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A fair method for centralized optimization of
multi-TSO power systems

Yannick Phulpin, Miroslav Begovic,Marc Petit,and Damien Ernst

Abstract—This paper addresses the problem of centralized
optimization of an interconnected power system partitioned
into several regions controlled by different transmission system
operators (TSOs). It is assumed that those utilities have agreed to
transferring some of their competencies to a centralized control
center, which is in charge of setting the control variables in the
entire system to satisfy every utility’s individual objective. This
paper proposes an objective method for centralized optimization
of such multi-TSO power systems, which relies on the assumption
that each TSO has a real-valued optimization function focusing
on its control area only. This method is illustrated on the IEEE
118 bus system partitioned into three TSOs. It is applied to
the optimal reactive power dispatch problem, where the control
variables are the voltage settings for generators and compen-
sators. After showing that the method has some properties of
fairness, namely freedom from envy, efficiency, accountability,
and altruism, we emphasize its robustness with respect to certain
biased behavior of the different TSOs.

Index Terms—multi-area power system; centralized control;
multi-party optimization; multi-objective optimization; fairness;

I. I NTRODUCTION

Several large-scale disturbances emphasized that secure op-
eration of interconnected power systems requires coordination
between transmission system operators (TSOs). In particular,
references [1], [2] report two major disturbances whose
consequences were leveraged by the lack of coordination
between the TSOs.

To address the problem of coordination in multi-TSO sys-
tems, two main trends have arisen [3], [4]. On one hand,
ad-hoc decentralized control schemes have been proposed, as
in [5], [6] for example. On the other hand, efforts have been
made to create higher-level entities, which would be in charge
of coordinating operation over very large geographical areas.
By way of example, the potential benefits of a centralized
control center (CCC) to make decisions for multi-TSO systems
are emphasized in [7].

It is, however, expected that, even with the creation of a
CCC, every TSO will preserve some prerogatives of its own
system operation. More specifically, operational objectives are
likely to remain defined by the TSOs since they may be
influenced by local topology, system architecture, generation
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capacity, or reliance on traditional engineering practices [8].
In this context, prior to agreeing to transferring some of
their competencies to a higher decision level, the TSOs may
require some guarantees regarding the fulfillment of their own
objectives by the CCC, which may be a conflicting issue,
as satisfying the objective of a single TSO may adversely
affect other TSOs. As introduced in [9], this ability of the
optimization scheme to satisfy the needs of every party is
equivalent to the fairness of the optimization scheme.

Negotiation is usually advocated to reach a fair solution
for multi-party resource allocation problems [10]. In the case
of multi-TSO operation issues, as the optimization scheme
should handle short-term operation, negotiation can not be
considered a suitable solution. However, the choice of a multi-
TSO optimization procedure that would satisfy every party
may be subjected to negotiation between the different TSOs.

Several procedures have already been proposed for multi-
objective optimization. Most are based on a weighting of the
different objectives, as in [11], [12], for example, or on a
priority given to the objectives, as in [13], where some of the
objectives are considered as constraints in the optimization
procedure. Those strategies may, however, not be acceptable
for every party as they depend on an arbitrary prioritization
between the different objectives. Other methods are based on
iterative choices made by a central entity, as in [14]. This
strategy is also inappropriate for multi-TSO operation, asthe
arbitrary choice at each iteration could be questioned by the
different parties.

In this paper, we propose a new scheme, that could be used
by the CCC to solve multi-party optimization problems, when
the objective of every TSO can be represented by a real-valued
function. The scheme relies on the formulation of the problem
as a multi-objective optimization problem and picks a solution
that could, at least in principle, bring consensus among the
different TSOs. Indeed, besides the fact that the solution
minimizes a specific distance from the utopian minimum in
a normalized multi-dimensional space, we show that it has
some properties of fairness. In addition, we also show that the
scheme is robust with respect to certain biased behavior by
the different parties.

The paper is organized as follows. Section II defines the
multi-objective problem and presents the illustrative example.
In Section III, we propose a normalization of the multi-
objective problem and a procedure for identifying the best
solution in the normalized space. Section IV shows that
the scheme has some properties of fairness in the sense of
economics, while Section V analyzes certain biased behaviors,
which can be adopted by the TSOs to turn the optimization
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scheme in their favor. Finally, some opportunities for further
research are outlined in Section VI.

II. CENTRALIZED OPTIMIZATION OF A MULTI -TSO
SYSTEM

In the first part of this section, we describe the multi-
objective problem faced by the CCC, and introduce some use-
ful notations. Afterward, the illustrative example is presented.

A. Formulation of the problem

We focus on a system partitioned intoNbTSO areas, where
each areai is controlled by a singleTSOi. EachTSOi is
assumed to have its own objective expressed by an objective
function Ci(u), whereu is the vector of control variables for
the entire system. Although an objective function may be of
non-economic nature, it will also be referred to hereafter as
“cost function.”

In this paper, we assume the existence of a CCC that aims
to assess the optimal control vectoru

∗, which is defined
as the solution of the following constrained multi-objective
optimization problem

min
u

[C1(u), C2(u), . . . , CNbTSO(u)] (1)

subject to

g(u) = 0 (2)

h(u) ≤ 0 (3)

where g(u) = 0 represents the equality constraints, and
h(u) ≤ 0 represents the inequality constraints. From now on,
the set of solutionsu such thatu verifies Equality (2) and
Inequality (3) will be referred to asU .

The cost associated with a control vectoru can be rep-
resented in aNbTSO-dimensional cost space by a vector
[C1(u), C2(u), . . . , CNbTSO(u)]. A solutionun is said “non-
dominated” if there exists no other solutionu ∈ U such that,
∀i ∈ [1, 2, . . . , NbTSO], Ci(u) ≤ Ci(un). In the NbTSO-
dimensional cost space, the set of non-dominated solutions
represents the Pareto-front of the multi-objective problem.
It is commonly adopted in the multi-objective optimization
literature that the solution of such a problem should be on or
as close as possible to its Pareto-front [15].

Consequently, should the Pareto-front be reduced to a single
element, the solution of the arbitrage made by the CCC would
then be this element. Indeed, in such a particular context, there
would exist a solution that minimizes every single objective
at once. However, in general, the Pareto-front is composed
of many elements (possibly an infinite number of them) and
the CCC must choose one of those elements. In this paper, the
arbitrage problem to which the CCC is confronted is therefore
the problem of selection of the fairest solution on the Pareto-
front.

Region 2

1

Region 3

TSO

TSO

TSO

2

3

1

Fig. 1. IEEE 118 bus system with three TSOs.

B. Illustrative example

As a benchmark system, we use the IEEE 118 bus system
partitioned into three areas, referred to asTSO1, TSO2, and
TSO3. This system is presented in Figure 1.

The proposed methodology is applied to a multi-TSO re-
active power dispatch problem, which is a particular type of
optimal power flow. In such a context, the load demand and
the active power generation pattern are considered known. We
use a decentralized slack bus in our simulations, which may
slightly change the generation dispatch depending on active
power losses. Every elementu ∈ U is composed of the
generators’ output voltages, the capacitor banks’ or FACTS’
reactive power injections and the tap settings. To model a
real system, some of those control actions should be discrete
variables, as in [16], for example. However, as the use of
discrete and continuous variables would result in a mixed-
integer non-linear programming problem, whose solution may
be difficult to compute, we have considered only continuous
control variables in our simulations.

Equality (2) represents the load flow equations and constant
active power export, while Inequality (3) corresponds to the
limits on voltage magnitude at each bus as well as reactive
power injections for every generator or compensator.

In real systems, everyTSOi may have an objective of
a different nature. We consider in this paper three types of
cost function. Those are the minimization of active power
lossesPLosses

i , the minimization of a quadratic sum of re-
active power injections (

∑
j∈TSOi

Q2

j ), and a linear combi-
nation of PLosses

i and
∑

j∈TSOi
Q2

j . Such formulations of
the objectives are commonly used in the literature to describe
operational objectives of TSOs (see for example [16], [17],
[18], [19]) but others, like transmission capacity or voltage
stability margin, could also be used [20], [21]. Those three
types of cost function can be represented by the following
objective function

Ci(u) = γiP
Losses
i (u) + (1 − γi)

∑

j∈TSOi

Q2

j (u) (4)

whereγi ∈ [0, 1] is the weight coefficient for areai. In our



3

example,γ1 is equal to0, γ2 to 0.9 andγ3 to 1. The Pareto-
front of our illustrative case is represented in Figure 2.

C ( )u
1

C ( )u
2

C ( )u
3

Fig. 2. Representation of the Pareto-front for the IEEE 118 bus system
with three TSOs.C1(u), the objective function ofTSO1, represents reactive
power support in area1, C2(u) is a weighted function of active power losses
and reactive power support in area2, and C3(u) represents active power
losses in area3.

III. A NEW METHOD TO SOLVE MULTI-PARTY

OPTIMIZATION PROBLEMS

In this section, we propose an approach for electing the
point on the Pareto-front that could satisfy the different parties.
We have designed the optimization procedure as follows.
First, we suppose that everyTSOi provides the CCC with
its objective and constraint functionŝCi(uTSOi

), ĝi(uTSOi
),

and ĥi(uTSOi
), whereuTSOi

represents the control variables
for TSOi’s area. The symbol̂ on Ci, gi, and hi specifies
that, since aTSOi does not systematically know the system
topology, generation pattern, and load demand in the other
areas, it can only formulate its own objective and constraints as
functions of its own system state, defined byuTSOi

. After re-
ceiving the information from everyTSOi on its objective and
constraint functionsĈi(uTSOi

), ĝi(uTSOi
), and ĥi(uTSOi

),
the CCC defines the multi-objective problem (Ci(u), ∀i ∈

[1, 2, . . . , NbTSO], g(u), andh(u)), and, afterward, faces the
problem of electing the fairest solution on its Pareto-front.

The proposed approach relies on finding a solution as close
as possible to the “utopian minimum”Cut defined in [22] as

Cut = [C1(u
∗

1
), C2(u

∗

2
), . . . , CNbTSO(u∗

NbTSO)] (5)

where u
∗

i is the solution of Problem (6), which optimizes
the entire system with the unique objectiveCi(u) under
constraints (2)-(3), that is

u
∗

i = arg min
u∈U

Ci(u) (6)

The approach is based on the following principle: should
a “utopian minimum” exist, it would then be chosen as the
solution since everyone of TSOs’ objectives are minimized
with that solution. However, we know that, except if the
Pareto-front is reduced to a single element, there is nou ∈ U

that corresponds to the “utopian minimum.” Therefore, we

choose the solutionu ∈ U that minimizes the distance
− related to an Euclidean norm after having normalized the
cost functions− with the “utopian minimum.”

The procedure for normalizing the cost functions is pre-
sented in Section III-A. Section III-B describes the procedure
for computing the solution that is closest to the utopian
minimum in the normalized space. Finally, the approach is
illustrated in Section IV on the IEEE 118 bus system parti-
tioned into three TSOs.

A. Normalization

We explain hereafter the normalization process that can be
adopted to obtain a fair arbitrage. Its rationale is twofold.
First, every local objective can have a different nature (e.g.,
minimization of active power losses, maximization of reac-
tive power reserves, etc). This problem should naturally be
addressed by the normalization process. Second, it also makes
sense to normalize the cost functions to penalize the TSOs
whose objective fulfillment is detrimental to other TSOs’
objectives and favor those whose objectives are particularly
compatible with the others.

For a particular cost functionCi(u), the normalization
factor will be the product of the two termsC◦

i and χi. The
normalized cost functionCi(u) will thus be computed using
the following equation

Ci(u) =
Ci(u)

C◦

i × χi

(7)

We note that− since we will pick after normalization a
solution that stands closest to the utopian minimum− a small
normalization factor forTSOi will have for effect to give more
weight to its own objective functionCi(u) and will then favor
it.

The termC◦

i is defined as follows.

C◦

i =

NbTSO∑

j=1

Ci(u
∗

j ) − Ci(u
∗

i )

NbTSO
(8)

It has been introduced for two main reasons. First, it is
expressed in the same unit asCi(u) and will therefore make
possible the comparison between objective functions having
different natures. In particular, it will make our approach
independent of any scaling factor that may affect the different
cost functionsCi(u). Second, the termC◦

i will also favor
a TSO whose objective fulfillment is weakly penalized by
the fulfillment of the other objectives. Indeed,C◦

i being the
average value of the overcosts1 supported byTSOi for the
NbTSO control variablesu∗

1
, u

∗

2
, . . ., u

∗

NbTSO, this term
will be particularly small if the overcosts induced by other
objective fulfillmentsCi(u

∗

j ) are small.
The termχi is defined as follows.

χi =

NbTSO∑

j=1

Cj(u
∗

i ) − Cj(u
∗

j )

C◦

j

(9)

1The term “overcosts” refers, in this paper, to the difference between the
actual costsCi(u) and their minimal valueCi(u

∗

i ).
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It has been introduced to penalize the detrimental impact
of TSOi’s objective achievement on the other TSOs’ costs,
represented by the termCj(u

∗

i ) − Cj(u
∗

j ). We note that
this difference term is divided byC◦

j . Thus, this division
allows to sum up overcosts having different natures. Also,
this normalization aims to leverage the penalization thatTSOi

endures when its optimal control variables are detrimentalto
the objective of anotherTSOj , which is itself compatible with
the other TSO’s objective.

By anticipating the results of Section IV, we find that,
by using the normalization factorC◦

i × χi, the solution of
the arbitrage has some properties of fairness in the economic
sense.

B. Optimization of the normalized problem

As mentioned earlier, our approach will elect the solution
u
∗, for which the cost vectorC(u∗) minimizes (in the

normalized cost space) the Euclidean distance to the “utopian
minimum” under Constraints (2)-(3). This problem can be
formulated as follows

u
∗ = arg min

u∈U

NbTSO∑

i=1

(Ci(u) − Ci(u
∗

i ))
2 (10)

Solving this problem is indeed equivalent to finding the
point on the Pareto-front that minimizes the distance to
the utopian minimum. As a proof, suppose thatu

∗ is
not on the Pareto-front but solution of (10) under Con-
straints (2)-(3). Then, there would exist a solutionu′

such thatCi(u
′) ≤ Ci(u

∗) for every i ≤ NbTSO. In
this case, for every areai, we would have Ci(u

′) ≤

Ci(u
∗) and consequently,

∑NbTSO

i=1
(Ci(u

′) − Ci(u
∗

i ))
2 ≤∑NbTSO

i=1
(Ci(u

∗) − Ci(u
∗

i ))
2. Therefore,u∗ would not be

the solution of (10), and the equivalence is proved.
Table I summarizes the procedure for computing, according

to our strategy, a point on the Pareto-front, which could least
displease the different TSOs. This procedure implies solving
the optimization problem (10) under Constraints (2)-(3). This
problem can be solved using a standard optimal power flow
algorithm [23], [24], [25].

Input : For everyTSOi, a real-valued objective function
Ci(u) and a constraint vectorgi(u).
Output : A vector of control variablesu∗.
Step 1: For every TSOi, computeu∗

i , solution of:
arg min

u∈U

Ci(u) with respect to:g(u) ≤ 0.

Step 2: Compute the solutionu∗ of:
arg min

u∈U

∑NbTSO
i=1 (Ci(u) − Ci(u

∗

i ))2

with respect to:g(u) ≤ 0

whereCi(u) =
Ci(u)

C◦

i
×χi

with C◦

i =
∑

j

Ci(u
∗

j )−Ci(u
∗

i )

NbTSO

andχi =
∑

j

(Cj(u∗

i )−Cj(u∗

j ))

C◦

j

.

TABLE I
AN ALGORITHM FOR IDENTIFYING A FAIR SOLUTION OF THE

MULTI -OBJECTIVE OPTIMIZATION PROBLEM.

C. Example

The proposed method is illustrated hereafter with the test
system described in Section II-B. Table II gives the different
costs Ci(u

∗

j ), normalized overcostsCi(u
∗

j ) − Ci(u
∗

i ), and
terms involved in the computation of the normalization factors.
The bottom of the table also gives the costsCi(u

∗) and
normalized overcostsCi(u

∗)−Ci(u
∗

i ) associated with the so-
lution u

∗ of the centralized optimization scheme. In addition,
Figure 3 represents the normalized cost vector corresponding
to u

∗ and the normalized Pareto-front. As one can observe for
this particular example, the solutionu∗ elected by the scheme
is close to the utopian minimum.

C ( )u
1

C ( )u
2

C ( )u
3

D ( )u

Fig. 3. Localization of the CCC’s solution on the normalized Pareto-front
for the IEEE 118 bus system partitioned between three TSOs. The color
mapping represents the Euclidean distanceD(u) (in the normalized cost
space) between each solutionu and the utopian minimum.

i = 1 i = 2 i = 3

Ci(u
∗

1) 4.36 134.82 44.40
Ci(u

∗

2) 1381.00 34.64 47.97
Ci(u

∗

3) 1278.28 302.00 37.92

C◦

i 883.52 122.51 5.51
χi 1.99 3.38 3.62

Ci(u
∗

1) − Ci(u
∗

i ) 0 0.2418 0.3245

Ci(u
∗

2) − Ci(u
∗

i ) 0.7815 0 0.5032

Ci(u
∗

3) − Ci(u
∗

i ) 0.7232 0.6453 0

Ci(u
∗) 20.01 37.7 38.13

Ci(u
∗) − Ci(u

∗

i ) 0.0089 0.0071 0.0106

TABLE II
VALUES OF THE DIFFERENT COSTSCi(u) AND NORMALIZED OVERCOSTS

Ci(u) − Ci(u
∗

i ) FOR EVERY SOLUTIONu
∗

j OF THE SINGLE OBJECTIVE

OPTIMIZATIONS AND FOR THE SOLUTIONu
∗ OF THE CENTRALIZED

DECISION MAKING SCHEME. VALUES OF C◦

i AND χi FOR TSOi ARE

ALSO REPORTED.

IV. FAIRNESS OF THE METHOD

In Section III, we have presented a new method for choosing
a single solution of the multi-objective optimization problem
described in Section II. As introduced in Section I, this method
must have some properties of fairness to be potentially adopted
by the TSOs.
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The notion of fairness is doubtlessly subjective [26]. Hence,
different arbitrages can be simultaneously qualified as fair
for any given situation, and a fairness analysis must rely on
subjective criteria. As discussed in [27], freedom from envy
is an important property of fairness. In addition, the classifi-
cation proposed by J. Konow in [28] provides some criteria
for assessing the fairness of a particular allocation, namely
“efficiency,” “accountability,” and “altruism.” Those criteria
have been defined by analyzing experimental data obtained
by polling people on their opinions concerning fairness of
different types of allocations.

We assess hereafter whether the optimization scheme pro-
posed in Section III satisfies those criteria in the context of
reactive power dispatch in a multi-TSO system.

A. Freedom from envy

As introduced in [27], freedom from envy is a necessary
condition of fairness for an allocation scheme. Indeed, an
envy-free procedure makes no a priori difference between the
different parties, such that no party would prefer to be in the
place of another. In practice, all individual objectives ofthe
TSOs must be treated through the same procedure, which must
not rely on any specific information on the TSOs.

This is obviously the case with the proposed approach.
Indeed, since the procedure has been designed independently
of any specific information related to the TSOs, every TSO is
equally treated.

B. Efficiency

According to J. Konow, an arbitrage can not be qualified as
fair if it is poorly efficient, i.e. if considerable resources are
not allocated. While he does not explicitly define the level of
efficiency of a given arbitrage for a multi-objective problem,
we will consider here that efficiency is maximal if there exists
no other arbitrage which can lead to a better outcome for
all parties. As suggested in [15], in the case of individual
objectives expressed by real-valued functions, the efficiency of
an arbitrage may be related to a distance (e.g., the Euclidean
distance in the normalized cost space) between an outcome
and the Pareto-front of the problem.

In practice, as proved in Section III-B, the solution of
our optimization scheme is on the Pareto-front. Consequently,
the elected solution has the property of maximum efficiency,
regardless of the objective functions and the constraints.

C. Accountability

In the context of multi-party resource allocation, a schemeis
accountable if the party investing more effort earns its superior
position. An example of an accountable arbitrage is given in
[28]: consider two individuals with the same abilities and a
global earning that should be divided between them, if one
chooses to work 50% less, an accountable notion of fairness
would allocate him less earning than the other individual.

Accordingly with the interpretation of accountability pro-
posed in [29], an “effort” ofTSOi could be to make the
constraintsgi(u) ≤ 0 less strict. Let us define, for example,

that an effort from one TSO would be the increase of the range
of possible bus voltages in its entire control area (say, from
[0.94, 1.06] to [0.92, 1.08]).

To study the accountability of our arbitrage strategy, we
have optimized the base case system with no effort and with
an effort from each TSO, successively. Table III presents the
costs and normalized overcosts supported by each TSO in
every case. Those simulation results confirm the observations
in [29] that the final allocation is generally more profitable
for the TSO that makes more effort, at least in the original
cost space. This “accountability” can also be observed in the
normalized space, where the overcostsCi(u

∗)−Ci(u
∗

i ) tend
to decrease whenTSOi makes an effort (except forTSO1 in
this example).

Effort C1(u∗) C2(u∗) C3(u∗)
None 20.01 37.70 38.13
TSO1 30.80 37.02 37.91
TSO2 15.65 36.71 38.12
TSO3 19.61 36.95 36.96

C1(u∗)− C2(u∗)− C3(u∗)−
Effort C1(u∗

1) C2(u∗

2) C3(u∗

3)
None 0.0089 0.0071 0.0106
TSO1 0.0125 0.0067 0.0172
TSO2 0.0087 0.0061 0.0120
TSO3 0.0070 0.0101 0.0059

TABLE III
VALUES OF THE COST FUNCTIONSCi(u

∗) AND NORMALIZED OVERCOSTS

Ci(u
∗) − Ci(u

∗

i ) IN EVERY AREA OF THE TEST SYSTEM. FOUR CASES

HAVE BEEN STUDIED: NO EXTRA EFFORT, EFFORT FROMTSO1 , EFFORT

FROM TSO2 ,AND EFFORT FROMTSO3 .

However, those observations can not be generalized since
there are some cases for which the final allocation is not
accountable. For example, let us consider the case where
a TSOi makes an effort from which it does not directly
benefit (Ci(u

∗

i ) does not significantly decrease). In such a
context, its effort could allow the other TSOs to increase their
possible benefits by increasing their use ofTSOi’s resources.
This could change the normalization factors, especiallyC◦

i ,
and the location of the utopian minimum, so that the final
allocation could be less profitable forTSOi. In particular, this
situation happens whenTSO1 increases the range of possible
bus voltages within its control area. For such a case, the
decrease ofC1(u

∗

1
) is limited, asu∗

1
is not really constrained

by the bus voltage limits. In the meantime,C1(u
∗

2
) andC1(u

∗

3
)

increase significantly, as the effort made byTSO1 can be
exploited byTSO2 andTSO3 in a detrimental way forTSO1.
Consequently,C◦

1
increases (from883, 52 to 1469, 2), while

χ1 does not significantly decrease (from1.99 to 1.56), and the
other normalization factors tend to decrease. Hence, despite
its higher effort,TSO1 is penalized (C1(u

∗) increases from
20.01 to 30.80).

The proposed allocation scheme is also non-accountable if
applied to a system with only two parties. The normalization
factors for TSO1 and TSO2 would then beC◦

1
× χ1 =

C1(u
∗

2
) − C1(u

∗

1
) andC◦

2
× χ2 = C2(u

∗

1
) − C2(u

∗

2
), respec-

tively. Therefore, one TSO would be rewarded if its objective
fulfillment is highly penalizing its neighbor and the arbitrage
could not be accountable. This flaw disappears, however, when
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considering systems with three TSOs or more. Indeed, the
more TSOs participate in the process, the more importance is
given to a local objective that slightly affects the other TSOs’
objectives.

D. Altruism

The notion of “altruism” is defined by J. Konow in [28]. He
states that what parties can not influence should not affect the
allocation, and proposes the following example of altruism: if
two individuals having different abilities work each at100% of
their capabilities, an altruist notion of fairness would allocate
them the same share of the global earning. This notion is also
developed by M. Rabin, who associates in [30] the fairness
with the concept of “reciprocity.”

One property of altruism is that a parameter that does not
depend on TSOs’ actions should not affect the allocations.
The interpretation we make here of this concept is that a
optimal control settings for aTSOi, whose control variables
have much influence on the objective fulfillment of the other
TSOs, should be consistent with the other TSOs’ objectives,
regardless of the objective functionCi. However, since the
dynamics of the different areas of our benchmark system were
highly coupled, we have been unable to check on the test
problem whether this concept was indeed satisfied.

Another property of altruism is that the allocations should
not be biased toward the TSOs with the greatest “abilities.”
Indeed, as written in Section I, the overcosts should ratherbe
shared according to the effort made by the different TSOs. In
the context of reactive power scheduling, we consider that the
ability of a TSO is related to its influence on the dynamics of
the system. Thus, the TSOs that have a strong influence on
the system should not have a highly negative impact on the
other TSOs. In this respect, the proposed allocation scheme
clearly has some altruism properties since the termsχi and
C0

i penalizeTSOi, when its objective is not compatible with
the other objectives.

V. SENSITIVITY TO BIASED INFORMATION

If a CCC were to apply the proposed resource allocation
scheme, some TSOs might be tempted to exercise strategic
behavior to turn the scheme in their favor. We discuss in this
section how sensitive the optimization scheme is with respect
to biased information concerning the constraints (e.g., limita-
tions on voltage or reactive power injections) and objective
functions.

A. Biased formulation of the constraints

A way for the parties to bias the arbitrage scheme in their
favor is to report accountable efforts only. In particular,every
TSOi may be interested to declare more restrictive constraints
gi(u) than those faced in reality, when it does not directly
benefit from the relaxation of those constraints. We refer to
Section IV-C, for a numerical example of the potential benefits
of a TSO, when it provides wrong information about its
voltage constraints.

Although the lack of accountability of our scheme with
respect to certain types of effort may induce such types of

gaming, this non-collaborative strategy might be avoided by
continuous monitoring of the power system state by the CCC.
For example, a statistical analysis of the bus voltages could
inform the CCC about real voltage control abilities of every
generator in the power system. The practical implementation
of such a policy is, however, particularly complex, and is not
discussed in this paper.

B. Biased formulation of the objectives

A TSOi may also be tempted to declare a biased formula-
tion of its cost function. More precisely, aTSOi could provide
the CCC with a functionĈw

i (uTSOi
) rather thanĈi(uTSOi

).
If Cw

i (u) = a × Ci(u) + b with a, b ∈ ℜ, the allocation
strategy is not affected since, as emphasized in Section III-B,
our arbitrage strategy has the property of being immune to any
linear transformation of the objective functions2.

Now, let us consider the case whereCw
i (u) = Ci(u) ×

Ci(u). Intuitively, with such a biased formulation of its
objective function,TSOi could obtain a better allocation,
since it may give to the CCC the impression that a deviation
from u

∗

i is worse for it than it is in reality. However, such
a strategy is not systematically beneficial for a TSO. For
example, if TSO1, which focuses on the minimization of
reactive power support in its control area, asks the CCC to
minimize the square of

∑
j∈TSO1

Q2

j , the arbitrage leads to
a solution wereC1(u

∗) = 97.07 rather than20.01 if TSO1

were to provide its true objective function. Therefore, such a
strategy of overestimating its costs may be counter-productive.

Even if it is clear that, by truncating their objective function,
the TSOs might bias the allocation in their favor, such a
problem could be avoided in practice by constraining the TSOs
to select their cost function in a set of reasonable formulations
for the objectives, and report data and constraints truthfully.

VI. CONCLUSIONS

In this paper, we have addressed the problem of centralized
decision making for a multi-TSO power system, for which
every TSO’s individual objective can be represented by a real-
valued cost function. We have emphasized that the problem
could be reduced to the election of the fairest point on the
Pareto-front. First, we advocated, using “common engineering
sense,” to select the point which is closest (according to a
specific distance measure) to the defined utopian minimum.
We have also proposed an algorithm for computing this point.
This approach was illustrated on the IEEE 118 bus system,
partitioned into three areas having as local objective the
minimization of active power losses, reactive power support, or
a combination of both criteria. Then, we briefly introduced the
concept of fairness in the sense of economics, and we showed
that our approach indeed satisfies, at least to some extent, the
fairness criteria. We also commented on the robustness of the
scheme with respect to some types of strategic behavior from
the interconnected TSOs.

Prior to applying the proposed scheme to real systems,
some practical issues need to be addressed. In particular, the

2The independence of the arbitrage with respect to a translation +b is due
to the fact that only overcosts are used to define the normalization factors.
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computational costs of the scheme may be higher than those
needed for a single-objective optimal power flow. Indeed,
as emphasized in [31], a sophisticated formulation of the
objective may induce more computational complexity, which
could be critical, when the scheme is applied to large-scale
systems. One may also consider other issues in relation to
the application of the scheme to real systems. By way of
example, with large-scale systems, the individual objectives
of the TSOs may be almost independent of a large number
of control variables, as those located very far from the area
under consideration for example. This could induce a high
sensitivity of the normalization factors with respect to some
small changes in the system operating conditions, which could
be questioned by the different parties.

While the number of potential applications of our method
is large (any allocation that can be formulated as a multi-
objective problem could be solved through our method), its
Achilles’ heel is related to the way we define the “fairest
allocation” and, more specifically, to the cost functions nor-
malization procedure. This definition is subjective in essence.
It may perhaps even be naive to assess the fairness of an
allocation without consulting the different parties.

In the framework of multi-TSO power system operation,
there is a multitude of tasks, such as dynamic security assess-
ment or transmission investments for which the objective of
each party can not be expressed as a real-valued cost function.
In such contexts, it would also be interesting, even challenging,
to attempt to define the concept of fairest allocation.
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