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Abstract 

Metabarcoding of feces has revolutionized the knowledge of animal diets by providing 

unprecedented resolution of consumed resources. However, it is still unclear how different 

methodological approaches influence the ecological conclusions that can be drawn from such 

data. Here, we propose a critical evaluation of several data treatments on the inferred diet of the 

bat Plecotus auritus using guano regularly collected from various colonies throughout the entire 

active season. First and unlike previous claims, our data indicates that DNA extracted from 

large amounts of fecal material issued from guano accumulates yield broader taxonomic 

diversity of prey than smaller numbers of pellets would do, provided that extraction buffer 

volumes are adapted to such increased amounts of material. Second, trophic niche analyses 

based on prey occurrence data uncover strong seasonality in the bat’s diet and major differences 

among neighboring maternity colonies. Third, while the removal of rare prey items is not 

always warranted as it introduces biases affecting particularly samples with greater prey species 

richness. Fourth, examination of distinct taxonomic depths in diet analyses highlights different 

aspects of food consumption providing a better understanding of the consumer’s diet. Finally, 

the biologically meaningful patterns recovered with presence-absence approaches are virtually 

lost when attempting to quantify prey consumed using relative read abundances. Even in an 

ideal situation where reference barcodes are available for most potential prey species, inferring 

realistic patterns of prey consumption remains relatively challenging. Although best practice in 

metabarcoding analyses will depend on the aims of the study, several previous methodological 

recommendations seem unwarranted for studying such diversified diets as that of brown long-

eared bats. 

 

Keywords: metabarcoding – methodological biases – replication – quantification – trophic 

ecology – bat diet – Chiroptera 
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Introduction 

The advent of high-throughput sequencing (HTS) and metabarcoding approaches in particular 

provides unprecedented resolution in the study of animal diets [1-3]. Such sequencing 

techniques and related automated species identification allow the characterization of multiple 

assemblages of prey species through a single sequencing process, and has typically been applied 

to identify food resources recovered in feces, stomach contents or regurgitates [4]. So far, 

metabarcoding approaches has been used to unravel the diet of a diversity of invertebrates [5-

7], fishes [8-10], reptiles [11], birds [12] or mammals [13-16]. It has been widely used in 

descriptive studies of diet composition, foraging strategies, and to resolve more complex 

questions about trophic ecology (e.g., resource partitioning, food web studies). These molecular 

techniques enable the study of elusive species’ diet such as that of insectivorous bats [17-25]. 

Before HTS, traditional methods of diet analysis of bat guano were based on morphological 

identification of macroscopic prey remains and relied on expert knowledge of invertebrate 

anatomy and diversity. Hence the taxonomic resolution was often limited to the order or family 

level [26-30]. With molecular methods of identification, the trophic ecology of these mammals 

can be characterized with much higher resolution across numerous samples [31-34], potentially 

unravelling overlooked dietary diversity, or identifying resource partitioning between species 

that was missed by traditional approaches [35]. 

 

Despite their huge promises, DNA-based methods are not free of limitations and potential 

methodological biases [36-39]. Experimental issues such as preferential amplification during 

PCR steps or the process of sequence demultiplexing and species identification have been 

examined in previous reviews [40-43]. However potential implications for a number of other 

factors that could lead to inaccurate diet analyses are still under explored. Here, we compare 
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how some methodological choices may influence conclusions on dietary diversity and 

variations of trophic niche overlap in the diet of an insectivorous bat species, the brown long-

eared bat Plecotus auritus (Linnaeus, 1758), which predominantly feeds on moths [28, 35]. 

Such a specialized diet offers ideal conditions for metabarcoding analyses as lepidopterans have 

been covered by global barcoding initiatives [44 and references therein], and thus relatively 

comprehensive reference databases exist for the molecular identification of most potential prey. 

Furthermore, the maternity colonies of long-eared bats are frequently established in buildings, 

allowing the easy collection of bat droppings without disturbing the animals. 

 

Here, we monitored several maternity roosts established in close geographic proximity and 

throughout an entire period of occupancy to explore seasonal and inter-colonial variations in 

the exploited prey spectrum. The analyzed samples either included aggregates of few pellets 

(typically three) as recommended by Mata et al. [45], or larger pools of pellets (typically 15-20 

pellets) in order to evaluate the diversity of prey consumed by animals from each maternity 

colony. As no bat was captured to avoid disturbances, we did not attempt to estimate individual-

based diets, but only community or roost-level samples. Whole DNA extracts were subjected 

to classical metabarcoding approaches for molecular identification of prey, but the resulting 

original dataset was  then altered in three different ways to see how such alterations would 

influence our conclusions about the long-eared bat’s diet. The alteration of the original dataset 

included (1) discarding rare prey items, (2) relying on a lower taxonomic depth and (3) 

quantifying prey contribution using sequence read counts. Indeed, removal of unique prey items 

from dataset is often recommended in metabarcoding studies, as rare items are purportedly more 

susceptible to reflect sequencing errors or may exaggerate their importance in diet diversity [36, 

40]. However, no standard threshold has been established so far to define what a rare item is. 

Furthermore, the resulting effect of such removal on ecological conclusions still needs to be 
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examined. The impact of the level of taxonomic resolution used for prey identification may also 

impact on ecological conclusions. This is especially likely when metabarcoding studies need to 

be compared with the ones leading to coarser identification levels, typically those using 

morphological identification of prey remains or those using barcoding markers with low 

taxonomic resolution. Finally, a recent study based on simulated datasets  suggest that 

weighting prey occurrence according to read counts rather than simply recording their presence-

absence may provide a more accurate view of consumers’ diet [38]. However results from these 

simulations have been poorly evaluated with real biological datasets that often include much 

more diversified diets. 

 

Material and Methods 

Feces sampling and pooling 

The sampling included feces collected from April to October 2015 from five monospecific 

colonies of genetically identified Plecotus auritus [46, 47]. These maternity colonies were 

situated in buildings (attics, steeples and a tunnel) and established within a 10 km-radius area 

in the Geneva region (Fig 1). They comprised a variable number of 10 to 60 individuals each. 

Four colonies were found in the lowlands at about 450 m a.s.l., while the fifth one was located 

in a more mountainous area at about 900 m a.s.l., but still in close geographic proximity to the 

others. In order to ensure that the fresh fecal material would dry quickly, thick absorbent paper 

sheets were set under hanging areas used by the bats. All accumulated feces were removed 

every two weeks (i.e. 11 dates in total), from the establishment of the maternity colony until 

bats eventually left the roost to complete their life cycle elsewhere. These sampling dates 

correspond to major periods in maternity roosts of bats [48], hereafter referred to as spring 

(from mid-April to mid-June, i.e. before pups are born), summer (from mid-June to mid-August, 

when pups are reared) and autumn (from mid-August to mid-October, when juveniles are 
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weaned). The collected guano was stored in paper envelopes and preserved in a dry atmosphere 

before extraction. 

 

For each colony and at each sampling date, we considered a “community sample” as a random 

aggregate of 15-20 pellets taken from the bulk of the collected droppings. These community 

samples weighted approximatively 60 ± 3 mg and likely represented the cumulated diet of the 

entire maternity colony during the two-weeks intervals, not the contribution of single 

individuals. In order to test whether smaller samples would yield an equivalent number of prey 

[45], we also sampled 6 independent biological replicates from each of the 11 collecting dates 

in the maternity colony of Satigny. In each of these replicates, hereafter called “small 

replicates”, only three pellets (about 8 mg) were randomly taken from the collected guano 

samples. 

 

Molecular analysis 

DNA was extracted from each sample with the QIAamp DNA Stool Mini Kit (Qiagen, 

Switzerland) using protocol modifications suggested by Zeale et al. [49]. For the community 

samples, a further technical step was added to prevent the pipetting of too much fecal material 

into the centrifuge tube. We used two Eppendorf tubes instead of one filled with Buffer ASL; 

the guano samples were thus ground and soaked in twice the recommended volume of buffer 

before centrifugation. The supernatant of both tubes was then pooled for subsequent extraction 

steps. Purified DNA was preserved at -20°C. DNA extracts from all colonies and dates were 

randomized on plates to prevent artefactual colony or seasonal autocorrelation due to 

contamination between adjacent wells. To amplify a wide range of potential invertebrate prey, 

we used the primer pair ZBJ-ArtF1c and ZBJ-ArtR2c [49] which amplifies 157 bp of the COI 

barcode gene [50]. After library construction and equimolar multiplexing of purified PCR 
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products, the final pool was sequenced on an Illumina Genome Analyzer II. Raw sequences 

were sorted and filtered using a script mixing FASTX Toolkit (http://hannonlab.cshl.edu/fastx 

toolkit; 23-09-16) and USEARCH [51] functions as proposed by André et al. [52]. Briefly, the 

paired-end reads were joined on their overlapping ends. The overlap had to be at least 10 bases 

long with an 8% maximum difference. Primers were removed and sequences were filtered to 

keep only those with at least 90% of the bases with a quality index greater than Q30. DNA 

sequences shorter than 149 bp or represented by less than five reads [see 41] were filtered out 

in order to remove likely sequencing errors. The retained reads were clustered into unique 

molecular operational taxonomic units (MOTUs) using the software MEGAN [53], allowing 

for one mutation within each MOTU (Min Percent Identity: 99.0). MOTUs were then submitted 

to the NCBI BLAST tool [54] which relies on the GenBank database, and taxonomic 

identification from the resulting file was performed with MEGAN. The same MOTUs were 

independently identified through the BOLD sequence identification engine [55]; this 

taxonomically well-curated database allowed to gain taxonomic resolution for some MOTUs. 

The presence of blank extractions and PCR negative controls allowed us to exclude MOTUs 

likely originating from extraction or PCR contaminants from further analyses. A final 

taxonomic check was performed manually in order to ensure that each identified MOTU indeed 

corresponded to species known from inventories of invertebrates at local scale [56, 57] or  

across all Switzerland [58]. 

 

Analyzed datasets 

We followed Deagle et al. [38] to calculate the percentage of occurrence (POO) for each food 

item in the total dataset, weighted by the total number of prey found in a given sample (hereafter 

called dataset “wPOO”). This wPOO dataset was considered to be the original, unaltered 

dataset. We considered two altered versions of this wPOO dataset. Firstly, we removed all rare 
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MOTUs, defined here as those found only in a single sample (dataset “No rare items”). Notice 

that such singletons where usually represented by high read numbers, so should not be 

assimilated to those MOTUs excluded from the raw database because they were represented by 

less than five reads in total (see previous section). 

A second altered dataset was generated by retaining only the family of each identified prey to 

obtain a coarser level of taxon identification (dataset “Family level”). Finally, we also 

calculated the relative read abundance of each prey (dataset “RRA”), which assumes that the 

abundance of a prey is proportional to its sequence read counts. All data manipulations, 

computations, statistical tests and plotting were performed in R [59], using the packages dplyr 

[60], tidyr [61] and ggplot2 [62]. The effectiveness of sampling effort was analyzed using 

accumulation curves calculated with the package iNEXT [63], and the Chao2 minimum 

estimator of asymptotic species richness [64, 65] was computed with the software EstimateS 

9.1.0 [66]. 

 

Ecological indices 

Trophic niche breadth for each community sample was calculated using the Levins’ index [67]. 

We calculated the seasonal niche breadth for each of the three periods considered (Fig 1), as 

the mean of Levins’ indices measured for all community samples in a given season. Departure 

from normality was assessed with Shapiro’s tests, and homogeneity (equality of variance) of 

indices was subsequently assessed either with Levene’s or F-tests, depending on the outcome 

of Shapiro’s tests. Statistical significance of differences in niche breadth was then tested by 

performing t-tests, accounting for differences in variance when necessary. For more detailed 

comparisons among colonies and across seasons, community samples from related dates were 

grouped within seasons (Fig 1). Trophic niche overlap between these seasonal samples was then 

measured with the Morisita-Horn index 𝐶" [68, 69]. This measure is derived from the Simpsons 
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diversity index and ranges from 0 (no overlap in utilization of resources) to 1 (complete 

overlap). Pairwise niche overlap constituted similarity matrices between samples of interest, 

and were graphically represented by multidimensional scaling (MDS), using the Principal 

Coordinates Analysis (PCoA) function implemented in the R package ade4 [70]. 

 

Results 

Diet composition 

The sequencing and initial sequence validation yielded to a total of 1973378 usable reads, or a 

mean of 16583 reads per sample (n = 119). These reads produced 881 distinct sequences that 

were clustered into 654 MOTUs, each represented by a 1125 read counts per sample on average 

(90% quantile: 5-5409). We discarded 111 of these MOTUs (17%) that did not match to any 

referenced sequence (i.e. with <40% similarity values). We also discarded 57 other MOTUs 

that obviously did not belong to the bat’s diet but likely resulted from environmental 

contamination. The sequences either did not represent animals (enterobacteriae, algae, fungi or 

rotifers), or were small arthropods known to be attracted or feeding on guano deposits (mites, 

machilids, anobiid and dermestid beetles). Finally, two species of slugs were also removed from 

the full dataset, as they likely represented secondary prey consumed by carabid beetles eaten 

by the long-eared bats. 

 

The final, complete dataset (used for wPOO and RRA) represented a panel of 521 

identified arthropods consumed by brown long-eared bats in the Geneva region. These 

arthropods were classified into 3 classes, 15 orders and 94 families (Appendix 1). 505 of these 

prey species (97%) were insects, 12 were spiders (2%), and the remaining 4 (1%) were 

woodlice. Among insects, 53% were lepidopterans (n = 269), 34% were flies (n = 173), while 

bugs, beetles, neuropterans and hymenopterans represented each 2% of consumed species. The 



10 
 

other taxonomic groups (barklice, caddisflies, cockroaches, earwigs, orthopterans, scorpionflies 

and snakeflies) were only represented by less than five species. In addition to these well-

identified arthropods, 63 MOTUs (12%) could not be reliably assigned to a species and were 

thus either kept identified to the family (n = 49) or to the order level (n = 14). 

 

Community samples vs. small replicates 

The 11 community samples and 66 small replicates collected in the maternity colony of Satigny 

produced a total 150 and 299 identifiable prey species, respectively, 109 of which were shared 

by both sampling regimes (Fig 2A). However, for a comparable sampling effort, community 

samples provided a significantly (P < 0.001) higher species richness (mean of 23.5 ± 3.1 prey 

species per sample) than did small replicates (14.6 ± 5.4; Fig 2B). When considering the 53 

community samples collected in all five maternity colonies, the mean prey species richness 

(23.5 ± 7.1) was not different from that of Satigny only (Fig 2B). Extrapolations from 

accumulation curves further suggested that these numbers only represent 50 to 60% of potential 

prey richness inferred with Chao2 estimator (Fig 2C). These extrapolations also indicated that 

at least. 266 community samples would have been necessary to detect 95% of total species 

richness inferred for the five colonies (818 MOTUs). 

 

Seasonal variation of niche breadth 

Analysis of the complete dataset, comprising all retained prey items, each considered as 

weighted occurrence data (dataset wPOO), indicated that trophic niche breadth measured across 

all colonies was significantly higher in community samples gathered during the summer than 

during other seasons (P < 0.04) (Fig 3A). When expressed as number of prey species detected 

per community sample, a mean of 21.8 was observed in spring, 26.9 during the nursing season 

and 21.4 after reproduction. When rare prey species were removed (i.e. 232 MOTUs or 56% of 



11 
 

all identified prey species), summer samples exhibited the highest niche breadth (21.7 prey 

species), which was significantly higher than during spring (16.8 prey species). Species 

richness of samples gathered in summer and autumn(18.9 prey species) did not differ 

significantly (Fig 3B). When using occurrences of prey identified at a coarser taxonomic 

resolution (dataset Family level), niche breadth statistically differed between all seasons, and 

continuously decreased throughout the year (Fig 3C). A mean of 5.6 families per sample were 

represented in spring, 4.0 families in summer, and 2.4 families in autumn, indicating a 

taxonomically more focused diet. Finally, when using the RRA dataset, no significant 

differences in trophic niche breadth were observed between seasons, and seasonal mean Levins’ 

measures ranged from 3.4 to 3.9 prey species (Fig 3D). Similar results were retrieved when 

using the Shannon-Wiener index of niche breadth [71], although it gives more weight to the 

rare resources (Appendix 2). 

 

Seasonal and geographic niche overlap 

In the similarity matrix calculated for the wPOO dataset, Morisita-Horn indices measuring 

trophic niche overlaps between maternity colonies and seasons ranged from 6 to 72%. Lowest 

overlap values were observed between spring and autumn (6-28%; mean 25%), while overlap 

values within seasons were systematically higher (28-72%; mean 47%), regardless of the 

colony considered. The Sappey colony consistently exhibited lower overlap measures with 

other colonies (28-52%; mean 38% within seasons), while all other colonies had larger overlaps 

(35-72%; mean 54% within season). This tendency was clearly recovered in MDS projection, 

since the three sampling seasons were well segregated along the first two axes of the PCA 

(Fig 4A). The third axis consistently separated the Sappey colony during all the three seasons 

considered (Fig 4A). The removal of rare prey items resulted in a very similar MDS 

representation (Fig 4B), and therefore did not affect the conclusions drawn from the full dataset. 
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Conversely, both the use of family-level prey identification (Fig 4C) and the RRA method 

(Fig 4D) failed to provide a clear-cut segregation of samples from a given colony or of samples 

from a given season. When using such data alteration, samples were poorly discriminated by 

date on the first axis, and failed to identify the colony from Sappey as having lower dietary 

overlap compared to all other colonies. The use of taxonomic depth limited to the family level 

provided higher indices of niche overlap with most values being greater than 60%, while 

quantification by read abundance provided much lower values of this measure with most being 

lower than 20%. Comparable results were retrieved e,g, when using the Pianka’s 𝑂$% measure 

of niche overlap [72, 73] (Appendix 3). 

 

Discussion 

Prey detectability does not saturate in pooled poo samples 

Mata et al. [45] compared the dietary diversity estimated for community samples against 

individual pellets, and observed no significant difference in the number of prey species detected 

under these two sampling regimes. They suggested that PCR competition between DNA 

templates could likely explain this saturation in prey detection, as DNA present in low 

frequency may be outcompeted by more abundant ones during amplification. They 

recommended avoiding pooling fecal samples to obtain a more accurate estimate of diet. We 

did not observe such saturation in our community samples consisting of 15-20 pellets versus 

smaller amounts of fecal material (3 pellets). Indeed, the former sampling regime allowed 

detection of 52% more prey species per sample than the latter (23.5 versus 14.9 prey species, 

respectively; Fig 2B). These results indicate that, given the same sequencing effort, the more 

pellets are pooled for the extraction, the higher diversity of prey species will be recovered. The 

apparent saturation in prey detection reported by Mata et al. [45] might therefore reflect a 

methodological problem during the extraction step (e.g., clogged membrane) rather than an 
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amplification bias during PCR. Our extraction improvement consisted of using larger initial 

volumes of digestion buffer when extracting large volumes of fecal material and probably 

overcame this problem. Contrary to recommendation from Mata et al. [45], we thus suggest that 

community samples uncover greater dietary diversities than individual samples do. 

Furthermore, such community samples include droppings accumulated during several days and 

by several bats and thus better reflect the range of prey species consumed by the colony 

members. They also reduce the stochasticity associated with smaller samples, that are more 

affected by individual variation of prey consumption [e.g., 45, 74, 75]. 

 

Seasonal and geographical variation matters 

Due to the marked seasonal phenologies of insect activity observed in most habitats [76], prey 

assemblages available for insectivorous bats varies greatly throughout the year, in terms of 

abundance, diversity and composition. With the complete dataset (wPOO; Fig 3A), we showed 

that this seasonality is strongly reflected in the diet of P. auritus, which appears to exploit insect 

prey opportunistically, with a peak in prey species richness marked during the summer, when 

females are rearing their pups. Members of all maternity colonies appear to exploit the same 

seasonal spectrum of insects, as niche overlap is much larger within a given season than 

between different periods (Fig 4A). These seasonal shifts in prey consumption imply that 

dietary habits measured at a given period may poorly reflect the global diet, both in terms of 

trophic niche breadth and composition, as already evidenced in other bats from temperate zones 

[19, 35]. Hence, studies focusing on temporarily limited samplings that are typically conducted 

during the summer [e.g., 77] (i.e. when prey availability may not represent limiting trophic 

resources) could miss crucial information about diet composition, or niche partitioning. 
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Despite the small geographic scale envisioned here (i.e., within a radius of 10 km; Fig 1), our 

data also shows that geographic location can be an important factor of variation. Indeed, the 

four colonies of brown long-eared bats from the lowlands had systematically higher niche 

overlaps among them as opposed to the one located higher in the mountains (Fig 4A). Such 

local effects of diet composition may thus confound effects of diet variation, when trophic niche 

overlaps are evaluated in distant localities [e.g., 28, 35]. To avoid these potential confounding 

factors of variation (season and location), we argue that niche overlap should be assessed using 

populations or species sampled in close proximity and within the same period of the year. 

 

Discarding rare prey occurrences is not always warranted 

Rare prey items are sometimes removed from metabarcoding datasets, since they may have an 

exaggerated weight in analyses compared to their actual importance in the diet [21, 40], 

especially for animals consuming relatively few prey species [38]. However, this is not always 

warranted, as we show here with the highly diversified diet of the brown long-eared bat. In this 

case, removing rare occurrences, which represent more than half of all prey items recovered, 

did not notably affect indices of niche overlap (about 5% of increase), nor results concerning 

seasonal and geographic variation of diet (Fig 4B). Thus, we concur with Clare et al. [40] that 

discarding unique occurrences has little effect regarding some ecological conclusions, but 

would restrict this recommendation to the estimation of resource partitioning. Indeed, we show 

here that removing these rare items may lead to a significant shrinking of other measures such 

as indices of niche breadth. Since samples with the highest prey species richness also are the 

ones most susceptible to carry rare prey items, removal of the latter artificially increases 

similarities of niche breadths (Fig 3B). 
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In other situations where reference databases for taxonomic identification are incomplete [e.g., 

78] and rare MOTUs are difficult to tease apart from artefactual sequences [36], the removal of 

rare items is justified. In more ideal conditions, like shown here, these rare prey sequences can 

be easily and unambiguously assigned to plausible insect species and thus reflect real prey 

choices. The high number of unique prey occurrences observed throughout the year indeed 

reflects the opportunistic feeding behavior of the brown long-eared bat reported in other studies 

[29, 79]. These prey items should therefore be retained for an accurate description of the 

richness of the diet of this insectivore. 

 

Different taxonomic depth leads to different conclusions 

The level of taxonomic resolution in prey consumed is known to greatly affect ecological 

analyses, such as food web connectance [80]. Taxonomic resolution is particularly limited in 

the case of diet studies using morphological identification of prey remains, but is also limited 

in molecular studies when reference databases are incomplete or when conserved markers are 

used in an attempt to reduce amplification biases. In the last case for instance, less than 67% of 

sequences were identified to the genus level and less than 30% to the species level in recent 

studies [81, 82]. In the context of dietary assessment, an increase in niche breadth and a decrease 

in niche overlap are expected when taxonomic resolution increases [35]. Accordingly, we 

observed that the trophic niche overlap between colonies of brown long-eared bats was clearly 

higher (by about 80%) when only taxonomic identifications to the order-level were considered 

(Fig 3A, Fig 3C). Moreover, this overestimation due to coarser taxonomic identification of prey 

systematically led to increased niche overlap between seasons. This overlap was even higher 

than the 60% threshold classically used to characterize strong dietary overlaps [83]. When using 

a better taxonomic resolution (species level), all indices were lower than 49% (mean 25%) and 

we would reach the opposite conclusion. The study of dietary overlap among colonies and 
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seasons was also severely affected by the use of lower taxonomic depth, as both season- and 

colony-specific differences were much less apparent or lost (Fig 4C). This increase in values of 

niche overlap was probably exacerbated by the fact that P. auritus is a moth-specialist, and less 

dramatic effects can be expected when studying species with wider taxonomic dietary breadth. 

Still, when coarse levels of prey identification fail to reveal trophic resource partitioning 

between species [e.g., 84, 85], metabarcoding techniques with high-resolution markers might 

be useful before rejecting the potential for competitive exclusion and invoking stabilizing 

mechanisms for coexistence. 

 

Both detailed and coarser levels of taxonomic depths of prey identification might, however, 

highlight different aspects of food exploitation by insectivorous bats. The fully resolved dataset 

(Fig 3A) indicated that the brown long-eared bat exploits significantly higher prey species 

richness during the summer, but when comparisons were restricted to family level only (Fig 3C) 

a higher diversity of insects was consumed in spring. Although less numerous in terms of 

species richness, the spring prey insects represent a broader spectrum of families, suggesting 

that bats cannot rely on a few preferred taxonomic groups (e.g., the largest or the most profitable 

prey such as noctuid or geometrid moths), but must be more eclectic during this season. The 

constant decrease of taxonomic diversity of preys observed at the family level throughout the 

year (Fig 3C) might again be a sign of opportunistic feeding behavior of the brown long-eared 

bat, which is known to exploit the peaks of moth diversity and abundance in July-August [29]. 

This hypothesis, however, should be tested properly with feeding choices in order to be 

validated. 
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When weighted occurrences perform better than relative read abundance  

Comparisons of data treatments (Fig 4) showed that using quantitative methods based on 

sequence read counts (RRA) had also a dramatic effect on patterns of diet variation. Accounting 

for read abundance (Fig 4D) completely blurred the strong seasonal and geographical signature 

recovered with the wPOO approach (Fig 4A). Deagle et al. [38] suggested RRA approaches 

provide more accurate view of consumer’s diet when moderate amplification and recovery 

biases are present in the metabarcoding process. To show this, they simulated in silico biases 

ranging from 4× to 20× relatively to a standard amplification. Several lines of evidence indicate 

that much higher levels of recovery biases might actually occur in real metabarcoding analyses 

[up to 5000×; 86], and could therefore explain the poor performance of RRA in the case shown 

here (Fig 3, Fig 4). First, very few prey species received high relative read abundance, while 

most others were represented by extremely low values (<1‰; see Appendix 4), drastically 

downsizing the importance of the latter in measurements of niche overlap. [87]Furthermore, 

several other potential biases due to the prey composition itself (e.g., presence of eggs) or to its 

digestibility certainly also influence the final outcome of read counts and can hardly be 

accounted for [34, 36, 88]. Other approaches, unexplored here, such as the use of multiple 

primer pairs [41, 89], the use of primers known to provide quantitative results [37, 43] or 

avoiding the PCR step by doing shotgun sequencing [90, 91] may be used to overcome part of 

the mentioned biases. It is also possible that composition of simpler diets may be better 

estimated by RRA than in the situation here [92, 93]. 
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Figure captions 

Fig 1. Sampling dates and map of the five colonies of long-eared bats studied in the Geneva 

region. Topographic slopes are shaded from pale (flat) to dark grey (steep). The dotted circle 

represents a virtual 10 km-radius area encompassing all the five sampled colonies: (1) Satigny, 

(2) pont Butin, (3) Choulex, (4) Presinge and (5) Sappey. The inset (lower left) provides a 

location map of the study area near Lake Geneva in southwestern Switzerland. 

 

Fig 2. Species diversity statistics for different regimes of guano sampling: community 

samples for all colonies in green (n = 53), community samples for the Satigny colony in red 

(n = 11), and small replicates in blue (n = 66). A) Area-proportional Euler diagram of the total 

species diversity found under each sampling regime. B) Number of species per sample, with 

significant differences between sampling regimes indicated by stars (*** P < 0.001). C) 

Extrapolated accumulation curves of the number of detected prey species for each sampling 

regime. 

 

Fig 3. Seasonal trophic niche breadth variation (Levins’ index) measured in P. auritus. 

The four panels correspond to different data manipulations: A) full dataset, with all prey items 
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kept and identified to the species level and considered as weighted occurrence data (wPOO); 

B) all unique occurrences discarded from the dataset (No rare items); C) prey identified to the 

family level only (Family level); D) all prey items weighted according to their relative read 

abundance (RRA). Significant differences are indicated by a star (P < 0.05). 

 

Fig 4. Multidimensional-scaling of trophic niche overlap (Morisita-Horn index) measured 

between fecal samples of P. auritus from different colonies and collected in distinct 

seasons. Each colony is represented by a distinct shape, and seasons by different colors. Size 

of symbols corresponds to their relative position along the third MDS axis. The four panels 

correspond to different data manipulations: A) full dataset, with all prey items kept and 

identified to the species level and considered as weighted occurrence data (wPOO); B) all 

unique occurrences discarded from the dataset (No rare items); C) prey identified to the family 

level only (Family level); D) all prey items weighted according to their relative read abundance 

(RRA). 
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