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I. Automati
 sequen
es and re
ognizable sets



Integer bases

Let b ≥ 2 be an integer (the integer base).

A natural number n is represented by the �nite word

rep

b

(n) = 
ℓ · · · 
1
0

over the alphabet A

b

= {0, 1, . . . , b − 1} obtained from the greedy

algorithm:

n =

ℓ
∑

i=0




i

b

i .



b-automati
 sequen
es

Take b = 2 and 
onsider the following DFAO:

0 1

0 0

1

1

For ea
h n, the DFAO reads rep

2

(n) and outputs 0 or 1 a

ording to the

last state that is rea
hed.

We obtain the Thue-Morse sequen
e

01101001100101101001011001101001 · · ·



b-automati
 sequen
es

A sequen
e x : N
d → N is said to be b-automati
 if there exists a DFAO

with input alphabet A

b

su
h that for ea
h n ∈ N
d

, x(n) is the symbol

outputted by the DFAO after reading rep

b

(n).

Two remarks:

◮
A b-automati
 sequen
e 
an take only �nitely many values.

◮
We 
an work in any dimension d :

rep

2





5

3

10



 =





101

11

1010





0

=





0101

0011

1010



 =





0

0

1









1

0

0









0

1

1









1

1

0



 .



b-re
ognizable sets of integers

A set X ⊆ N
d

is b-re
ognizable if the language

rep

b

(X ) = {rep
b

(n) : n ∈ X}

is regular.

It is equivalent to say that its 
hara
teristi
 sequen
e χ
X

: N
d → {0, 1} is

b-automati
: there exists a DFAO that on input rep

b

(n) ouputs 1 if

n ∈ X , and outputs 0 otherwise.

The set of evil numbers {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, . . .}, i.e. the
natural numbers having an even number of 1 in base 2, is 2-re
ognizable.

Its 
hara
teristi
 sequen
e is the Thue-Morse sequen
e.



Cobham-Semenov theorem

Semi-linear sets of N
d

are �nite unions of sets of the form

p

0

+ p

1

N+ · · ·+ pℓ N

where p

0

,p
1

, . . . ,pℓ ∈ N
d

.

Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent integer bases.

If a subset of N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable,

then it is semi-linear.



Alternative de�nitions of b-re
ognizable sets

There exist several equivalent de�nitions of b-re
ognizable sets of

integers using

◮
logi


◮
b-uniform morphisms

◮
�niteness of the b-kernel

◮
algebrai
 formal series

◮
re
ognizable/rational formal series

See the survey of Bruyère-Hansel-Mi
haux-Villemaire.



II. Chara
terizing b-re
ognizable sets via logi




De�nable sets

Theorem (Bü
hi 1960, Bruyère 1985)

A subset X of N
d

is b-re
ognizable i� it is b-de�nable.



De�nable sets

Let S be a logi
al stru
ture whose domain is S .

A set X ⊆ S

d

is de�nable in S if there exists a �rst-order formula

ϕ(x
1

, . . . , x
d

) of S su
h that

X = {(s
1

, . . . , s
d

) ∈ S

d : S � ϕ(s
1

, . . . , s
d

)}.

A �rst-order formula is de�ned re
ursively from

◮
variables x

1

, x
2

, x
3

, . . . des
ribing elements of the domain S

◮
the equality =

◮
the relations and fun
tions given in the stru
ture S

◮
the 
onne
tives ¬,∨,∧, =⇒ , ⇐⇒

◮
the quanti�ers ∀, ∃ on variables.



Presburger arithmeti
 〈N,+〉

x ≤ y is de�nable by (∃z) (x + z = y). Not true in 〈Z,+〉.

x = 0 is de�nable by x + x = x . OK in 〈Z,+〉.

x = 1 is de�nable by x 6= 0∧ ((∀y) (y = 0∨ x ≤ y)). Not true in 〈Z,+〉.

Indu
tively, x = 
 is de�nable for every 
 ∈ N.

The sets aN+b are de�nable: aN+b = {x : (∃y) (x = a · y + b)} where

a · y stands for y + y + · · · y (a times).

In fa
t, a subset X ⊆ N is de�nable in 〈N,+〉 i� it is a �nite union of

arithmeti
 progressions, or equivalently, ultimately periodi
.

A subset X ⊆ N
d

is de�nable in 〈N,+〉 i� it is semi-linear.



b-de�nable sets

A set X ⊆ N
d

is b-de�nable if it is de�nable in the stru
ture 〈N,+,V
b

〉,
where

◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

b

(x) is the unary fun
tion de�ned as the largest power of b

dividing x if x ≥ 1 and V

b

(0) = 1.

For example, the set X = {x ∈ N : x is a power of b} is de�nable by

V

b

(x) = x .

It 
an be shown that the stru
tures 〈N,+,V
b

〉 and 〈N,+,P
b

〉 are not

equivalent, where P

b

(x) is 1 if x is a power of b and 0 otherwise.



The Bü
hi-Bruyère theorem

Theorem (Bü
hi 1960, Bruyère 1985)

A subset X of N
d

is b-re
ognizable i� it is b-de�nable. Moreover, both

dire
tions are e�e
tive.

Sket
h of the proof.

◮
From a DFA a

epting rep

b

(X ), 
onstru
t a �rst-order formula ϕ of

the stru
ture 〈N,+,V
b

〉 de�ning X , i.e. su
h that

X = {(n
1

, . . . , n
d

) ∈ N
d : ϕ(n

1

, . . . , n
d

) is true}.

◮
Conversely, given a �rst-order formula ϕ of the stru
ture 〈N,+,V

b

〉
de�ning X , build a DFA a

epting rep

b

(X ).
This part is done by indu
tion on the length of the formula ϕ.



Corollary

The �rst order theory of 〈N,+,V
b

〉 is de
idable

Proof.

◮
We have to show that, given any 
losed �rst-order formula of

〈N,+,V
b

〉, we 
an de
ide whether it is true or false in N.

◮
Sin
e there is no 
onstant in the stru
ture, a 
losed formula of

〈N,+,V
b

〉 is ne
essarily of the form ∃xϕ(x) or ∀xϕ(x).

◮
The set

Xϕ = {n ∈ N : 〈N,+,V
b

〉 � ϕ(n)}

is b-de�nable, so it is b-re
ognizable by the Bü
hi-Bruyère theorem.

This means that we 
an e�e
tively 
onstru
t a DFA a

epting

rep

b

(Xϕ).



◮
The 
losed formula ∃xϕ(x) is true if rep

b

(Xϕ) is nonempty, and

false otherwise.

◮
As the emptiness of the language a

epted by a DFA is de
idable,

we 
an de
ide if ∃xϕ(x) is true.

◮
The 
ase ∀xϕ(x) redu
es to the previous one sin
e ∀xϕ(x) is
logi
ally equivalent to ¬∃x¬ϕ(x). We 
an 
onstru
t a DFA

a

epting the base-b representations of

X¬ϕ = N \Xϕ.

The language it a

epts is empty i� the formula ∀xϕ(x) is true.



III. Appli
ations to de
idability questions for automati


sequen
es



Corollary

If we 
an express a property P(n) using quanti�ers, logi
al operations,

addition, subtra
tion, 
omparison, and elements of some b-automati


sequen
es, then ∃nP(n), ∃∞nP(n) and ∀nP(n) are de
idable.



In parti
ular, what about the property x(i) = x(j)?

If x : N
d → N is a b-automati
 sequen
e then, for all letters a o

urring

in x , the subsets x

−1(a) of Nd

are b-re
ognizable.

Hen
e they are de�nable by some �rst-order formulae ψ
a

of 〈N,+,V
b

〉
(by Bü
hi-Bruyère theorem): ψ

a

(n) is true i� x(n) = a.

Therefore, we 
an express x(i) = x(j) by the �rst-order formula

ϕ(x
1

, . . . , x
d

, y
1

, . . . , y
d

) of 〈N,+,V
b

〉:

ϕ(i, j) ≡
∨

a

(ψ
a

(i) ∧ ψ
a

(j)).



Appli
ations

Consider the property of having an overlap.

A (unidimensional) sequen
e x has an overlap beginning at position i i�

(∃ℓ ≥ 1) (∀j ≤ ℓ) x(i + j) = x(i + ℓ+ j).

Now suppose that x is b-automati
.

Given a DFAO M

1

generating x , we �rst 
reate an NFA M

2

that on input

(i , ℓ) a

epts if (∃j ≤ ℓ) x(i + j) 6= x(i + j + ℓ).

To do this, M

2

guesses the base-b representation of j digit-by-digit,

veri�es that j ≤ ℓ, 
omputes i + j and i + j + ℓ on the �y, and a

epts if

x(i + j) 6= x(i + j + ℓ).



We now 
onvert M

2

to a DFA M

3

using the subset 
onstru
tion, and

inverse the �nal status of ea
h state. Thus, M

3

a

epts those pairs (i , ℓ)
su
h that (∀j ≤ ℓ) x(i + j) = x(i + j + ℓ).

Now we 
reate an NFA M

4

that on input i guesses ℓ ≥ 1 and a

epts i�

M

3

a

epts (i , ℓ).

As we 
an de
ide if M

4

a

epts anything, we have obtained:

Proposition

It is de
idable if a b-automati
 sequen
e has an overlap.



Many de
idability results for automati
 sequen
es

◮
It is de
idable whether a b-automati
 sequen
e has k-powers (for a

�xed k).

◮
It is de
idable whether a b-automati
 sequen
e is ultimately

periodi
.

◮
Given two b-automati
 sequen
es x and y , it is de
idable whether

Fa
(x) ⊆ Fa
(y).

◮
. . .



What about de
iding if a b-automati
 sequen
e is Toeplitz?

The predi
ate

∀n ∃p ≥ 1 ∀ℓ x(n) = x(n + ℓp)

is not a �rst order formula in 〈N,+,V
b

〉. Why? Is this property

b-de�nable? What about the 
ase where the periods p are restri
ted to

powers of the base b?



A negative result by S
hae�er

If x is an arbitrary b-automati
 sequen
e, then the predi
ate

“x [i , i + 2n− 1] is an abelian square�

is not expressible in the logi
al theory 〈N,+,V
b

〉.



Complexity issues

In the worst 
ase, we have a tower of exponentials:

2

2

·
·

·

2

n

where n is the number of states of the given DFAO and the height of the

tower is the number of alternating quanti�ers if the �rst-order predi
ate.

This pro
edure was implemented by Mousavi, giving birth the Walnut

software.

In pra
ti
e, Go
, Henshall, Mousavi, Shallit and others were able to run

their programs in order to prove (and/or reprove) many results about

b-automati
 sequen
es.



IV. Enumeration: 
ounting b-de�nable properties of

b-automati
 sequen
es is b-regular



In fa
t, what we showed is

Proposition

Let x : N → N be a b-automati
 sequen
e and let y : N → N be de�ned

as y(i) = 1 if x has an overlap at position i , and y(i) = 0 otherwise.

Then y is b-automati
.

In the same vein, we 
an prove that 
ounting b-de�nable properties of a

b-automati
 sequen
e give rise to a b-regular sequen
e.



b-regular sequen
es

Let K be a 
ommutative semiring. A sequen
e x : N
d → K is

(K , b)-regular if there exist

◮
an integer m ≥ 1

◮
ve
tors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : ((A

b

)d )∗ → K

m×m

su
h that

∀n ∈ N
d , x(n) = λµ

(

rep

b

(n)
)

γ.

The triple (λ, µ, γ) is 
alled a linear representation of x and m is its

dimension.



A useful result

Theorem

For any b-de�nable subset X of N
d+1

, the sequen
e a : N
d → N∪{∞}

de�ned by

a(n
1

, . . . , n
d

) = Card{m ∈ N : (n
1

, . . . , n
d

,m) ∈ X}

is (N∪{∞}, b)-regular. If moreover a(Nd ) ⊆ N, then a is (N, b)-regular.



Appli
ation to the fa
tor 
omplexity

Corollary

For any b-automati
 sequen
e x : N → N, the fa
tor 
omplexity of x is

(N, b)-regular.

◮
Let x : N → N be a b-automati
 sequen
e.

◮
For all n ∈ N, let p

x

(n) denote the number of length-n fa
tors of x .

◮
Then p

x

(n) = #{i ∈ N : ∀j < i , x [j , j + n − 1] 6= x [i , i + n − 1]}.

◮
Consider X = {(i , n) ∈ N

2 : ∀j < i , x [j , j + n− 1] 6= x [i , i + n− 1]}.

◮
Sin
e x is b-automati
, the set X is b-de�nable.

◮
By 
hoi
e of X , we have p

x

(n) = #{i ∈ N : (i , n) ∈ X}.

◮
From the previous theorem, x is (N, b)-regular.



An open problem

What about the 
ounting the number of re
tangular fa
tors of size (m, n)
in a bidimensional b-automati
 sequen
e? Is the 
orresponding

bidimensional sequen
e (N, b)-regular?



V. Logi
 and non-standard numeration systems



Fibona

i representations

Let F = (F
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be the sequen
e obtained from the

rules:

F

0

= 1, F
1

= 2 and F

i+2

= F

i+1

+ F

i

for i ≥ 0.

A natural number n is represented by the �nite word

rep

F

(n) = 
ℓ · · · 
1
0

over the alphabet A

F

= {0, 1} obtained from the greedy algorithm:

n =
ℓ

∑

i=0




i

F

i

.

The greedy algorithm imposes, in addition to having a nonzero leading

digit 
ℓ, that the valid representations do not 
ontain two 
onse
utive

digits 1. The set of all possible representations is

L
F

= 1{0, 01}∗ ∪ {ε}.



U-systems

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequen
e, that is, an

in
reasing sequen
e of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = 
ℓ · · · 
1
0

over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1} obtained from the greedy

algorithm:

n =
ℓ

∑

i=0




i

U

i

.

In this 
ase, we talk about U-automati
 sequen
es and U-re
ognizable

sets of integers.



A logi
al framework for positional numeration systems

Two problems:

◮
In general, N is not U-re
ognizable.

◮
The addition is not re
ognized by �nite automaton.



Pisot systems

A Pisot number is an algebrai
 integer > 1 su
h that all of its Galois


onjugates have absolute value < 1.

Working Hypothesis (WH) : U sati�es a linear re
urren
e whose


hara
teristi
 polynomial is the minimal polynomial of a Pisot number.

For su
h systems, Frougny showed that N and the addition are

re
ognizable by �nite automata.



A logi
al framework for Pisot systems

U-de�nable sets are subsets of N
d

that are de�nable in the logi
al

stru
ture 〈N,+,V
U

〉, where

◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

U

(x) is the unary fun
tion de�ned as the smallest U

i


orresponding

to a nonzero digit in rep

U

(x) if x ≥ 1, and V

U

(0) = 1.

Theorem (Bruyère-Hansel 1997)

Under WH, the U-re
ognizable sets of integers 
oin
ide with the

U-de�nable sets of integers.



Corollary

The �rst order theory of 〈N,+,V
U

〉 is de
idable

This result implies that there exist algorithms to de
ide U-de�nable

properties for U-automati
 sequen
es.

As an appli
ation, one 
an prove (and reprove, or verify) many results

about the Fibona

i in�nite word

f = 01001010010010100101001001010010 · · ·

(whi
h is the �xed point of 0 7→ 01, 1 7→ 0).

0 1

0

1

0



Current work on enumeration (with Célia Cisternino and

Manon Stipulanti)

What is a U-regular sequen
e? Several 
hoi
es of de�nitions are possible.

In Manon Stipulanti's PhD thesis, it is proved that some sequen
e

Sϕ : N → N is F-regular by proving that there exist

◮
an integer m ≥ 1

◮
ve
tors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : {0, 01}∗ → K

m×m

su
h that

∀n ∈ N, Sϕ(n) = λµ
(

0 rep

U

(n)
)

γ

where, in order to 
ompute µ
(

0 rep

U

(n)
)

, it is understood that 0 rep

U

(n)
is fa
tored into blo
ks of 0 and 01.



Natural 
hoi
es for U-regularity

A sequen
e x : N
d → K is (K ,U)-regular if there exist

◮
an integer m ≥ 1

◮
ve
tors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : ((A

b

)d )∗ → K

m×m

su
h that

C1 ∀n ∈ N
d , x(n) = λµ

(

rep

U

(n)
)

γ

C2 ∀w ∈ ((A
U

)d )∗, x(val
U

(w)) = λµ(w)γ.



Theorem (Cisternino-Charlier-Stipulanti)

Under WH, C1 ⇐⇒ C2.

Conje
ture (analogue of the useful result)

Under WH, for any U-de�nable subset X of N
d+1

, the sequen
e

a : N
d → N∪{∞} de�ned by

a(n
1

, . . . , n
d

) = Card{m ∈ N : (n
1

, . . . , n
d

,m) ∈ X}

is (N∪{∞},U)-regular. If moreover a(Nd ) ⊆ N, then a is (N,U)-regular.



Related works on real numbers

In general real numbers are represented by in�nite words.

In this 
ontext, we 
onsider Bü
hi automata. An in�nite word is a

epted

when the 
orresponding path goes in�nitely many times through an

a

epting state.

We talk about ω-languages and ω-regular languages.



β-re
ognizable and β-de�nable subsets of Rd

◮
Notion of β-re
ognizability of subsets of R

d

, where β > 1 is a real

base.

◮
For β = 1+

√
5

2

, the ω-language of the (quasi-greedy)

β-representations of [0, 1] is a

epted by

1

0

0

◮
First order theory 〈R,+,≤,Zβ ,Xβ〉 leading to a notion of

β-de�nability.

◮
For β Pisot, β-re
ognizability 
oin
ide with β-de�nability.

◮
For β Pisot, the �rst order theory of 〈R,+,≤,Zβ ,Xβ〉 is de
idable.



De
iding topologi
al properties

For β Pisot, the following properties of β-re
ognizable subsets X of R
d

are de
idable:

◮
X has a nonempty interior:

(∃x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is open:

(∀x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is 
losed: OK as R

d \X is b-re
ognizable.

◮
. . .
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