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Integer bases

Let b > 2 be an integer (the integer base).
A natural number n is represented by the finite word
rep,(n) =c¢;---c1co

over the alphabet A, = {0,1,...,b— 1} obtained from the greedy

algorithm:
¢
n= Z C,'bi.
i=0



b-automatic sequences

Take b = 2 and consider the following DFAO:

For each n, the DFAO reads rep,(n) and outputs 0 or 1 according to the
last state that is reached.

We obtain the Thue-Morse sequence

01101001100101101001011001101001 - - -



b-automatic sequences

A sequence x: NY — N is said to be b-automatic if there exists a DFAO
with input alphabet A, such that for each n € N?, x(n) is the symbol
outputted by the DFAO after reading rep,(n).

Two remarks:
» A b-automatic sequence can take only finitely many values.

» We can work in any dimension d:

5 1017°  [o101 ol 1] [o] [1
rep, | 3| = | 11 | = |oo11| = |o| |o] |1] |1
10 1010 1010 1| [o] [1] |o



b-recognizable sets of integers

A set X C N? is b-recognizable if the language

repp(X) = {repp(n): n € X}

is regular.

It is equivalent to say that its characteristic sequence yx: N¢ — {0,1} is
b-automatic: there exists a DFAO that on input rep,(n) ouputs 1 if
n € X, and outputs 0 otherwise.

The set of evil numbers {0,3,5,6,9,10,12,15,17,18,20,23,...}, i.e. the
natural numbers having an even number of 1 in base 2, is 2-recognizable.
Its characteristic sequence is the Thue-Morse sequence.



Cobham-Semenov theorem

Semi-linear sets of N? are finite unions of sets of the form
po+pP1N+---+pN

where po, p1,...,p¢ € NY.

Theorem (Cobham 1969, Semenov 1977)

Let b and b’ be multiplicatively independent integer bases.
If a subset of N? is simultaneously b-recognizable and b'-recognizable,
then it is semi-linear.



Alternative definitions of b-recognizable sets

There exist several equivalent definitions of b-recognizable sets of
integers using

> logic
» b-uniform morphisms

finiteness of the b-kernel

v

v

algebraic formal series

v

recognizable/rational formal series

See the survey of Bruyére-Hansel-Michaux-Villemaire.
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Definable sets

Theorem (Biichi 1960, Bruyére 1985)
A subset X of N? js b-recognizable iff it is b-definable.



Definable sets

Let S be a logical structure whose domain is S.
A set X C S9 is definable in S if there exists a first-order formula
@o(x1,...,xq) of S such that

X ={(s1,...,54) €S?: SEp(s1,...,54)}

A first-order formula is defined recursively from
» variables x1, x2, x3, . .. describing elements of the domain S

> the equality =

v

the relations and functions given in the structure S

» the connectives -, V, A\, = |, <—

v

the quantifiers 'V, 3 on variables.



Presburger arithmetic (N, +)

x < y is definable by (3z) (x + z = y). Not true in (Z,+).
x = 0 is definable by x + x = x. OK in (Z,+).
x = 1is definable by x # 0A ((Yy) (y =0V x <y)). Not true in (Z, +).
Inductively, x = c is definable for every ¢ € N.

The sets aN +b are definable: aN+b = {x: (Jy) (x =a-y + b)} where
a-y stands for y +y +---y (a times).

In fact, a subset X C N is definable in (N, +) iff it is a finite union of
arithmetic progressions, or equivalently, ultimately periodic.

A subset X C N is definable in (N, +) iff it is semi-linear.



b-definable sets

A set X C N? is b-definable if it is definable in the structure (N, 4+, Vp),
where

» +(x,y,z) is the ternary relation defined by x + y = z,

» Vjp(x) is the unary function defined as the largest power of b
dividing x if x > 1 and V,(0) = 1.

For example, the set X = {x € N: x is a power of b} is definable by
Vp(x) = x.

It can be shown that the structures (N, +, V) and (N, +, Pp) are not
equivalent, where Pp(x) is 1 if x is a power of b and 0 otherwise.



The Biichi-Bruyére theorem

Theorem (Biichi 1960, Bruyére 1985)

A subset X of N? is b-recognizable iff it is b-definable. Moreover, both
directions are effective.

Sketch of the proof.

» From a DFA accepting rep,(X), construct a first-order formula ¢ of
the structure (N, +, V}) defining X, i.e. such that

X ={(n,...,nqg) €N o(ny,...,ng) is true}.

» Conversely, given a first-order formula ¢ of the structure (N, +, V})
defining X, build a DFA accepting rep,(X).
This part is done by induction on the length of the formula ¢.



Corollary
The first order theory of (N, +, V}) is decidable

Proof.

» We have to show that, given any closed first-order formula of
(N, +, V), we can decide whether it is true or false in N.

» Since there is no constant in the structure, a closed formula of
(N, +, V) is necessarily of the form Ixp(x) or Vxp(x).

» The set
X, ={neN: (N,+, Vo) F o(n)}

is b-definable, so it is b-recognizable by the Biichi-Bruyére theorem.
This means that we can effectively construct a DFA accepting

repy(Xe)-



» The closed formula 3x¢(x) is true if rep,(X,) is nonempty, and
false otherwise.

» As the emptiness of the language accepted by a DFA is decidable,
we can decide if Ixp(x) is true.

» The case Vxp(x) reduces to the previous one since Vxp(x) is
logically equivalent to =3x—¢(x). We can construct a DFA
accepting the base-b representations of

Xop = N\X,.

The language it accepts is empty iff the formula Vx¢(x) is true.
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Corollary

If we can express a property P(n) using quantifiers, logical operations,
addition, subtraction, comparison, and elements of some b-automatic
sequences, then InP(n), 3°°nP(n) and VnP(n) are decidable.



In particular, what about the property x(i) = x(j)?

If x: N - N is a b-automatic sequence then, for all letters a occurring
in x, the subsets x~1(a) of N are b-recognizable.

Hence they are definable by some first-order formulae 1, of (N, +, V})
(by Biichi-Bruyére theorem): 1),(n) is true iff x(n) = a.

Therefore, we can express x(i) = x(j) by the first-order formula
So(xlv" deylv"'ayd) Of <N7+7 Vb>

=\ (@a(i) A (i)



Applications

Consider the property of having an overlap.

A (unidimensional) sequence x has an overlap beginning at position i iff
F>1) (V<O x(i+j)=x(i+0+]).

Now suppose that x is b-automatic.

Given a DFAO generating x, we first create an NFA that on input
(7,£) accepts if (Fj <€) x(i +j) # x(i +j+ £).

To do this, guesses the base-b representation of j digit-by-digit,
verifies that j < ¢, computes i 4+ j and i +j + ¢ on the fly, and accepts if
x(i+j) £ x(i+j+40).



We now convert to a DFA using the subset construction, and
inverse the final status of each state. Thus, accepts those pairs (7, £)
such that (Vj <€) x(i +j) = x(i +j + £).

Now we create an NFA that on input i guesses ¢ > 1 and accepts iff
M5 accepts (7, £).
As we can decide if accepts anything, we have obtained:

Proposition
It is decidable if a b-automatic sequence has an overlap.



Many decidability results for automatic sequences

» It is decidable whether a b-automatic sequence has k-powers (for a
fixed k).

» |t is decidable whether a b-automatic sequence is ultimately
periodic.

» Given two b-automatic sequences x and y, it is decidable whether
Fac(x) C Fac(y).



What about deciding if a b-automatic sequence is Toeplitz?

The predicate
Vn 3p > 1V x(n) = x(n + p)

is not a first order formula in (N, +, V},). Why? Is this property
b-definable? What about the case where the periods p are restricted to
powers of the base b?



A negative result by Schaeffer

If x is an arbitrary b-automatic sequence, then the predicate
“x[i, i 4+ 2n—1] is an abelian square”

is not expressible in the logical theory (N, +, V).



Complexity issues

In the worst case, we have a tower of exponentials:
,2"

22

where n is the number of states of the given DFAO and the height of the
tower is the number of alternating quantifiers if the first-order predicate.

This procedure was implemented by Mousavi, giving birth the Walnut
software.

In practice, Goc, Henshall, Mousavi, Shallit and others were able to run
their programs in order to prove (and/or reprove) many results about
b-automatic sequences.
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In fact, what we showed is

Proposition

Let x: N — N be a b-automatic sequence and let y: N — N be defined
as y(i) = 1 if x has an overlap at position i, and y(i) = 0 otherwise.
Then y is b-automatic.

In the same vein, we can prove that counting b-definable properties of a
b-automatic sequence give rise to a b-regular sequence.



b-regular sequences

Let K be a commutative semiring. A sequence x: N% — K is
(K, b)-regular if there exist

> aninteger m>1
» vectors A € K1X™ and v € Km™x1
» a morphism of monoids 11: ((Ap)9)* — K™*m

such that
YneN?  x(n) = Ai(repy(n))7y.

The triple (), u1,) is called a linear representation of x and m is its
dimension.



A useful result

Theorem
For any b-definable subset X of N°™1, the sequence a: N¢ — NU{oo}
defined by

a(ny,...,ng) = Card{m € N: (ny,...,nqg,m) € X}

is (NU{oo}, b)-regular. If moreover a(N?) C N, then a is (N, b)-regular.



Application to the factor complexity

Corollary

For any b-automatic sequence x: N — N, the factor complexity of x is
(N, b)-regular.

» Let x: N — N be a b-automatic sequence.

» For all n € N, let pi(n) denote the number of length-n factors of x.
» Then p(n) = #{i e N: Vj <i, x[j,j+n—1] #x[i,i +n—1]}.

» Consider X = {(i,n) € N*: Vj < i, x[j,j+n—1] # x[i,i +n—1]}.
» Since x is b-automatic, the set X is b-definable.

» By choice of X, we have p,(n) = #{i € N: (i,n) € X}.

» From the previous theorem, x is (N, b)-regular.



An open problem

What about the counting the number of rectangular factors of size (m, n)
in a bidimensional b-automatic sequence? Is the corresponding
bidimensional sequence (N, b)-regular?
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Fibonacci representations

Let F = (Fi)i>0o = (1,2,3,5,8,...) be the sequence obtained from the
rules:
F():]., F1:2and F,-+2:F,-+1+F,-fori20.

A natural number n is represented by the finite word
repe(n) =c¢o---c1co

over the alphabet Ar = {0, 1} obtained from the greedy algorithm:

The greedy algorithm imposes, in addition to having a nonzero leading
digit c¢, that the valid representations do not contain two consecutive
digits 1. The set of all possible representations is

Lr =1{0,01}* U {e}.



U-systems

Let U = (Ui)i>o = (1,2,3,5,8,...) be a base sequence, that is, an
increasing sequence of positive integers satisfying:

Ui
Uy=1 and Cy=sup .
i>0 Ui

A natural number n is represented by the finite word
repy(n) =ce---c1co

over the alphabet Ay = {0,1,...,[Cy] — 1} obtained from the greedy

algorithm:
¢
n= Z Ci U,'.
i=0

In this case, we talk about U-automatic sequences and U-recognizable
sets of integers.



A logical framework for positional numeration systems

Two problems:
> In general, N is not U-recognizable.

» The addition is not recognized by finite automaton.



Pisot systems

A Pisot number is an algebraic integer > 1 such that all of its Galois
conjugates have absolute value < 1.

Working Hypothesis (WH) : U satifies a linear recurrence whose
characteristic polynomial is the minimal polynomial of a Pisot number.

For such systems, Frougny showed that N and the addition are
recognizable by finite automata.



A logical framework for Pisot systems

U-definable sets are subsets of N that are definable in the logical
structure (N, +, V), where

» +(x,y,z) is the ternary relation defined by x + y = z,

» Vy(x) is the unary function defined as the smallest U; corresponding
to a nonzero digit in rep;(x) if x > 1, and Vy(0) = 1.

Theorem (Bruyére-Hansel 1997)

Under WH, the U-recognizable sets of integers coincide with the
U-definable sets of integers.



Corollary
The first order theory of (N, +, V) is decidable

This result implies that there exist algorithms to decide U-definable
properties for U-automatic sequences.

As an application, one can prove (and reprove, or verify) many results
about the Fibonacci infinite word

f = 01001010010010100101001001010010 - - -

(which is the fixed point of 0 — 01, 1+ 0).




Current work on enumeration (with Célia Cisternino and
Manon Stipulanti)

What is a U-regular sequence? Several choices of definitions are possible.

In Manon Stipulanti’s PhD thesis, it is proved that some sequence
S,: N — N is F-regular by proving that there exist

> aninteger m>1
» vectors A € K1X™ and v € Km™x1
» a morphism of monoids p: {0,01}* — K™*™

such that
VneN, S,(n) = Au(0repy(n))y

where, in order to compute p(0repy(n)), it is understood that 0 rep(n)
is factored into blocks of 0 and 01.



Natural choices for U-regularity

A sequence x: N9 — K is (K, U)-regular if there exist
> an integer m>1
» vectors A € K1X™ and v € K™x!
» a morphism of monoids 11 ((Ap)9)* — K™*m
such that
Vne N?  x(n) = Au(repy(n))y

Yw € ((Av)?)", x(valy(w)) = Au(w)y.



Theorem (Cisternino-Charlier-Stipulanti)
Under WH, C1 «— C2.

Conjecture (analogue of the useful result)

Under WH, for any U-definable subset X of N%*1, the sequence
a: N = NU{co} defined by

a(ny,...,ng) = Card{m e N: (ny,...,nq,m) € X}

is (NU{oo}, U)-regular. If moreover a(N?) C N, then a is (N, U)-regular.



Related works on real numbers

In general real numbers are represented by infinite words.

In this context, we consider Biichi automata. An infinite word is accepted
when the corresponding path goes infinitely many times through an
accepting state.

We talk about w-languages and w-regular languages.



[3-recognizable and S-definable subsets of R

» Notion of 3-recognizability of subsets of RY, where 8 > 1 is a real
base.

» For = 1+2‘/_ the w-language of the (quasi-greedy)
B-representations of [0, 1] is accepted by

0

0

» First order theory (R, +, <,Zg, X3) leading to a notion of
[-definability.

» For g Pisot, B-recognizability coincide with 5-definability.

» For 8 Pisot, the first order theory of (R, +,<,Zg, X3) is decidable.



Deciding topological properties

For 3 Pisot, the following properties of S-recognizable subsets X of RY
are decidable:

» X has a nonempty interior:

(Fx e X) (Fe>0) (Vy) (x—y|l<e = yeX).

» X is open:

(Vx e X) (Fe>0) (Vy) (x—y|<e = yeX).

> X is closed: OK as R?\ X is b-recognizable.

> ..
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