or simply the transport of mud, cut-
tings, and oil and gas in UnderBalanced Operations (UBO). These dynamics are often
coupled and take a growing importance when the length of the well increases.

From a systems and control perspective, the industrial needs related to these phe-
nomena span the whole field: set point tracking and disturbance rejection for pressure
control in Managed Pressure Drilling (MPD), disturbance estimation for kick manage-
ment, state estimation in UBO to monitor the amount of gas in the well, parameter es-
timation to perform reservoir characterization, or stabilization for severe slugging and
mechanical vibrations. All of these problems have in common their distributed nature
and, most importantly, high uncertainty.

Although the distributed nature of the transport phenomena is not necessary the
bottleneck for all of these questions, it appears that some cases require the associated
delays and wave propagation to be taken into account. We review here advances in
boundary control and estimation of hyperbolic Partial Differential Equations that could
bring solutions to some of these issues. We believe that the methods developed the past
few years have the potential to be successfully applied to problems in drilling. Towards
this end, we illustrate an application to friction estimation during stick-slip oscillations.

2 Torsional vibrations dynamics

To motivate the theoretical developments and illustrate their potential, we describe here
a control problem representative of the class we tackle. Consider the drill-string de-
picted on Figure 1. It undergoes lateral, torsional and axial vibrations that propagate as

This work has been partially supported by the ANR project MACS-Drill ANR-15-CE23-0008-01.
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Figure 1: Schematic view of a drillpipe.

waves along its whole length. The causes for these detrimental oscillatory phenomena
are many, generally associated with side forces [1] or cutting effects [12]. Importantly,
the distributed nature of the wave propagation can play a predominant role, as illustrated
in [4]. In [1], a model describing torsional dynamics is compared with field data, show-
ing excellent accuracy. This result comes at the price of a careful tuning of the model
parameters. More precisely, the model takes the form of a 1-D wave equation along the
linear spatial dimension x, where the source term is due to frictional contact with the
borehole and is modeled as

S(ω,x) =−ktρJω(t,x)−F (ω,x), (1)

where kt is a damping constant representing the viscous shear stresses between the pipe
and drilling mud, ω(t,x) is the angular velocity at time t and position x, ρ is the pipe
density and J its polar moment of inertia. The term F (ω) is a differential inclusion, to
be described, representing the Coulomb friction between the drill string and the bore-
hole,





F (ω,x) = Fd(x), ω > ωc,

F (ω,x) ∈ [−Fc(x),Fc(x)], |ω|< ωc,

F (ω,x) =−Fd(x), ω < ωc,

, (2)

where ωc is the threshold on the angular velocity where the Coulomb friction transitions
from static to dynamic, Fd is the dynamics Coulomb torque, and F (ω) ∈ [−Fc,Fc]
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denotes the inclusion where

F (ω,x) =−∂τ(t,x)
∂x

− ktρJω(t,x) ∈ [−Fc(x),Fc(x)], (3)

and take the boundary values ±Fc(x) if this relation does not hold.
There is a large uncertainty in the distributed Coulomb friction terms Fc(x), Fd(x).

In the next section, we design observers for hyperbolic PDEs in view of estimating these
on-line from topside measurements only.

3 Control design for Hyperbolic PDEs: backstepping design

Backstepping is a control and observer design method first introduced for boundary
control and observer design for PDEs in [13] and described in details in [8]. It relies on
a change of variables such that control (resp. observer) design is “simple” in the new
system of coordinates. We give here an example corresponding to the boundary control
of two coupled transport equations which model, e.g., channel flow [3] or single-phase
liquid flow, e.g. the annulus in Managed Pressure Drilling (MPD) [7]. Consider the
following system of PDEs

(
ut(t,x)
vt(t,x)

)
+

(
λ (x) 0

0 −µ(x)

)(
ux(t,x)
vx(t,x)

)
= Σ(x)

(
u(t,x)
v(t,x)

)
(4)

with the following boundary conditions

u(t,0) = d0v(t,0), u(t,1) = d1v(t,1)+U(t) (5)

The variables u and v represent quantities (e.g. pressure waves) being transported along
the spatial domain x ∈ [0,1]. The quantity u travels left to right while v travels in the
opposite direction, i.e. we have λ (x),µ(x)> 0. At the boundaries of the spatial domain,
the waves are reflected with coefficients d0 and d1, with |d0d1| < 11. Inside of the do-
main, the two states are coupled through the matrix Σ(x) typically representing friction
and gravity effects. These coupling terms are responsible for poor transient performance
and sometimes instability. Note that these equations usually stem from linearizing con-
servation laws around an equilibrium profile. Consider now the following change of
coordinates

(
α(t,x)
β (t,x)

)
=

(
u(t,x)
v(t,x)

)
+
∫ x

0
K(x,y)

(
u(t,y)
v(t,y)

)
dy (6)

1This is a necessary assumption for the system to be robustly stabilizable [10].
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Provided the kernel K(x,y) is appropriately chosen, as described in [5], the equations
satisfied by the new variables α and β read

(
αt(t,x)
βt(t,x)

)
+

(
λ (x) 0

0 −µ(x)

)(
αx(t,x)
βx(t,x)

)
= 0 (7)

with the following boudary conditions

α(t,0) = d0β (t,0), β (t,1) = d1α(t,1)+U(t)+
∫ x

0
L(x,y)

(
α(t,y)
β (t,y)

)
dy (8)

for a certain known kernel L(x,y). Notice that the coupling terms have been moved from
the right-hand-side of the PDE to the controlled boundary of the domain. This suggests
the following control law

U(t) =−kα(t,1)−
∫ x

0
L(x,y)

(
α(t,y)
β (t,y)

)
dy (9)

where k is a design parameter used to trade-off performance versus robustness. Con-
troller (9) ensures convergence of the solutions of (7)–(8) and, equivalently of (5)–(??)
with a decay rate 1

d1−k . Imposing k = d1 leads to finite-time convergence to zero in the-
ory, but with vanishing robustness margins, as detailed in [10, 6, 2]. Transformation (6)
serves as the basis for many extensions. In particular, in [5], a Luenberger observer is
designed, relying on boundary measurements. In [11], a slightly more general state-
feedback controller is obtained through a Port-Hamiltonian approach.

In [9], an integrator is added to (9) to reject constant disturbances, along with
a boundary observer design with added design parameters. This result in an imple-
mentable output-feedback control law with three degrees of freedom that have an intu-
itive impact on set point tracking performance, robustness to noise and uncertainty and
stability. In the next section, we show how these results can be extended to the more
industry-relevant model described in Section 1.

4 Application to friction estimation

4.1 State and parameter observer design

To estimate unmeasured states and uncertain friction terms, we consider the following
observer, based on an approximation of the model of [1] plus linear output error injec-
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tion terms

˙̂ω0 =−a0ω̂0 +b0v̂(0, t)+BUU(t)− p0(ω̂0− y(t)) (10)

û(0, t) = c0ω̂0(t)+d0v̂(0, t)−P0(ω̂0− y(t)) (11)

ût(x, t) =−λ (x)ûx(x, t)+σ++(x)û(x, t)+σ+−(x)v̂(x, t)− pu(ω̂0− y(t)) (12)

v̂t(x, t) = µ(x)vx(x, t)+σ−+(x)û(x, t)+σ−−(x)v̂(x, t)− pv(ω̂0− y(t)) (13)

v̂(1, t) = c1ω̂1(t)+d1û(1, t)−P1(ω̂0− y(t)) (14)
˙̂ω1 =−a1ω̂1 +b1û(1, t)+ d̂(t)− p1(ω̂0− y(t)) (15)

with




d(ω) = d̂d , ω̂1 > ωc,

d(ω) ∈ [−d̂c, d̂c], |ω̂1|< ωc,

d(ω) =−d̂d , ω̂1 <−ωc.

(16)

and where û, v̂ are defined as

u = ω̂ +
ct

JG
τ̂, v̂ = ω̂− ct

JG
τ̂, (17)

where ct =
√

ρ
J is the velocity of the torsional wave. This model is obtained by writing

the equations in Riemann coordinates and lumping the Bottom Hole Assembly (BHA)
into a single inertial element of rotational velocity ω1. Moreover, we have lumped the
inclusion representing the Coloumb friction at the ODE giving the downhole boundary
condition. This approximation is typically amenable given either of the following two
assumptions:

• Stabilizers located at the BHA ensures that a significant part of the total torque
on the drill-string from side forces is acting on the BHA.

• The inertia of the BHA is sufficiently large so as to ensure that the torque from
the BHA is large compared to that of the distributed side forces on the pipe. This
is a qualitative observation seen from simulations.

However, if both these points do not hold, the approximation could cause the approach
described in this paper to fail. The parameters d̂d and d̂c are chosen to satisfy the fol-
lowing update laws

(
˙̂dd(t)
˙̂dc(t)

)
=





(
k1(ω0− y(t))
k2(ω0− y(t))

)
|ω̂1|> ωc

(
k1(ω0− y(t))
−k2(ω0− y(t))

)
, |ω̂1|< ωc,

(18)
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with k1,k2 > 0. Using a transformation similar to (6), one can find values of the observer
gains and update gains such that when the observer velocity is non-zero, i.e. the observer
state is in slip mode (rather than sticking), then (10)–(15),(18) converges to the true
state. Although no proof of convergence is available for the full nonlinear observer, this
approach yields promising results when applied to field data, as described in Section 3.2.

4.2 Field data validation

We have validated the approach by applying it to a data set corresponding to a 1733
meter-long well with an inclination pattern similar to the one schematically depicted
on Figure 1. Since no bottom velocity measurement is available for this dataset, we
evaluate the performance of the observer using the following two metrics

• we use, as the plant, the simulation model of [1]. The result of this comparison
is depicted on Figure 2: the BHA velocity is accurately estimated and the friction
parameter estimates converge to constant values.

• we use field data and vary the initial condition of the friction parameter estimates.
These results are depicted on Figure 3. One can readily check that the estimates
converge to roughly the same value, regardless of the initial condition, suggesting
some form of robustness of the proposed approach.
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