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Abstract—This paper addresses the problem of centralized capacity, or reliance on traditional engineering practif®.
optimization of an interconnected power system partitioned |n this context, prior to agreeing to transferring some of
into several regions controlled by different transmission system their competencies to a higher decision level, the TSOs may

operators (TSOs). It is assumed that those utilities have agreedt . ¢ ding the fulfill t of thai
transferring some of their competencies to a centralized control require some guarantees regarding the tuffiiment o mo

center, which is in charge of setting the control variables in the Objectives by the CCC, which may be a conflicting issue,
entire system to satisfy every utility’s individual objective. This as satisfying the objective of a single TSO may adversely

paper proposes an objective method for centralized optimization affect other TSOs. As introduced in [9], this ability of the
of such multi-TSO power systems, which relies on the assumption optimization scheme to satisfy the needs of every party is

that each TSO has a real-valued optimization function focusing ivalent to the fai f th timizati h
on its control area only. This method is illustrated on the IEEE equivalent to the tairness or the optimization scheme.

118 bus system partitioned into three TSOs. It is applied to ~ Negotiation is usually advocated to reach a fair solution
the optimal reactive power dispatch problem, where the control for multi-party resource allocation problems [10]. In these
variables are the voltage settings for generators and compen- of multi-TSO operation issues, as the optimization scheme
sators. After showing that the method has some properties of ghq1g handle short-term operation, negotiation can not be
fairness, namely freedom from envy, efficiency, accountability, . . . . .
and altruism, we emphasize its robustness with respect to certain Cons'der?d .a SWtab'e solution. However, the (;h0|ce of aimul
biased behavior of the different TSOs. TSO optimization procedure that would satisfy every party
may be subjected to negotiation between the different TSOs.
Several procedures have already been proposed for multi-
objective optimization. Most are based on a weighting of the
different objectives, as in [11], [12], for example, or on a
priority given to the objectives, as in [13], where some d th
objectives are considered as constraints in the optinoizati
Several large-scale disturbances emphasized that sgourepsocedure. Those strategies may, however, not be acceptabl
eration of interconnected power systems requires codidima for every party as they depend on an arbitrary prioritizatio
between transmission system operators (TSOs). In patjcubetween the different objectives. Other methods are based o
references [1], [2] report two major disturbances whosterative choices made by a central entity, as in [14]. This
consequences were leveraged by the lack of coordinatisinategy is also inappropriate for multi-TSO operationthees
between the TSOs. arbitrary choice at each iteration could be questioned by th
To address the problem of coordination in multi-TSO sysdifferent parties.
tems, two main trends have arisen [3], [4]. On one hand, In this paper, we propose a new scheme, that could be used
ad-hoc decentralized control schemes have been propasedyyathe CCC to solve multi-party optimization problems, when
in [5], [6] for example. On the other hand, efforts have beethe objective of every TSO can be represented by a real-@alue
made to create higher-level entities, which would be in gharfunction. The scheme relies on the formulation of the pnoble
of coordinating operation over very large geographicahgare as a multi-objective optimization problem and picks a gotut
By way of example, the potential benefits of a centralizeithat could, at least in principle, bring consensus among the
control center (CCC) to make decisions for multi-TSO systendifferent TSOs. Indeed, besides the fact that the solution
are emphasized in [7]. minimizes a specific distance from the utopian minimum in
It is, however, expected that, even with the creation of @ normalized multi-dimensional space, we show that it has
CCC, every TSO will preserve some prerogatives of its owgome properties of fairness. In addition, we also show tiet t
system operation. More specifically, operational objestiare scheme is robust with respect to certain biased behavior by
likely to remain defined by the TSOs since they may bise different parties.
influenced by local topology, system architecture, geimrat The paper is organized as follows. Section Il defines the
multi-objective problem and presents the illustrativerapke.
Manuscript published in EPES Vol. 31, No. 9, pp.482-488,tS2p09. | Section Ill, we propose a normalization of the multi-
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scheme in their favor. Finally, some opportunities for Hiert
research are outlined in Section VI.

Il. CENTRALIZED OPTIMIZATION OF A MULTI-TSO
SYSTEM

In the first part of this section, we describe the multi-

objective problem faced by the CCC, and introduce some use-
ful notations. Afterward, the illustrative example is prated.

A. Formulation of the problem

We focus on a system partitioned im&7'SO areas, where
each area is controlled by a singlel'SO;. EachT'SO; is  Fig. 1. |EEE 118 bus system with three TSOs.
assumed to have its own objective expressed by an objective
function C;(u), whereu is the vector of control variables for
the entire system. Although an objective function may be . ||justrative example
non-economic nature, it will also be referred to hereafter a
“cost function.”

In this paper, we assume the existence of a CCC that ai%
to assess the optimal control vectar, which is defined
as the solution of the following constrained multi-objeeti
optimization problem

As a benchmark system, we use the IEEE 118 bus system

rtitioned into three areas, referred to7asO., T'SO,, and

Os. This system is presented in Figure 1.

The proposed methodology is applied to a multi-TSO re-

active power dispatch problem, which is a particular type of

optimal power flow. In such a context, the load demand and
. the active power generation pattern are considered knoven. W

mum[cl(u)’@(u)’ ++ Onorso(w)] @) use a decZntraIizged slack bEs in our simulations, which may

slightly change the generation dispatch depending on eactiv

subject to power losses. Every element € U is composed of the
g(u)=0 (2) generators’ output voltages, the capacitor banks’ or FACTS
reactive power injections and the tap settings. To model a
h(u) < 0 3) rea_l system, some of those control actions should be déscret
- variables, as in [16], for example. However, as the use of
where _ . . giscrete and continuous variables would result in a mixed-
g(u) = 0 represents the equality constraints, an

Integer non-linear programming problem, whose solutiory ma
Be difficult to compute, we have considered only continuous
control variables in our simulations.

h(u) < 0 represents the inequality constraints. From now o
the set of solutionax such thatu verifies Equality (2) and

Inequality (3) will be referred to a¥. . .
quality (3) wi & Equality (2) represents the load flow equations and constant

re;:reh:tefdo?:l E}Sazil?;?tOejjixgs?orfgln téglstvzcgzgag bg :/(aeF():_thCtive power export, while Inequality (3) corresponds te th
oL space by ) fimits on voltage magnitude at each bus as well as reactive
[Cy(u),Ca(n),...,Cnprso(u)]. A solutionu, is said “non-

dominated” if there exists no other solutienc U such that, power injections for every generator or compens:.ator..
Vi€ [1,2,..., NVTSO], Cs(u) < Ci(un). In the N6T'SO- In real systems, every'SO,; may have an objective of

dimensional cost space, the set of non-dominated solutio"’hsdlfferent hature. We consider in this paper three types of

represents the Pareto-front of the multi-objective proble ﬁ)zz[e];u;gg;‘ tﬁgsﬁqirirrﬁiztgteiorrp'g;n;'z;jggrgcascttj'xqe Oﬁc’or‘g’_er

It is commonly adopted in the multi-objective optimizationacﬁve zower in'ectionsX: 0?). and a linear combi-

literature that the solution of such a problem should be on or P Lossis JETSO; <37 )

as close as possible to its Pareto-front [15]. nation of P; and )_;crg0, @;- Such formulations of
Conseauently. should the Pareto-front be reduced to aesinﬂ]e objectives are commonly used in the literature to descri

q ¥: S . a erational objectives of TSOs (see for example [16], [17],
element, the solution of the ar.bltrage made_by the CCC WOLt . [19]) but others, like transmission capacity or vgla
then be this element. Indeed, in such a particular contestet stability margin, could also be used [20], [21]. Those three

would exist a solution that minimizes every single objeztiv : .
) . té/ es of cost function can be represented by the following
at once. However, in general, the Pareto-front is composéed. — . .
. e opjective function
of many elements (possibly an infinite number of them) an
the CCC must choose one of those elements. In this paper, the C _ Losses 2
. . : . ’ s(a) = le u)+ (1 — “(u 4
arbitrage problem to which the CCC is confronted is theeefor () =~ () + {1 =) Z @ @
the problem of selection of the fairest solution on the Raret

front. where~; € [0, 1] is the weight coefficient for area In our

JETSO;



example,y; is equal to0, v2 to 0.9 and~s to 1. The Pareto- choose the solutiorn € U that minimizes the distance
front of our illustrative case is represented in Figure 2. — related to an Euclidean norm after having normalized the
cost functions— with the “utopian minimum.”

The procedure for normalizing the cost functions is pre-
sented in Section IlI-A. Section 11I-B describes the praoed
for computing the solution that is closest to the utopian
minimum in the normalized space. Finally, the approach is
illustrated in Section IV on the IEEE 118 bus system parti-
tioned into three TSOs.

W

A. Normalization

1500 We explain hereafter the normalization process that can be
adopted to obtain a fair arbitrage. Its rationale is twofold
First, every local objective can have a different naturg.(e.
minimization of active power losses, maximization of reac-
tive power reserves, etc). This problem should naturally be
addressed by the normalization process. Second, it alsesnak
Fig. 2. Representation of the Pareto-front for the IEEE 118 bystem sense to r.]ormahze t.he COSt. functlpns to penalize the TSOs
with three TSOsC; (u), the objective function of’SO;, represents reactive Whose objective fulfillment is detrimental to other TSOs’
power support in area, C2(u) is a weighted function of active power lossesobjectives and favor those whose objectives are partigular
%r;c;er:?stglree;ower support in ar@a and C3(u) represents active power compatible with the others.
' For a particular cost functiorC;(u), the normalization
factor will be the product of the two termS; and y;. The

OPTIMIZATION PROBLEMS the following equation
In this section, we propose an approach for electing the — Ci(u
prop pp g Ci(u) = SiW %

point on the Pareto-front that could satisfy the differeatties.

We have designed the optimization procedure as follows.
First, we suppose that evef§SO; provides the CCC with
its objective and constraint functior@(uTsoi), gi(urso,),
and };i(uTSOi)y whereurso, represents the control variable
for T'SO;’s area. The symbdlon C;, g;, and h; specifies
that, since d"'SO; does not systematically know the systent . i

topology, generation pattern, and load demand in the other! N€ termC; is defined as follows.

7C$><Xi

We note that— since we will pick after normalization a
solution that stands closest to the utopian minimura small
gwormalization factor fofl’SO; will have for effect to give more
weight to its own objective functiot’;(u) and will then favor

areas, it can only formulate its own objective and constsaas NVTSO ¢ () — C(u?)
functions of its own system state, definedyso,. After re- e = Z L L (8)
ceiving the information from every'SO; on its objective and j=1 NoT'SO

constraint functionsC*,»(uTSOi), di(urso,), and }ii(uTSO,i)v

the CCC defines the multi-objective probler;(u), Vi e It has been introduced for two main reasons. First, it is

expressed in the same unit @s(u) and will therefore make

[1,2,...,NbT'SO], g(u), andh(u)), and, afterward, faces the "~ - ; o ; :
problem of electing the fairest solution on its Pareto-fron ppssuble the comparison .betwee_n opjecuve functions lgavin
different natures. In particular, it will make our approach

The proposed approach relies on finding a solution as clas . .
as possible to the “utopian minimune** defined in [22] as m%ependent of any scaling factor that may affect the diffier

cost functionsC;(u). Second, the ternC? will also favor
C" = [Cy(u}), Ca(ul), ..., COnerso(Wirso)]  (B) a TSO whose objective fulfillment is weakly penalized by

. : . .. the fulfillment of the other objectives. Indeedy being the
where u? is the solution of Problem (6), which opt|m|zesavera e value of the overcostsupported byT'SO; for the
the entire system with the unique objectivé (u) under g PP .

. . NbT'SO control variablesuj, u3, ..., Wy,rgo. this term
constraints (2)-(3), that is will be particularly small if the overcosts inSdOuced by other
u! = arg minC;(u) (6) objective fuffillmentsC;(uj) are small.
uey The termy; is defined as follows.
The approach is based on the following principle: should NBTSO i} i}
a “utopian minimum” exist, it would then be chosen as the S Cj(u}) — Cj(uj) ©)
solution since everyone of TSOs' objectives are minimized Xi = cy

with that solution. However, we know that, except if the
Pareto-front is reduced to a sm_gle el_ement’ there isioU 1The term “overcosts” refers, in this paper, to the diffeehetween the
that corresponds to the “utopian minimum.” Therefore, watual costs”;(u) and their minimal value”; (u;).



It has been introduced to penalize the detrimental impatt Example
of T'SO;’s objective ach|evem*ent on thi other TSOs’ costs, The proposed method is illustrated hereafter with the test
represented by the ternd;(uj) — Cj(uj). We note that gystem described in Section I1-B. Table 11 gives the differe

this difference term is divided by’?. Thus, this division cgstg C;(u*), normalized overcoste(

u;) — C;(uy), and

K2

allows to sum up overcosts having different natures. Alsgyyms invoived in the computation of the normalization dast

this normalization aims to leverage the penalization Th&©;

The bottom of the table also gives the costg(u*) and

endures when its optimal control variables are detrimetatal ,ormalized overcost§; (u*) — C;(u?) associated with the so-
the objective of anotheF'SO;, which is itself compatible with |,iion u* of the centralized optimization scheme. In addition,

the other TSO’s objective.

Figure 3 represents the normalized cost vector correspgndi

By anticipating the results of Section IV, we find thatig w* and the normalized Pareto-front. As one can observe for

by using the normalization factaf? x x;, the solution of this particular example, the solutiart elected by the scheme
the arbitrage has some properties of fairness in the ecanomai cipse to the utopian minimum.

sense.

B. Optimization of the normalized problem

As mentioned earlier, our approach will elect the solution
u*, for which the cost vectorC'(u*) minimizes (in the
normalized cost space) the Euclidean distance to the “amopi
minimum” under Constraints (2)-(3). This problem can be
formulated as follows
Ci(u;))? (10)

u arl%;en[}m ; (Ci(u)
Solving this problem is indeed equivalent to finding the
point on the Pareto-front that minimizes the distance to
the utopian minimum. As a proof, suppose that is
not on the Pareto-front but solution of (10) under Con-
straints (2)-(3). Then, there would exist a solutiad
such thatC;(u’) < C;(u*) for everyi < NOIT'SO. In

this case, for every area, we would haveC;(v’) <
Ci(u*) and consequentlyy N""%? (C; () — C;(u}))? <

SINPTSO (@ (u*) — Ci(up))2. Therefore,u* would not be

the solution of (10), and the equivalence is proved.

Table | summarizes the procedure for computing, according
to our strategy, a point on the Pareto-front, which coulagtea
displease the different TSOs. This procedure implies sglvi
the optimization problem (10) under Constraints (2)-(3isT
problem can be solved using a standard optimal power flow
algorithm [23], [24], [25].

Input: For everyT'SO;, a real-valued objective function
C;(u) and a constraint vectag; (u).
Output: A vector of control variablesi*.
Step 1 For every TSOi, computeu?, solution of:
arg minC}; (u) with respect tog(u) < 0.
uclU
Step 2 Compute the solutiom™ of:
arg min 37 475 (5 (w) - Ci(u)))?
uc
with respect tog(u) < 0
whereC; (u) = i

Coxx;
with C9 =37

C;(u})—Ci(uj)
J NbT SO

(Cj(u])=Cj(u}))
j C° .

2

andx;

Fig. 3.

D (v) I ‘ |
0 0.2 0.4 0.6 0.8 |
C (w) : Paret9 solutions
3 o Solution of the scheme
2.4 ~ Utopian minimum

C,(w)

Localization of the CCC'’s solution on the normalizeardé®o-front
for the IEEE 118 bus system partitioned between three TS@®@s. color
mapping represents the Euclidean distad2éu) (in the normalized cost
space) between each solutianand the utopian minimum.

[ [ i=1 [i=2]i=3]
C;(uf) 4.36 134.82 | 44.40
C;(u) 1381.00 | 34.64 | 47.97
C;(ut 1278.28 | 302.00 | 37.92

; 883.52 | 122.51 | 5.51
Xi 1.99 3.38 3.62
Ci(ur) — Ci(u)) 0 0.2418 | 0.3245
Ci(u}) — Ci(ur) || 0.7815 0 0.5032
Ci(uf) — Ci(u?) || 0.7232 | 0.6453 0
I C;(u®) [ 2001 [ 377 [ 3813 |

.

(up) [[ 0.0089 [ 0.0071 [ 0.0106

|

TABLE I

VALUES OF THE DIFFERENT COSTE;(u) AND NORMALIZED OVERCOSTS
Ci(u) — Ci(u]) FOR EVERY SOLUTIONu} OF THE SINGLE OBJECTIVE

OPTIMIZATIONS AND FOR THE SOLUTIONuU* OF THE CENTRALIZED
DECISION MAKING SCHEME. VALUES OF C? AND x; FORT'SO; ARE
ALSO REPORTED

IV. FAIRNESS OF THE METHOD

TABLE |
AN ALGORITHM FOR IDENTIFYING A FAIR SOLUTION OF THE
MULTI-OBJECTIVE OPTIMIZATION PROBLEM

In Section Ill, we have presented a new method for choosing
a single solution of the multi-objective optimization plein
described in Section II. As introduced in Section |, this noek
must have some properties of fairness to be potentiallytadop
by the TSOs.



The notion of fairness is doubtlessly subjective [26]. Hencthat an effort from one TSO would be the increase of the range
different arbitrages can be simultaneously qualified as faif possible bus voltages in its entire control area (saynfro
for any given situation, and a fairness analysis must rely ¢f94,1.06] to [0.92,1.08]).
subjective criteria. As discussed in [27], freedom fromyenv To study the accountability of our arbitrage strategy, we
is an important property of fairness. In addition, the dfass have optimized the base case system with no effort and with
cation proposed by J. Konow in [28] provides some criterian effort from each TSO, successively. Table Il presengs th
for assessing the fairness of a particular allocation, mameosts and normalized overcosts supported by each TSO in
“efficiency,” “accountability,” and “altruism.” Those ddria every case. Those simulation results confirm the obsenstio
have been defined by analyzing experimental data obtairied[29] that the final allocation is generally more profitable
by polling people on their opinions concerning fairness dér the TSO that makes more effort, at least in the original
different types of allocations. cost space. This “accountability” can also be observed én th

We assess hereafter whether the optimization scheme prormalized space, where the overcaSt$u*) — C;(u}) tend
posed in Section Il satisfies those criteria in the contdxt o decrease whel SO, makes an effort (except faFSO; in

reactive power dispatch in a multi-TSO system. this example).

Effort Cl(u*) Cz(u*) Cg(u*)

A. Freedom from envy None || 20.01 37.70 38.13
As introduced in [27], freedom from envy is a necessary ;ggl fg'gg izgf ggi’;
condition of fairness for an allocation scheme. Indeed, an TS0, 19.61 36.95 36.96
envy-free procedure makes no a priori difference between th Ti(w)— | Ca(ur)— | O(ur)—
different parties, such that no party would prefer to be & th Effort C1(u}) Ca(u3) Cs(u})
place of another. In practice, all individual objectivestbé None 0.0089 0.0071 0.0106
; TS0, 0.0125 0.0067 0.0172

TSOs must be treated through the same procedure, which must T30 00057 00061 0050
not rely on any specific information on the TSOs. TSO3 || 0.0070 0.0101 0.0059

This is obviously the case with the proposed approach. TABLE Il

Indeed, since the procedure has been designed indepgndep] ues or THE cosT FUNCTIONS; (u*) AND NORMALIZED OVERCOSTS

of any specific information related to the TSOs, every TSO igi(u*) — Ci(u}) IN EVERY AREA OF THE TEST SYSTEM FOUR CASES
HAVE BEEN STUDIED: NO EXTRA EFFORT EFFORT FROMT'SO1, EFFORT
Equa"y treated. FROM T'SO2,AND EFFORT FROMT'SOs3.

B. Efficiency

According to J. Konow, an arbitrage can not be qualified as HOWever, those observations can not be generalized since
fair if it is poorly efficient, i.e. if considerable resoucare there are some cases for which the final allocation is not
not allocated. While he does not explicitly define the level gccountable. For example, let us consider the case where
efficiency of a given arbitrage for a multi-objective praple & 7'50:; makes an effort from which it does not directly
we will consider here that efficiency is maximal if there exis PeNefit Ci(uj) does not significantly decrease). In such a
no other arbitrage which can lead to a better outcome foPNtext its effort could allow the other TSOs to increassirth
all parties. As suggested in [15], in the case of individueﬂo_ss'b'e benefits by mcreasmg_the_lr usel#O;’s resources.
objectives expressed by real-valued functions, the effiyiof 'S could change the normalization factors, especialfy
an arbitrage may be related to a distance (e.g., the Eunlid@pd the location of the utopian minimum, so that the final

distance in the normalized cost space) between an outcoffig@cation could be less profitable fatSO;. In particular, this
and the Pareto-front of the problem. situation happens wheRSO; increases the range of possible

In practice, as proved in Section III-B, the solution oPus voltages within its control area. For such a case, the

our optimization scheme is on the Pareto-front. Consegyyenflécrease ots (uj) is limited, asuj is not really constrained

the elected solution has the property of maximum efficiendj the bus voltage limits. In the meantin@, (u;) andC' (u3)
regardless of the objective functions and the constraints, ncrease significantly, as the effort made B0, can be
exploited byT"'SO, andT'SO3 in a detrimental way fof"SO;.

ConsequentlyCy increases (fron883,52 to 1469, 2), while
x1 does not significantly decrease (frdn®9 to 1.56), and the
In the context of multi-party resource allocation, a schésneother normalization factors tend to decrease. Hence, w@espi
accountable if the party investing more effort earns itsesigp  its higher effort,7SO; is penalized ¢ (u*) increases from
position. An example of an accountable arbitrage is given #9.01 to 30.80).
[28]: consider two individuals with the same abilities and a The proposed allocation scheme is also non-accountable if
global earning that should be divided between them, if orapplied to a system with only two parties. The normalization
chooses to work 50% less, an accountable notion of fairndastors for 7’SO; and T'SO» would then beCy x x; =
would allocate him less earning than the other individual. C;(u}) — Cy(uf) andC$ x x2 = Ca(uf) — Co(u}), respec-
Accordingly with the interpretation of accountability pro tively. Therefore, one TSO would be rewarded if its objestiv
posed in [29], an “effort” of T'SO; could be to make the fulfillment is highly penalizing its neighbor and the arbije
constraintsg;(u) < 0 less strict. Let us define, for examplecould not be accountable. This flaw disappears, howevemwhe

C. Accountability



considering systems with three TSOs or more. Indeed, thaming, this non-collaborative strategy might be avoidgd b
more TSOs patrticipate in the process, the more importancecentinuous monitoring of the power system state by the CCC.
given to a local objective that slightly affects the otherOBS For example, a statistical analysis of the bus voltagesdcoul

objectives. inform the CCC about real voltage control abilities of every
generator in the power system. The practical implememtatio
D. Altruism of such a policy is, however, particularly complex, and i$ no

The notion of “altruism” is defined by J. Konow in [28]. Hediscussed in this paper.

states that what parties can not influence should not affiect t ) o
allocation, and proposes the following example of altruigm B- Biased formulation of the objectives
two individuals having different abilities work each a0 % of A TSO; may also be tempted to declare a biased formula-
their capabilities, an altruist notion of fairness woultbehte tion of its cost function. More precisely, BSO; could provide
them the same share of the global earning. This notion is atb@ CCC with a functiorC}"(uTsoi) rather tharﬁi(uTsoi).
developed by M. Rabin, who associates in [30] the fairnessif C?(u) = a x C;(u) + b with a,b € R, the allocation
with the concept of “reciprocity.” strategy is not affected since, as emphasized in SectieB, Il
One property of altruism is that a parameter that does mmir arbitrage strategy has the property of being immuneyo an
depend on TSOs’ actions should not affect the allocatioriear transformation of the objective functidns
The interpretation we make here of this concept is that aNow, let us consider the case whef&'(u) = C;(u) x
optimal control settings for &S0;, whose control variables C;(u). Intuitively, with such a biased formulation of its
have much influence on the objective fulfillment of the othesbjective function,7.SO; could obtain a better allocation,
TSOs, should be consistent with the other TSOs’ objectivesnce it may give to the CCC the impression that a deviation
regardless of the objective functiofi’. However, since the from u? is worse for it than it is in reality. However, such
dynamics of the different areas of our benchmark system wexestrategy is not systematically beneficial for a TSO. For
highly coupled, we have been unable to check on the testample, if ’'SO;, which focuses on the minimization of
problem whether this concept was indeed satisfied. reactive power support in its control area, asks the CCC to
Another property of altruism is that the allocations shouldhinimize the square o}, 150, Q?, the arbitrage leads to
not be biased toward the TSOs with the greatest “abilities” solution wereC;(u*) = 97.07 rather than20.01 if 7'SO,
Indeed, as written in Section |, the overcosts should rabeer were to provide its true objective function. Therefore, sac
shared according to the effort made by the different TSOs. $trategy of overestimating its costs may be counter-prindic
the context of reactive power scheduling, we consider tiat t Even if it is clear that, by truncating their objective fuioct,
ability of a TSO is related to its influence on the dynamics dhe TSOs might bias the allocation in their favor, such a
the system. Thus, the TSOs that have a strong influence mmoblem could be avoided in practice by constraining the §SO
the system should not have a highly negative impact on tteeselect their cost function in a set of reasonable fornuriat
other TSOs. In this respect, the proposed allocation schefoethe objectives, and report data and constraints trilyhfu
clearly has some altruism properties since the texmnsnd

C? penalizeT'SO;, when its objective is not compatible with V1. CONCLUSIONS
the other objectives. In this paper, we have addressed the problem of centralized
decision making for a multi-TSO power system, for which
V. SENSITIVITY TO BIASED INFORMATION every TSO's individual objective can be represented by k rea

If a CCC were to apply the proposed resource allocatiamlued cost function. We have emphasized that the problem
scheme, some TSOs might be tempted to exercise strategiald be reduced to the election of the fairest point on the
behavior to turn the scheme in their favor. We discuss in thiareto-front. First, we advocated, using “common enginger
section how sensitive the optimization scheme is with relspesense,” to select the point which is closest (according to a
to biased information concerning the constraints (e.uitéi- specific distance measure) to the defined utopian minimum.
tions on voltage or reactive power injections) and objectiwVe have also proposed an algorithm for computing this point.

functions. This approach was illustrated on the IEEE 118 bus system,
partitioned into three areas having as local objective the
A. Biased formulation of the constraints minimization of active power losses, reactive power supmor

A way for the parties to bias the arbitrage scheme in theq\rcombination of both criteria. Then, we briefly introduckd t
favor is to report accountable efforts only. In particukarery concept of fairness_ in the sense of economics, and we showed
TS0, may be interested to declare more restrictive constrairffit OUr approach indeed satisfies, at least to some extent, t
g:(u) than those faced in reality, when it does not directl irness criteria. We also commented on the robustnesseof th

K3 )

benefit from the relaxation of those constraints. We refer hgme with respect to some types of strategic behavior from
the interconnected TSOs.

Section IV-C, for a numerical example of the potential besefi : ;
Prior to applying the proposed scheme to real systems,

of a TSO, when it provides wrong information about its N .
voltage constraints. some practical issues need to be addressed. In particudar, t

Although the _Iack of accountability C_>f our scheme With 21pg independence of the arbitrage with respect to a tramslath is due
respect to certain types of effort may induce such types wfthe fact that only overcosts are used to define the norntializéactors.



computational costs of the scheme may be higher than thge® Chen, Y.L. and Liu, C.C., “Multiobjective VAR planningising the
needed for a single-objective optimal power flow. Indeed,
as emphasized in [31], a sophisticated formulation of t 1)
objective may induce more computational complexity, whic
could be critical, when the scheme is applied to large-scale
systems. One may also consider other issues in relation[ltg.;]
the application of the scheme to real systems. By way of

example, with large-scale systems, the individual objesti

of the TSOs may be almost independent of a large numl%sr]
of control variables, as those located very far from the area
under consideration for example. This could induce a hid#!

sensitivity of the normalization factors with respect tongo

small changes in the system operating conditions, whickdcou

be questioned by the different parties.

(17]

While the number of potential applications of our method
is large (any allocation that can be formulated as a muliis]
objective problem could be solved through our method), its

Achilles’ heel is related to the way we define the “faires[t19
allocation” and, more specifically, to the cost functions-no

malization procedure. This definition is subjective in esse

It may perhaps even be naive to assess the fairness of an

allocation without consulting the different parties.

(20]

In the framework of multi-TSO power system operation,
there is a multitude of tasks, such as dynamic security asses
ment or transmission investments for which the objective gfi]
each party can not be expressed as a real-valued cost functio

In such contexts, it would also be interesting, even chgltem
to attempt to define the concept of fairest allocation.
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