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Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible
for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably
earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast.
Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the
morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new
biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial

biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the
challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration
points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the
evolution of cyanobacteria and oxygenic photosynthesis.

1. Introduction

Modern cyanobacteria constitute an ancient and well-diversified
bacterial phylum, with unique complex morphologies and cellular dif-
ferentiation. They play a key role in food webs as primary producers
performing oxygenic photosynthesis. Cyanobacteria also played a major
role in early biogeochemical fluxes and in Life and Earth evolution.
They are the only prokaryotic organisms that perform oxygenic pho-
tosynthesis, and are thus generally held responsible for the rise of
oxygen in the atmosphere and oceans around 2.4 Ga, during the so-
called Great Oxidation Event (GOE [1,2]), facilitated by geological
processes [3]. Oxygenic photosynthesis has enabled the oxygenation of
oceanic and terrestrial niches, and the diversification of complex life
[4]. Indeed, most modern eukaryotes need a minimal concentration of
molecular oxygen to synthesize their sterol membranes [5]. They di-
versified from a last eukaryotic common ancestor (LECA), an aerobe
protist with a mitochondrion [6]. Further increased oxygen con-
centration was required for the metabolic activity of mobile macro-
scopic metazoans [7]. At least 1.05Ga ago, oxygenic photosynthesis
spread among some eukaryotic clades, giving rise to diverse types of
algae and later to plants. This important evolutionary step was due to
the primary endosymbiosis of a cyanobacterium within a unicellular
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eukaryote [8,9], and subsequent higher-order endosymbiotic events
[10]. The endosymbiotic theory is well supported by biochemical, ul-
trastructural, ecological and molecular data [11], although the identity
and habitat of the cyanobacterial ancestor of the chloroplast are still
debated [12-17].

Despite the importance of cyanobacteria in the early evolution of
Earth and life, fundamental questions remain about their origin, the
timing and pattern of their diversification, and the origin of oxygenic
photosynthesis, ranging from the Archean to the GOE [18]. One crucial
problem to solve is the discrepancy between the unambiguous cyano-
bacterial fossil record, starting at 1.9 Ga, the GOE at 2.4 Ga, and the
report of several older geochemical data suggestive of oxygenic pho-
tosynthesis ([19]; but see Ref. [20]) [21-25]; and [26,27].

Several types of evidence are used to reconstruct the fossil record of
cyanobacteria, but all have their limitations and challenges.
Stromatolites are wusually associated to cyanobacterial activity.
However, although conical stromatolites seem to plead for oxygenic
photosynthesis [28], others types of stromatolites and microbially in-
duced sedimentary structures (MISS) [29-31] may have been produced
by non-cyanobacterial lineages, such as anoxygenic phototrophs
[28,32], or by/in association with methanotrophs [33]. This suggests
that stromatolites and MISS are not necessarily indicative of

Received 29 November 2018; Received in revised form 13 March 2019; Accepted 5 May 2019

Available online 09 May 2019

0891-5849/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/08915849
https://www.elsevier.com/locate/freeradbiomed
https://doi.org/10.1016/j.freeradbiomed.2019.05.007
https://doi.org/10.1016/j.freeradbiomed.2019.05.007
mailto:cdemoulin@uliege.be
https://doi.org/10.1016/j.freeradbiomed.2019.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.freeradbiomed.2019.05.007&domain=pdf

C.F. Demoulin, et al.

cyanobacteria activity, and perhaps not even of photosynthesis [34].
Biomarkers (fossil molecules) can indicate the presence of metabolisms
such as oxygenic photosynthesis, but they are preserved only in well-
preserved unmetamorphosed rocks, and contamination is a challenge
[35]. Among those, lipids such as 2-methyl-hopanes are produced by
cyanobacteria [36] but not only [37], and pigments such as porphyrins
with N isotope composition [38]. Other geochemical (redox and iso-
topic) proxies can also inform on the presence of molecular oxygen in
the water column or biologically-induced isotopic fractionation due to
oxygenic photosynthesis, but their interpretation is often debated. Fi-
nally, microfossils may provide direct evidence for cyanobacteria, but
their identification is often ambiguous. At the present time, the cya-
nobacterial identity of only three fossil taxa is not debated: Eoento-
physalis, Eohyella and Polybessurus. Eoentophysalis belcherensis is the
oldest microfossil interpreted with certainty as a cyanobacterium [39].
This microfossil has been described from 1.89-1.84 Ga silicified stro-
matolites of the Belcher Supergroup, Hudson Bay, Canada [39].

Microbiology of modern cyanobacteria pairs the geological and
paleobiological approaches. The accumulation of modern cyano-
bacterial genetic data in public databases increasingly allows phylo-
genetic reconstructions and molecular clock analyses aimed at esti-
mating the origin of the phylum and the origin of oxygenic
photosynthesis. However, due to the lack of tree calibrations from the
fossil record, contamination of genetic sequences, chosen dataset, and
limitations or differences in models, these estimates are quite variable
[40]. Thus, discrepancies between the geological and fossil records and
molecular phylogenies remain, and the origin and evolution of cyano-
bacteria, oxygenic photosynthesis, and the chloroplast are still debated.

In this paper, we review classic and new biosignatures of cyano-
bacteria, critically assess their fossil record, and suggest possible new
calibration points for molecular clocks. We also briefly discuss mole-
cular phylogenies, molecular clocks and their discrepancies. We finally
make some suggestions for future research, to improve our under-
standing about the evolution of cyanobacteria and its consequences on
Earth and biosphere evolution.

Fundamental and unresolved questions regarding the early evolution of cyanobac-
teria

What are the timing, pattern, and environment of cyanobacteria origin and evolu-
tion?
How to interpret the discrepancies between the fossil record and molecular ph-
ylogenies, and how to reconcile these records?
What are the origin and timing of oxygenic photosynthesis?
Which among geochemical redox proxies and stromatolites are reliable indica-
tors of oxygenic photosynthesis?
What is the origin, timing, and environment of chloroplast acquisition by end-
osymbiosis and evolution of eukaryotic photosynthesis?

2. Identification of cyanobacteria in the fossil record

Paleontologists have to rely on information other than the genomic
data and internal cellular organization to identify the biological affi-
nities of early microfossils. In some cases, conventional biosignatures
such as morphology, division mode, presence of ornamentation, ultra-
structure, and chemistry of carbonaceous cell walls, combined with
their distribution pattern within the hosting rocks and the character-
istics of their preservational environments may help deciphering their
biological affinities [41-43].

Recently, new cyanobacterial signatures, such as intracellular bio-
minerals, molecular fossils of lipids and pigments, and isotopic sig-
natures of carbon and nitrogen, measured on single molecules or whole
microfossils, were proposed as tools to better constrain the early evo-
lution of cyanobacteria and their role in early ecosystems. These con-
ventional and new biosignatures of cyanobacteria are discussed below.
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2.1. Morphology and division pattern

Cyanobacteria were traditionally described as algae and referred to
as ‘Cyanophyta’ or ‘Blue green algae’. Until the end of the 20" century,
the nomenclatural system of cyanobacteria followed the International
Code of Botanical Nomenclature. In the late seventies, Stanier and
colleagues [44] recognized the prokaryotic nature of the cyanobacteria
and proposed to follow the International Code of Nomenclature for
Bacteria. According to the Bergey's Manual of Systematic Bacteriology,
and following the Stanier approach and Rippka et al. (1979) [45]
concepts, cyanobacteria were divided into two groups: unicellular and
multicellular filamentous cyanobacteria; and five subsections based on
morphological criteria, and corresponding to five former cyanobacterial
orders: Chroococcales (section I) and Pleurocapsales (section II) harbor
unicellular cells, which divide by binary fission in one or multiple plans
and are solitary or arranged in colonies. Pleurocapsales can also pro-
duce small easily dispersed cells (baeocytes) after division by multiple
fissions. Within the multicellular filamentous cyanobacteria, Oscilla-
toriales (section III) have only vegetative cells arranged in filaments,
whereas Nostocales (section IV), and Stigonematales (section V) are
capable of producing specialized cells, the heterocytes, which allow N-
fixation in an anoxic compartment; or can exhibit environmental stress
resistant cells called akinetes. Besides, cyanobacteria from section V are
also characterized by their ability to divide in more than one plane and
form true branched trichomes [45].

Since that time, the taxonomic classification of cyanobacteria has
been continually reevaluated with the development of electron micro-
scopy and genetic characterization methods [46]. The classification
into subsections is practical but does not reflect phylogeny because they
are not all monophyletic except for the Nostocales and Stigonematales.

Interpreting microfossils as cyanobacteria is generally based on
morphological criteria, and their mode of division. However, the simple
shape of many microfossils makes an unambiguous identification very
difficult [40]. The size of cyanobacteria cells or filaments may be used
as a taxonomic criterion for microfossil biological affinity. However,
microfossil size does not correspond exactly to the size of living mi-
croorganisms due to modification by taphonomic processes, including
diagenesis, collapsing and flattening [47]. Moreover, different fossil
and modern groups of bacteria, cyanobacteria and eukaryotic algae
have overlapping size ranges. Therefore, microfossil size alone does not
constitute a reliable criterion for the interpretation of a microfossil as a
cyanobacterium [48] or even as a prokaryote or a eukaryote [49].

Cyanobacteria form spheroidal or rod-shaped cells, filaments or
tubes. Some of them occur as spiral filaments (e.g. Spirulina, modern
counterpart of Obruchevella [S0]) but this morphology also occurs in
other bacteria (Leptospira [51]). Cyanobacteria from the Nostocales and
Stigonematales orders may present some of the most complex
morphologies among prokaryotes, including specialized cells such as
larger elongated cells with thicker walls (akinetes) and round cells in or
at the end of the filament (heterocytes, fixing nitrogen). The complex
multicellular filamentous forms of nostocalean and (uniseriate or mul-
tiseriate) stigonematalean cyanobacteria may also display false or true
branching. These more complex cyanobacteria may present unique
characters allowing to not only identify their fossils as cyanobacteria,
but also as specific cyanobacterial clades, more useful as calibrating
points.

However, most cyanobacteria have simple morphologies, wide-
spread in the three domains of life. Simple prokaryotic shapes may lead
to erroneous interpretations since abiotic processes, such as mineral
growth, fluid inclusions, organics migration, or interstitial spaces be-
tween grains, can mimic biogenic forms [40,47,52-57]. Once the bio-
genicity of a microfossil is established, morphological observations
need to be combined with other criteria, including the wall ultra-
structure and molecular composition, in order to confirm un-
ambiguously its identity [58,59].

The division pattern of fossil cells, when preserved, indicates their



C.F. Demoulin, et al.

reproduction, and in some cases, may be indicative of particular taxo-
nomic groups [60,61]. Cyanobacteria reproduce asexually by binary or
multiple fissions. Multiple fissions may lead to the formation of baeo-
cytes, which are small cells formed within the parental cell [62]. They
can also divide in two or three planes of division, such as Entophysalis
spp., the modern counterpart of Eoentophysalis. Moreover, some cya-
nobacteria occur as colonies either within (e.g. Gloeocapsa spp., modern
counterpart of Gloeodiniopsis) or without (e.g. Cyanobium spp., Sy-
nechococcus spp., and Synechocystis spp.) a thick polysaccharide en-
velope. They can also present more or less organized and dense ag-
gregates (e.g. Microcystis spp., modern counterpart of Eomicrocystis) and
even cells organized as tablets (e.g. Merismopedia spp.). Some cyano-
bacteria can also reproduce with the aid of hormogonia, which are
short filaments resulting from break up of longer filaments [63]. Tri-
chomes are ensheathed individual filaments [63].

2.2. Ultrastructure

The wall ultrastructure of modern cyanobacteria consists of a pep-
tidoglycan layer of varying thickness in the periplasmic space between
a cytoplasmic and an outer membrane, with generally an external S-
layer [64]. In some cases, a transparent or pigmented exopoly-
saccharidic (EPS) envelope, the so called sheath, may surround cells,
filaments or colonies. Cyanobacterial EPS includes two forms, one at-
tached to the cell wall and one released in the environments. They may
be composed by up to twelve different monosaccharides, including
pentoses, hexoses, and acid hexoses as well as methyl sugars and/or
amino sugars (e.g. N-acetyl glucosamine, 2,3-O-methyl rhamnose, 3-O-
methyl rhamnose, 4-O-methyl rhamnose, 3-O-methyl glucose, see
Ref. [65] for a review). In the fossil record, sheaths of cyanobacteria are
very common given that they are more readily fossilized, or less easily
degraded, than the unsheathed ones [66]. The association of sheaths
with clay minerals is more frequent than with unsheathed cyano-
bacteria, which helps the preservation of these structures [67,68]. This
association would be due to differences in the chemical composition
between the EPS and the sheath, and the rapid coating of sheaths [67].
Precipitation of other minerals such as nano-aragonite [68] or silica
[69] may also enhance preservation.

As phototrophs, all cyanobacteria but Gloeobacter spp [70]. possess
internal membranes called thylakoids hosting the photosynthetic ap-
paratus, the two photosystems and their pigments. The arrangement of
the thylakoids in cells is well organized and coincide with cyano-
bacterial lineages taxonomy [71]. For example, in tested strains from
Nostocales/Stigonematales thylakoids are coiled and concentrated at
the periphery [71]. Since cyanobacteria are the only oxygenic photo-
synthetic organisms among prokaryotes, the presence of preserved
thylakoids in microfossils would be a reliable criterion to confirm that
they were able to make this type of photosynthesis [72]. So far, ultra-
laminae interpreted as thylakoids based on their stacking and thickness,
were preserved in microfossils as old as 155 Ma [72]. In acid extraction
of 600Ky microbial mats also revealed the resilience of thylakoids
displaying their concentric structure over the hosting cell walls [68]. In
both cases, the preservation of thylakoids made of lipids, pigments and
proteins was favored by clay minerals ([68,72] and discussion therein).
Moreover, although eukaryotes also have thylakoids, they are com-
partmentalized in chloroplasts and often are arranged differently than
in cyanobacteria. Therefore, the distinction between cyanobacterial and
eukaryotic thylakoids would be possible in fossils if they are preserved
[72].

2.3. Paleoecology and behavior

Geochemical proxies may provide indirect evidence for oxygena-
tion, at the planetary scale, such as the GOE, or at the scale of basins
[73-771, and permit the reconstruction of the evolution of paleoredox
conditions. However, as mentioned above, their interpretation can be
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challenging and do not necessarily imply the existence of oxygenic
photosynthesis. In the best cases, they represent average values of local
conditions over a relatively large time scale compared to the life span
and sedimentation of individual taxa within a given microfossil as-
semblage (which itself also represents a time average, biased by taph-
onomy). Thus, establishing the paleoecology of fossil assemblages is
difficult, although combining micropaleontology and geochemistry at
high-resolution along a paleoenvironmental gradient may be in-
formative [54,75], review in Ref. [78]. Hence, examining the consistent
trends in distribution of some microfossil taxa in photic zones, in sili-
cified stromatolites or other carbonates, or in microbial mats preserved
in siliciclastic rocks, might give a hint to their metabolism and point to
(anoxygenic or oxygenic) photosynthesis. Nevertheless, paleontologists
and biologists have to keep in mind that the paleoecology of fossil or-
ganisms might differ from their modern relatives.

At the microscale, the distribution and the orientation of micro-
fossils within rocks may also provide insights about their ecology [41].
Moreover, their orientation might help to infer the behavior of micro-
fossils, such as phototropism of filaments erected towards the light or
chemotropism, rock-boring by endolithic microbes, mat-building
benthic microbes, or plankton settling down with no preferential or-
ientation [79,80]. For example, Green et al. [81] and Golubic and
Seong-Joo [61] concluded that Eohyella was a euendolithic cyano-
bacterium owing to its orientation in oolithes, by analogy with its
modern counterpart, Hyella [41]. Euendoliths are rock-inhabiting mi-
croorganisms, which dissolve mineralized substrates to penetrate the
rock [82], in contrast to other endoliths, e.g. chasmoendoliths, which
are endoliths that colonize existing rock fissures [82].

2.4. Molecular fossils

Molecular fossils include complex organic molecules produced only
by biology and, in some cases, are indicative of particular metabolisms
or lineages [83]. Cyanobacteria produce lipids (2-methyl-hopanes —
[83,84] and pigments that can potentially be preserved in the un-
metamorphosed geological record [35,36]. So far, the lipids 2-methyl-
hopanes were extracted from bitumen in black shales as old as 1.6 Ga
(McArthur basin, Australia) [83,84]. Their oldest record at 2.7 Ga [85]
was reassessed as younger contaminants [86,87]. These fossilized lipids
were first attributed to cyanobacteria [84], but it is now acknowledged
that they might be signatures of other bacterial lineages [37].

Pigments are also used as signatures for (anoxygenic and oxygenic)
photosynthesis. More precisely, the presence of ancient chlorophylls
can be detected by the preservation of their nitrogen-containing tetra-
pyrrole (porphyrin) core. Moreover, some fossilized forms of car-
otenoids, such as okenane and isorenieratane evidence the presence of
purple S-bacteria, green S-bacteria and other bacterial lineages (incl.
cyanobacteria) [83]. Even if they are not unique to cyanobacteria, their
report shows pigment can be preserved in relatively old un-
metamorphosed rocks.

The oldest porphyrins reported so far are preserved in shales of the
1.1 Ga Taoudeni basin, Mauritania [38], which also preserves exquisite
microfossils, including eukaryotes and cyanobacteria [88]. These fos-
silized pigments exhibit a specific N isotope fractionation indicating a
cyanobacterial source and permit to suggest that cyanobacteria were
the dominant primary producers in mid-proterozoic oceans [38].

Other UV-protective (sunscreen) pigments may be used as signature
for bacterial life, such as the mycosporin-like amino acids (MAAs), and
two colored molecules specific of cyanobacteria: scytonemin and
gloeocapsin. For instance, the combined analyses of modern cultures
and fossil (4500 years BP) microbial mats of cyanobacteria from
Antarctica revealed that cells and pigmented filamentous sheaths can
withstand acetolysis (used to isolate them from the mineral matrix) and
retain their molecular signature identified by FTIR microspectroscopy
[68]. They are also preserved in siliciclastic sediments by precipitation
of nano-aragonite and clay minerals [68]. FTIR microspectroscopy of
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microfossils enables the non-destructive analysis of the biopolymer
composition of cell walls or sheaths. Comparison with taxonomically
informative polymers unique to particular modern clades permit to
identify the microfossils, in combination with the morphology and wall
ultrastructure [58]. However, the scarce knowledge of the composition
of pigments, preservable cells, cysts and other structures produced by
modern microorganisms, and of their transformation and alteration
through fossilization, limits this approach. Moreover, high temperature
and pressure (metamorphism) after burial can alter even more or erase
original biological properties [89]. Raman microspectroscopy enables
estimating the temperature at which the organic material has been
submitted (e.g. Ref. [90]), which is necessary to interpret properly the
spectra obtained by FTIR microspectroscopy [89]. Raman spectroscopy
also permits to characterize molecules in modern organisms, including
cyanobacteria [68,91-94]. Scytonemin is a molecule consisting of
phenolic and indolic subunits [95]. Today it is notably biosynthesized
in benthic filaments of Calothrix sp. [68], and in the endolithic cyano-
bacteria Hyella sp. and Solentia sp., from coastal carbonates [93]. It may
be a promising signature of cyanobacteria given that it can be fossilized
[68,96]. In older deposits from Antarctica, derivatives of scytonemin
and carotenoids can be extracted from 125000 years BP sediments [97].
However, the preservation potential of scytonemin in older rocks is not
known. Artificial taphonomic experiments of decaying cyanobacterial
cultures showed the recalcitrance of filamentous polysaccharide
sheaths, possibly helped by the presence of pigments [66]. However, in
lake sediments from Antarctica, both brown (scytonemin-rich) and
transparent (scytonemin-poor) filamentous sheaths were well pre-
served; hence, scytonemin probably was not the factor driving their
preservation [68].

Gloeocapsin, an enigmatic pigment detected in the thick sheath
enveloping colonies of the cyanobacterial genus Gloeocapsa growing on
carbonate surfaces [93] and in lichens (with cyanobacterial symbionts),
might also become a useful indicator, but its molecular composition
remains to be characterized and its preservation potential is currently
unknown [93].

2.5. Isotopic fractionation

Carbon isotopes fractionation do not permit to discriminate oxy-
genic photosynthesis from other metabolisms that have overlapping
range of fractionation, except for methanogenesis [98,99]. At the mi-
croscale, C and N isotopic composition can be measured on single mi-
crofossils with undisputed biogenicity [100-102] and might reveal
some information on inferred paleobiology and metabolism, but only
when combined with their morphology, ultrastructure, molecular
composition, paleoecology and behavior.

Analyses of N isotopic fractionation measured on molecular fossils
can also indicate metabolism and cyanobacterial affinity. Phototrophic
organisms have a specific nitrogen isotopic offset between total biomass
and chloropigments [38]. Based on laboratory experiments, this offset
is independent of the nitrogen source (NH;", N5, or NO;~) and its
isotopic composition and from redox conditions during cell growth. The
N isotopic offset remains relatively constant within different photo-
trophic organisms such as cyanobacteria, bacteria, red or green algae or
plants, and thus may help identify the source organisms. This offset was
notably measured on in 1.1 Ga porphyrins, permitting to relate them to
cyanobacteria [38].

2.6. Intracellular biomineralization

Passive biomineralization leads to precipitation of minerals on fi-
laments, sheaths, or cells and enhance their preservation potential but
is not specific of particular microorganisms [103,104]. Active biomi-
neralization is controlled by the cell or the organism and might be in-
dicative of its metabolism and taxonomic identity. In modern oceans
and alkaline lakes, some cyanobacteria have the capacity to form beads
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of intracellular Ca-carbonates [57,105], but their preservation potential
is unknown. Some extant cyanobacteria also have the capacity to pro-
duce intracellular ferric phosphates [106]. In the 1.88 Ga Gunflint
Formation, Canada, specific microfossil taxa preserved in silicified
stromatolites contain internal Fe-silicate and Fe-carbonate nanocrys-
tals, absent from the external wall surfaces. This feature and its dis-
tribution pattern are consistent with intracellular biomineralization,
with subsequent recrystallization, and not with known patterns of di-
agenesis. Thus, the combination of large size, morphology and in-
tracellular Fe biominerals is consistent with a cyanobacterial affinity,
and not with other known Fe-mineralizing microorganisms [107].
High-resolution observations, as illustrated in Ref. [107], might pos-
sibly reveal new cyanobacteria signatures at the nano-scale, in the rock
record.

3. The fossil record

Microfossils interpreted as cyanobacteria have been reported in
rocks as old as the early Archean, but their biogenicity and inter-
pretation is highly debated. The necessity of reliable criteria for the
study of microfossils is well illustrated with the famous controversy
surrounding the “microfossils” from the 3.45 Ga Apex Chert, Australia
[108]. These traces interpreted as fossil cyanobacteria based on their
morphology and the geological context [108] were subsequently re-
assessed either as pseudofossils [109-111], contaminants [48], mineral
artefacts [53], or microfossils [112-114] and the geological context was
revised [110].

In this section, we discuss a selection of (1) unambiguous cyano-
bacteria microfossils for which morphological features and habitats
coincide strikingly with modern lineages, (2) probable and possible
cyanobacteria microfossils that share morphological similarities both
with a taxon belonging to the cyanobacterial phylum and with other
lineages belonging to another phylum or domain of life. The limited
number of preservable characters, along with their taphonomic al-
teration, and possible morphological convergence, limits the inter-
pretation of the fossil record. Therefore, additional signatures would
strengthen the confidence in the identification of fossil cyanobacteria.
Table 1 summarizes the morphology, dimensions, habitats, and geolo-
gical occurrences of the fossil taxa discussed below and their possible
modern counterparts. Supplementary Table 1 summarizes the geo-
chronological information dating these fossil occurrences.

3.1. Unambiguous microfossils of cyanobacteria

Although microfossils attributed to cyanobacteria are abundant
during the Proterozoic, many of them are identified with some ambi-
guities. Knoll and Golubic [41] determined a confidence range for these
microfossils, since most of them are identified based on morphology,
sometimes coupled with their occurrence in the photic zone, despite the
possibility of morphological convergence. So far, only three taxa are
unambiguously identified as cyanobacteria: Eoentophysalis, Polybessurus
and Eohyella, because they also present distinctive modes of division.

3.1.1. Eoentophysalis

The cyanobacteria fossil record starts around 1.9 billion years ago
with the most emblematic Proterozoic microfossil identified so far with
certainty as a cyanobacterium, Eoentophysalis belcherensis (Fig. 1A).
E. belcherensis was first described in the 1.89-1.84 Ga Belcher Super-
group, Hudson Bay, Canada, where this colonial microorganism formed
mats in silicified stromatolites [39,115].

The identification of E. belcherensis is based on comparison with the
modern cyanobacterium genus, Entophysalis [115]. Based on mor-
phology, Entophysalis belongs to the order Chroococcales [116] and
consists of coccoidal unicells forming characteristic pustular palmelloid
colonies. The morphology of Entophysalis colonies is due to its mode of
cell division by binary fission in three perpendicular planes. Modern
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Entophysalis produce highly hydrated exopolymer envelopes that ex-
pand during cell division. With this expansion, the older exopolymer
envelopes are moved outward. Another particularity of Entophysalis
colonies is the presence in the outer layers of the colonies of a yellow-
brown UV-protecting pigment, scytonemin, that is produced by the
most external cells for protection against intense solar radiation [117].
Entophysalis cells grow in the form of mats in the intertidal range of
shallow marine basins [115,117]. This cyanobacterial genus may also
precipitate micrite in stromatolites such as those in the shallow hy-
persaline Hamelin Pool, Shark Bay (Western Australia), in association
with other cyanobacteria but also other Bacteria, and halophilic and
methanogenic Archaea [34,117-119]. Entophysalis is dominant in
pustular mats, but also in smooth and colloform coccoidal mats and
precipitate micrite, playing a key role in lithifying the stromatolites
compared to filamentous forms [34]. They are also reported to enable
the stabilization of loose sandy substrate and contribute to the forma-
tion of stromatolites by passively trapping sediment particles on the
mat's surface between its irregularities [115,117].

The microfossils Eoentophysalis belcherensis were discovered in sili-
cified stromatolites from the Kasegalik and McLeary formations of the
Paleoproterozoic Belcher Supergroup (1.89-1.84 Ga). The geological
context of these two formations corresponds to intertidal mudflats as
well as shallow subtidal and supratidal zones [39,120]. These pa-
leoenvironments are thus comparable to the modern ecological niches
occupied by Entophysalis. In addition, E. belcherensis and Entophysalis
have similar morphological attributes and, both consist of coccoidal
cells showing the same size range (Table 1). They both reproduce by

Stigonematales, or green and red

Cyanostylon -like, Pleurocapsales
algae

Oscillatoriales or other bacteria
Oscillatoriales, or other bacteria

Modern analogue
Stigonema robustum,
Or other bacteria
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Fig. 1. Microphotographs of fossils with some of their modern analogues. A) Eoentophysalis belcherensis from the 1.89-1.84 Ga Kasegalik Formation, Belcher
Supergroup, Canada; B) Polybessurus from the 800-750 Ma Draken Formation, Svalbard, photo courtesy of A. H. Knoll; C) Cyanostylon, the modern analogue of
Polybessurus, photo courtesy of A. H. Knoll; D) Eohyella, the euendolithic cyanobacterium from the 950-680 Ma Eleonore Bay Group, central East Greenland, photo
courtesy of A. H. Knoll; E) Hyella, the modern analogue of Eohyella, photo courtesy of A. H. Knoll; F) Obruchevella from the 1.03-0.95 Ga Mbuji-Mayi Supergroup,
Democratic Republic of the Congo, photo courtesy of B. K. Baludikay; G) Archaeoellipsoides from the 1.48-1.3 Ga Billyakh Group, Siberia, photo courtesy of A. H.
Knoll; H) Stigonema robustum, the modern analogue of Polysphaeroides filiformis, photo courtesy of T. Hauer; I) Polysphaeroides filiformis of the 1.03-0.95 Ga Mbuyji-
Mayi Supergroup, Democratic Republic of the Congo, photo courtesy of B. K. Baludikay. Scale bars = 20 pm in A, B, E, F, G and H; = 10 um in C; = 100 ym in

D; =50 um in 1.

similar to the paleoenvironment of Polybessurus [79]. Actually, it is the
discovery of the fossil Polybessurus that permitted to predict the en-
vironment where to look for its modern counterpart [121,124]. Taken
together, the particular morphology of Polybessurus, its mode of re-
production and ecology enable its affiliation to cyanobacteria, probably
within the Pleurocapsales.

212

3.1.3. Eohyella

The Limestone-Dolomite series of the ca. 950-680 Ma Eleonore Bay
Group (central East Greenland) also preserve a group of particular
microfossils showing a distinct endolithic behavior [81]. Among them,
Eohyella is a coccoidal microfossil forming pseudofilaments (where
juxtaposed cells do not share a common wall), sometimes branching
depending on the microfossil species, by the juxtaposition of several
cells surrounded by extracellular envelopes (Fig. 1D). Eohyella was
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qualified as an euendolith cyanobacterium because of its orientation
within the substrate: they crosscut the substrate laminae [81,125].
Eohyella microfossils occur in oolites and pisolites of shallow peritidal
environment. Within the euendolithic cyanobacteria group of the
Limestone-Dolomite series, Eohyella was the most abundant genus. So
far, its oldest occurrence was found in the 1.63 Ga Dahongyu Forma-
tion, China [126].

The morphology, behavior and paleoenvironment of Eohyella are
similar to those of the modern genus Hyella (Fig. 1E), which enabled the
identification of this microfossil as a cyanobacterium, of the order of
Pleurocapsales. In the present day, Hyella is an euendolithic cyano-
bacterial taxon present in ooids of the shallow subtidal environment in
the Bahamas Banks [81].

3.2. Probable and possible cyanobacteria microfossils

Other microfossils are identified with less confidence but still con-
sidered as probable or possible cyanobacteria, depending on the au-
thors. They are discussed below in alphabetical order. While analyses of
fossil porphyrins suggest that cyanobacteria were the dominant primary
producers in mid-proterozoic oceans [38], it is still unknown whether
they were planktonic or benthic, and mostly small and coccoidal or
filamentous, or both. The geological record seems to preserve mostly
benthic cyanobacteria in the form of microbial mats or endoliths, al-
though some microfossils, such as Eomicrocystis, are possible planktonic
cyanobacteria. Modern Microcystis colonies overwinter on lake sedi-
ment after summer blooms and reinvade the water column in the spring
[127]. This alternance of benthic and planktonic stage of life may have
evolved early in cyanobacteria.

This review does not illustrate all the Proterozoic microfossils in-
terpreted as cyanobacteria, often displaying simple colonial morphol-
ogies also encountered in other bacterial clades. Sergeev et al. [50] list
additional taxa such as Eosynechococcus, Leiosphaeridia, Myxococcoides
in their extensive review about all the Proterozoic microfossils cur-
rently interpreted as cyanobacteria. Here, we discuss those we consider
the most relevant, common or distinctive taxa that could be used di-
rectly, or after further characterization, as new possible calibration
points.

3.2.1. Anhuithrix

Pang et al. [128] described a new mat-forming filamentous micro-
fossil, Anhuithrix magna, from the Tonian Liulaobei Formation
(0.84 Ga), North China. They interpreted this fossil as a heterocytous N-
fixing cyanobacterium of subsections IV or V (Nostocales or Stigone-
matales), based on the occurrence of large globose cells, observed be-
tween smaller vegetative cells within a filament, or at filament ends.
These large cells were interpreted as probable akinetes according to
their dimensions (364-800 pm in diameter) and their location in fila-
ments. This microfossil reproduced by the production of hormogonia
and grew by binary fission. However, the preservation of those micro-
fossils as carbonaceous compressions might lead to cell deformation,
making difficult the interpretation based on size and simple mor-
phology.

This new fossil genus is, as Archaeoellipsoides (discussed below), a
promising calibration point for molecular clocks to provide a minimum
age of the Nostocales or Stigonematales. Therefore, this probable in-
terpretation should be strengthened by microanalyses (ultrastructure,
chemistry) of extracted microfossils to confirm its identity.

3.2.2. Archaeoellipsoides

Nostocales and Stigonematales are modern cyanobacterial orders
that, as mentioned above, have evolved specialized cells, the hetero-
cytes [129], and in some cases akinetes [130]. Akinetes, formed from
vegetative cells, differ from those by their larger size, a thicker cell wall
and absence of cell division. Modern akinetes, in all known species of
akinete-bearing cyanobacteria, have an ellipsoidal to cylindrical
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morphology and range from 2 to 450 um in length and to 1.8-30 um in
width [128,131]. The microfossils Archaeoellipsoides are cylindrical
cells that include several species differing by their size [50] (Fig. 1G).
Golubic et al. [132] hypothesized that Archaeoellipsoides from the
1.48-1.3 Ga Billyakh Group (Siberia) were fossil akinetes, based on
morphological characteristics (size, elongated shape, and absence of
cell division), by comparison with the akinetes of the extant analogue
Anabaena. Anabaena, a nostocacean cyanobacterium, produces akinetes
ranging from 7 to 90 ym in length and to 1.8-25 pm in width [128,131].
Moreover, Archaeoellipsoides are associated, in the Billyakh assemblage,
with short trichomes. Those trichomes were interpreted as possible
products of akinete germination [133], but the relationship between
the akinetes and the co-occurring trichomes is discussed [134]. Older
occurrences include poorly preserved microfossils in the 2.1-2.04 Ga
Francevillian Supergroup, Gabon [135] and better preserved specimens
in the 1.65 Ga McArthur Supergroup, Australia [136].

However, the simple morphology of Archaeoellipsoides might also
occur among other microorganisms, such as some giant Firmicutes, e.g.
the parasitic Epulopiscium [137] or green algae, such as Spirotaenia or
Stichococcus [134]. Therefore, the identity of Archaeoellipsoides remains
to be confirmed by other evidence than morphology alone.

3.2.3. Eomicrocystis

Eomicrocystis is a microfossil genus described in 1984 by Golovenok
and Belova [138], and interpreted as a cyanobacteria. It was named
according to its possible modern analogue, Microcystis, a planktonic
coccoid cyanobacterium that forms colonies in freshwater lakes and
ponds [133,138]. Eomicrocystis also formed colonies composed of small
spheroidal to ellipsoidal cells (Fig. 2A), but preserved in marine en-
vironments. It may dominate assemblages and occur as blooms in
specific levels of the 1.1 Ga El Mreiti Group, Mauritania [88]. Sergeev
et al. [133] suggested that Eomicrocystis was a junior synonym of the
genus Coniunctiophycus that Zhang [139] had also described and in-
terpreted as the fossil analogue of the extant Microcystis. Eomicrocystis’
oldest occurrence is in the 1.48-1.46 Ga Kotuikan Formation, Siberia
[133]. However, the simple morphology of this microfossil does not
enable a confident interpretation as a cyanobacterium. Indeed, this
morphology is also encountered among eukaryotic algae (e.g. Nanno-
chloropsis) [63] and other bacteria.

3.2.4. Gloeodiniopsis

Gloeodiniopsis is also another possible fossil of a benthic chroo-
coccacean cyanobacterium [140]. Its stratigraphic range starts with the
~1.58 Ga Gaoyuzhuang Formation, China, and the 1.55 Ga Satka For-
mation, the Southern Ural Mountains [139,141].

Gloeodiniopsis consists of several spheroidal to ellipsoidal vesicles
surrounded by a multilayered envelope. They are generally grouped in
colonies but they may also occur occasionally as isolated cells. This
morphology resembles that of modern Gloeocapsa or Chroococcus. These
two possible modern analogues show both a similar morphology but
differ slightly by the presence (Gloeocapsa) or the absence (Chroococcus)
of a colored sheath and the thickness of this sheath. The distinction
between these two modern cyanobacteria is still debated because some
consider this difference between Gloeocapsa and Chroococcus as minor
[50], and moreover, molecular analyzes show that they both are
polyphyletic groups [45,142].

Although the morphology of Gloeodiniopsis is very similar to
Gloeocapsa, some green algae may also present a similar morphology,
e.g. Volvox [143], Sphaerocystis or Eudorina [63]. Again here, new
analyzes of ultrastructure and chemistry, including the presence of
unique pigments [93] in microfossils and modern specimens might help
the discrimination.

3.2.5. Obruchevella
Obruchevella is a microfossil that consists of an empty helically
coiled tube (Fig. 1F). This fossil genus includes several species differing
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by their tube and spiral diameters. The stratigraphic range of Obru-
chevella starts in the third member of the ~1.58 Ga Gaoyuzhuang
Formation, China [144]. When preserved as carbonaceous compres-
sions in shale, the helicoidal filaments are compressed into more or less
tight spirals. When preserved in 3D in chert, they occur as screw-like
coiled filaments [145].

Reitlinger [146] first described Obruchevella specimens as for-
aminifera. Its biological affinity was however reassessed as cyano-
bacteria with Spirulina as modern counterpart, a cyanobacterium be-
longing to the Oscillatoriales [147,148]. The interpretation of
Obruchevella was essentially based on its helically coiled morphology
and its ecology, both similar to Spirulina, a planktonic helically coiled
cyanobacterium. However, this morphology is also known in other
cyanobacteria (Arthrospira) [149], and other bacteria, e.g. the parasitic
but also free-living helicoidal species of Leptospira [51], Para-
rhodospirillum [150,151] and in some eukaryotic algae (e.g. Ophiocy-
tium, a Tribophycean alga [63]). Some species of Leptospirales are as-
sociated with marine stromatolites [34]. Leptospira has a much thinner
diameter (0.1 pm) and does not overlap with the thinnest Obruchevella
(0.8 um). Some Obruchevella microfossils present dimensions similar to
Spirulina (tube diameter 0.5-3 um, see in Ref. [149]), while most other
species have sizes close to Arthrospira dimensions (tube diameter
2.5-16 um, see in Ref. [149]. A few other Obruchevella species have a
tube diameter wider than 20 um, broader than Arthrospira and Spirulina,
and may perhaps be closer to eukaryotic organisms. Other organisms in
the fossil record also have spiral morphology with a larger size and a
eukaryotic interpretation. The Mesoproterozoic specimens of Grypania
spiralis, a coiled filamentous fossil, reach macroscopic size and have
been interpreted as a eukaryotic organism based on its size, preserved
septae and external sheath, and cell length and size suggesting a coe-
nocytic organization. The older 1.9 Ga Grypania are smaller, thinner
and do not preserve internal structure, and resemble more ripped-up
microbial mat fragments (see review in Ref. [59]).
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Thus, although Obruchevella is a probable cyanobacteria, these hy-
potheses are only based on morphology and size, and would be
strengthened by ultrastructure and chemical analyzes.

3.2.6. Oscillatoriopsis

Oscillatoriacean cyanobacteria are reported as the most represented
group of cyanobacteria in the fossil record [152]. One of those is Os-
cillatoriopsis, an unsheathed cellular filament with more or less isodia-
metric cells (Length:Width < 1) [140,153,154] (Fig. 2D). Oscillator-
iopsis microfossils are slightly constricted at intercellular septa [153].

Oscillatoriopsis microfossils are commonly found in shallow water
marine environments but they also may be found in lacustrine deposits
or pluvial lakes [50,140,155]. The stratigraphic record of this genus
starts with the ca. 2.2-1.8 Ga silicified carbonates from the Duck Creek
Dolomite Formation, Australia [155].

The interpretation is only based on morphology, similar to modern
Oscillatoria. However, this type of simple morphology is also found
among other prokaryotes such as Beggiatoa, a sulfide-oxidizing pro-
teobacterium [41,50,155,156] or among eukaryotes such as Ulothrix, a
green alga [157]. Oscillatoriacean cyanobacteria often reproduce by
the formation of hormogonia. The fossil occurrence of such short fila-
mentous microfossils interpreted as Oscillatoriopsis could support its
identificationas hormogonia of oscillatoriacean cyanobacteria [141].
However, other bacteria, again including Beggiatoa, may also produce
hormogonia. Therefore, the interpretation of Oscillatoriopsis as an os-
cillatoriacean cyanobacterium, albeit plausible, is still debated [41].

3.2.7. Palaeolyngbya

Palaeolyngbya is interpreted as a hormogonian oscillatoriocean cy-
anobacterium microfossil found first in the 0.81-0.79 Ga Bitter Springs
Formation, Central Australia [140,158], but its oldest occurrence is in
the 1.60 Ga Gaoyuzhuang Formation, China [159], and in 1.48-1.46 Ga
Kotuikan Formation, Siberia [160]. It is a sheathed filament with a

Fig. 2. Microphotographs of fossils considered as
probable or possible cyanobacteria. = A)
Eomicrocystis from the 1.1 Ga Atar/El Mreiti Group,
Taoudeni Basin, Mauritania. B) Siphonophycus from
the 1.48-1.3Ga Billyakh Group, Siberia; C)
Palaeolyngbya from the 1.03-0.95 Ga Mbuji-Mayi
Supergroup, Democratic Republic of the Congo,
photo courtesy of B. K. Baludikay; D) Tortunema
from the 1.03-0.95Ga Mbuji-Mayi Supergroup,
Democratic Republic of the Congo, photo courtesy
of B. K. Baludikay. Scale bars = 20 pm.
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smooth wall (Fig. 2C). Regular and uniseriate discoidal cells are ar-
ranged inside the single sheath [153].

As several other possible cyanobacteria microfossils, Palaeolyngbya
has been interpreted as such based only on its morphology [140,161]
and therefore is debatable.

3.2.8. Polysphaeroides filiformis

Polysphaeroides is a fossil genus described by Hermann [162], which
included several fossil species, until 1994, when Hofmann and Jackson
[163] moved nearly all of the species of Polysphaeroides to the genus
Chlorogloeaopsis, because of their similar morphology. Only one species
remained, Polysphaeroides filiformis [164]. Polysphaeroides filiformis
consists of spheroidal cells arranged in a loose multiseriate filamentous
aggregate and surrounded by a common envelope with closed ends
(Fig. 1I). The colonies formed by the spheroidal cells may branch. The
1.48-1.46 Ga Kotuikan Formation, Siberia, is the oldest formation in
which Polysphaeroides filiformis was recorded so far [164].

Polysphaeroides is compared to modern stigonemataleans [164,165],
although some authors suggested a possible affinity to eukaryotic algae,
either green or red [166], for example the red algae Polysiphonia
(Figs. 16-42 in Ref. [63]). However, the morphology of Polysphaeroides
filiformis, characterized by a thick sheath surrounding multiseriate fi-
lament arrangement and occasional branching, fits the description of
the recently re-evaluated modern genus Stigonema [167]. For instance,
Polysphaeroides filiformis from the 1.03-0.95Ga Mbuji-Mayi Super-
group, DRC [165], displays cell shape, arrangement, and diameters, as
well as the presence of the thick sheath and the occurrence of branching
(Fig. 1I) that are strikingly similar to the modern multiseriate species,
Stigonema robustum (Fig. 1H). We consider that this fossil cyano-
bacterium may represent a good alternative calibration for future mo-
lecular clock analyses as modern taxa belonging to this genus form a
monophyletic clade. Modern multiseriate Stigonema species including
the recently described S. informe, and S. robustum, are generally epi-
lithic [167] while Polysphaeroides filiformis from Mbuji-Mayi Super-
group was associated with intertidal or subtidal environments [165].

3.2.9. Siphonophycus

Siphonophycus is one of the most common filamentous microfossils
in the Proterozoic. It is commonly found in shallow water deposits in
Proterozoic mat assemblages [41,168], preserved in situ in chert
[41,80,124,140,169] or as bundles ripped off mats in shales [54], or as
the main stromatolite builders [50]. Siphonophycus is an unbranched,
non-septate and empty smooth-walled filamentous sheath [140]
(Fig. 2B). Several species are distinguished based on the diameter range
of the filamentous sheath [153]. Broad (15-25 um) filaments of Sipho-
nophycus transvaalensis reported in the latest Archean 2.52 Ga Gamo-
haan Formation of South Africa were interpreted as non-heterocytous
cyanobacteria similar to modern Oscillatoriales [170]. Similar Oscilla-
toriales-like microfossils occur through all the Proterozoic.

Siphonophycus specimens are generally interpreted as sheaths of
oscillatoriacean cyanobacteria. Schopf [140] occasionally observed
transverse thickenings that were placed along Siphonophycus fila-
mentous sheaths. Therefore, he suggested that modern counterparts of
Siphonophycus microfossils would be LPP-like cyanobacteria (Lyngbya,
Phormidium and Plectonema) [140,141,171]. Nevertheless, this simple
morphology is also encountered in other bacteria. For example, minute
Siphonophycus sheaths may be comparable to Chloroflexi-like photo-
synthetic bacteria [41,168]. Large Siphonophycus microfossils might
also be the remains of filamentous eukaryotic algae [50]. Some Sipho-
nophycus may present a sheath with a thickness of around 2 um. Thick
sheaths are generally common among cyanobacteria and not among
other bacterial phyla [172]. They may thus be a criterion of a cyano-
bacterial affinity for those Siphonophycus specimens, in addition to al-
ternating vertical and horizontal disposition in mats, which may in-
dicate phototropism or chemotropism, a behavior not unique to
cyanobacteria [41,134].
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4. Molecular dating

The understanding of cyanobacterial phylum evolution has pro-
gressed significantly with the emergence of molecular biology techni-
ques and new sequencing technologies. Since the late 90's a myriad of
phylogenetic studies based on single loci (i.e., 16S rRNA or some pro-
tein) have been published (e.g. Refs. [9,201]). Even if the five major
sections of Cyanobacteria were not yet represented in genomic data-
bases, the first studies to use a phylogenomic (i.e. multilocus) dataset
were the works of Rodriguez-Ezpeleta et al. (2005) [202] and then of
Criscuolo and Gribaldo (2011) [203]. In 2013, the large CyanoGEBA
(Genomic Encyclopedia of Bacteria and Archaea) sequencing project
led to an improvement in terms of genomic coverage of cyanobacterial
taxa, notably by sequencing genomes belonging to sections II and V
[201]. Since then, the number of publicly available cyanobacterial
genomes has dramatically increased. Yet, their quality, especially con-
tamination of cyanobacterial assemblies by non-cyanobacterial DNA,
has gone worse in parallel, which is a problem for phylogenetic ana-
lyses [204]. Moreover, the real biodiversity of cyanobacteria is still
under-represented in genomic databases, mainly because of a biased
sampling in the sequencing effort [205,206]. Nevertheless, since Shih
et al. (2013) [201], many authors have taken advantage of these new
genomes to carry out phylogenomic analyses [13,15,207-213]. Most of
these studies focussed on integrating new genomic data to the same set
of 100-200 hundreds loci (but see Ref. [15]). By doing so, few tried to
handle the methodological difficulties associated with the use of large-
scale data to resolve the phylogeny of old groups such as Cyanobacteria,
whether during dataset assembly (e.g., contamination, horizontal gene
transfer, hidden paralogy) or phylogenetic inference (e.g., substitu-
tional saturation, compositional bias, heterogeneous evolutionary rate)
[214-217], except [203]. Consequently, among the ten phylogenomic
studies cited above, only three are in agreement on the cyanobacterial
backbone [13,201,210].

4.1. Calibration, models, and datasets

For molecular clock reconstructions, microfossils of cyanobacteria
are needed as a source of calibration of the molecular phylogenies.
However, only few calibration points are available to date oxygenic
photosynthesis, the endosymbiotic event having given rise to the
chloroplast, as well as the origin of cyanobacteria. For the latter, esti-
mates range from the early Archean to the GOE, in the Paleoproterozoic
(Fig. 3). Beyond the lack of congruence of the phylogenomic studies and
the polyphyletic nature of many cyanobacterial groups (including well-
known genera such as Synechoccocus and Leptolyngbya), the issue is
complicated by the absence in genomic databases of modern counter-
parts (Entophysalis, Hyella or Cyanostylon-like) of the unambiguous cy-
anobacteria microfossils (Eoentophysalis, Eohyella and Polybessurus). As
we have no reliable indication of the phylogenetic position of these
important modern taxa, researchers often use flimsy affiliations as ca-
libration points. Usually, only few cyanobacterial fossils are used as
constraints for molecular clock analyses. They include Archae-
oellipsoides for monophyletic Nostocales and Stigonematales lineages,
and Eohyella for Pleurocapsales lineages, despite the absence of a ge-
netic characterization of the modern counterpart Hyella (e.g. Refs.
[210,218]). The occurrence of fossil diatoms is often used for the ad-
vent of the endosymbiont Rivularia intracellularis, and the fossil red
algae Bangiomorpha for the minimum age of the primary en-
dosymbiosis. Moreover, some authors have chosen not to use cyano-
bacteria microfossils in their analysis, but instead fossils from eu-
karyotic lineages such as plants [219], or the occurrence of horizontal
gene transfer [213], or the GOE to set a lower bound on Cyanobacteria
as a phylum [220]. In a non-exhaustive survey, we observed more than
89 different approaches used to estimate the evolution of cyano-
bacterial phylum. This diversity of phylogenies, and calibration points,
but also of clock models and dating software packages, has led to a large
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variety of age estimates.

So far, all the attempts to date the evolutionary events of the cya-
nobacterial phylum used a fixed-node approach, where researchers
manually select nodes to place calibration points. This strategy has the
disadvantage of inducing an unmeasurable uncertainty on the inferred
node ages, due to errors in taxonomic affiliation and/or specified geo-
logical ages. The affiliation error is often due to misleading morpho-
logical similarities between unrelated extant organisms and (ambig-
uous) microfossils. Moreover, polyphyletic groups make impossible to
specify node calibrations, except by reporting their origin to a (much)
older common ancestor far back in the tree. This problem could be even
worse if some scarcely sampled extant organisms used for calibration
are actually polyphyletic. Regarding ages, they are specified as prior
distributions partly based on the minimum age (lower bound or oldest
occurrence) of a given microfossil in the paleontological record.
However, owing to issues due to taphonomy and extinction of stem
groups, this may introduce an unmeasurable divergence between the
ages specified for the fossil and the real geological span of the organism.
Ultimately, inferred node ages are thus highly dependent on the com-
pleteness of the paleontological record [221].

Because of these limitations, an alternative strategy, termed tip-
dating, would be more suitable for dating the evolution of
Cyanobacteria. In such an approach, the placement of the microfossils
within the tree is guided by a morphological matrix and supported by
statistical values, the posterior probabilities [222]. The consequence of
this “automatic” placement is that tip-dating enables the use of a wider
range of microfossils, not only the unambiguous ones, but also the
numerous ambiguous microfossils. Further, by explicitly modeling stem
groups within the tree [221], tip-dating is able to test (and thus either
confirm or reject) the affiliation of microfossils to extant organisms,
which is usually taken for granted in the paleontological literature and
many molecular dating studies building upon it.

4.2. Origin of cyanobacteria and oxygenic photosynthesis

In most cyanobacterial phylogenetic analyses that are using a non-
cyanobacterial outgroup to root the tree, the reference strain
Gloeobacter violaceus PCC7421 has a basal position [9,223-225]. Con-
sequently, the phylogenetic node bearing Gloeobacter and the rest of
modern cyanobacterial lineages serves as calibration for the origin of
cyanobacteria in several studies [226-228]. In these studies, the au-
thors have set different root limit ages, so that the maximum root age
may vary between the earliest estimate of abiogenesis around 4.2 Ga
[226], the end of the Late Heavy Bombardment at 3.85 Ga [228], or the
GOE at 2.4 Ga [229].

Recently, two newly discovered lineages were proposed as sister
groups of the cyanobacterial phylum, the Melainabacteria [230] and
the Sericytochromatia [231]. Of note, these lineages (mostly known as
metagenomics assemblies) do not contain genes required for photo-
synthesis nor carbon fixation [231]. The integration of genetic data
from Melainabacteria and Sericytochromatia as outgroups for mole-
cular clock analyses suggested that cyanobacteria evolved just before
the GOE [213,219]. Taken together, this suggests that oxygenic pho-
tosynthesis has evolved after the separation of cyanobacteria from
Melainabacteria [213,219]. However, the loss of photosynthetic cap-
ability in the ancestor of the three lineages before or at the time of GOE
has been suggested as an alternative hypothesis that cannot be ruled out
[232].

Among bacterial phototrophs (cyanobacteria, green S-bacteria,
green non sulfur bacteria, purple bacteria, heliobacteria, some acid-
obacteria and gemmatimonadetes), Cyanobacteria is the only lineage
that possesses two photosynthetic reaction centers of the Fe-S type
(RCI) and Quinone type (RCII), whereas anoxygenic bacteria possess
either the Fe-S or Quinone type. So far, three hypotheses were proposed
to explain the presence of both types of RC in modern cyanobacteria.
Two of these hypotheses suggest that both RCs would have been present
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in an anoxygenic phototrophic ancestor. In a first hypothesis, RCs
evolved within the common ancestor of (all) bacterial phototrophs.
Both of them were kept in the cyanobacterial lineage whereas there was
a selective loss of one type of each in the modern anoxygenic lineage
ancestors [233,234]. In the second hypothesis, the RCI and RCII would
have emerged in the protocyanobacterial ancestor by duplication of a
unique ancestral RC. This was followed by lateral transfer of a different
RC type to the ancestors of the modern anoxygenic phototrophs [235].
The existence of an anoxygenic cyanobacterial ancestor may be sup-
ported by the occurrence of several genes involved in anoxygenic
photosynthesis in modern cyanobacterial genomes [236], and the co-
occurrence of both anoxygenic and oxygenic photosynthesis in several
lineages of modern cyanobacteria clades [237,238]. A third hypothesis
rather suggests the independent evolution of the two RCs in separate
lineages of anoxygenic phototrophs and their lateral transfer into a
protocyanobacterial ancestor, the so-called fusion hypothesis
[239,240]. At least in purple bacteria, the genes for RCII are clustered
in an ensemble of operons, the photosynthesis gene cluster (PGC), some
organisms even harboring the PGC on large plasmids. This observation
makes the transfer of full photosystems highly plausible, and recent
events of such kind have been convincingly inferred in Rhodobacter-
aceae [241].

In order to test the likelihood of the ancient transfer of photosystems
between the bacterial phototrophic lineages, Magnabosco and collea-
gues [213] added horizontal gene transfer events information of two
genes (encoding for Mg-chelatase and S-adenosyl-L.-homocysteine hy-
drolase) as additional constraints to their models to estimate the stem
age of the bacterial phototrophs (Cyanobacteria, green S-bacteria and
green non-sulfur bacteria). These authors assumed that such estimates
would allow them to investigate the feasibility and timing of the RC
transfer events between phototrophic lineages. Their results excluded
the possibility of a RC transfer from the green sulfur bacteria to cya-
nobacteria, and thus, invalidated the fusion hypothesis. However, they
were not able to choose between the two hypotheses suggesting that
both RCs emerged from a common ancestor [213].

First, the reaction centers RCI and RCII would operate separately
and asynchronously in the same ancestral anoxygenic phototroph or-
ganism. The RCI would catalyze H2S oxidation as in green S-bacteria,
while the RCII would act as a light-dependent electron transporter as in
purple bacteria [242]. A water-splitting RCII could also have evolved
from an ancestral RCII type already capable of photosynthesis and
manganese oxidation [243]. However, the evolution of these processes,
and the early or late evolution of oxygenic photosynthesis, are still
debated e.g. Refs. [99,244].

4.3. Diversification

Several studies suggested that ancestral cyanobacteria first in-
habited freshwater ecosystems [13,15,17,210,218,226], but see e.g.
Ref. [16] for a marine origin. Nevertheless, these estimates are based on
comparison with the modern ecology of basal clades of cyanobacteria,
which are likely to have changed through time. Moreover, the fossil
record of cyanobacteria is almost exclusively estuarine and shallow
marine, often from the intertidal zone, or hypersaline lacustrine.
However, terrestrial deposits are less commonly preserved in the geo-
logical record, and this might bias our view of the fossil ecological
ranges.

A couple time calibrated phylogenies based on low-resolution
alignments of 16S rRNA gene sequences or on a large multilocus dataset
[227,228] suggest that multicellular forms of cyanobacteria were po-
tentially present when the GOE started, implying a pre-GOE origin of
the cyanobacterial phylum. Furthermore, their results hint at an ac-
celeration of the diversification rate after the substantial increase of
atmospheric oxygen concentration [227]. The acquisition of the mul-
ticellularity would be an advantage for UV resistance and substrate
adhesion [40]. However, multicellularity is polyphyletic and



C.F. Demoulin, et al.

Free Radical Biology and Medicine 140 (2019) 206-223

(2]
o
m
@Fossil record
ASchirmeister et al. [227]
ABattistuzzi et al. [229] .
ABlank [14] A |

OBlank and Sanchez-Baracaldo [226]
Cardona [244]

WFalcon etal. [12]

©Gibson et al., [253]

©Magnabosco et al. [213]

# Sénchez-Baracaldo [210]

#Sanchez-Baracaldo et al. [218]

+Sénchez-Baracaldo et al. [15]

xShih et al. [219]

@Shih and Matzke [220]

Eomicrocystis
ophysalis belcherensis Gloeodiniopsis
@ e

Eohyella  Polybessurus
® A A daem

Obruchevella

L *n oAVORME A

RN mm

Palacolyngbya
N Siatedid

Anhuithrix magna i -
Archaeoellipsoides  Polysphaeroides filiformis Section V& V-
. ) Nostocales and Stigonematales

XX N0 OXER

Section | - Chroococcales

@ (Gloeobacter excluded)

* coeeme 4o Prochlorococcus spp.

commee oo o Marine Synechococcus spp.

Section Il - Pleurocapsales

Section lll - Oscillatoriales

Bangiomorpha e
o e Endosymbiosis

A A A an o OO x ¢ <o O XX X x A Cl‘own
6 A O0OA OXAX x Stem
— Time (Ga)
-4.56 - ) -35 -3 -325 -2 -15 -1 -D.5 0
M . S | 2P
& Archean Proterozoic Pl
= o & &
Precambrian Phaneroze!
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considered here corresponds to its record in Baludikay et al. [165].

convergent several times across extant species — especially in cyano-
bacteria.

Other studies hypothesize that the origin of marine planktonic cy-
anobacteria would have happened after the evolution of crown groups
in freshwater, terrestrial and benthic coastal modern environments
[210]. Benthic (terrestrial and coastal) cyanobacteria may have domi-
nated the oxygenic photosynthesis from the late Archean and possibly
until the mid-Neoproterozoic [245].

However, these hypotheses remain to be confirmed since the record
of Archean cyanobacteria is controversial as explained above, and the
fossil record is biased towards benthic forms. Benthic filamentous cy-
anobacteria forming mats or preserved in silicified stromatolites are
preserved preferentially to small planktonic cells sedimenting in the
water column. Moreover shallow-water deposits are more common in
the Precambrian then deeper sediments.

Non-heterocytous  N-fixing  unicellular and filamentous
Trichodesmium spp. would have appeared later, during the late
Neoproterozoic [210,218]. This observation possibly coincides with an
increase of bioavailable Mo (an essential co-factor of nitrogenase) in the
open ocean [40,218,246,247]. However, cyanobacteria likely had to
invent a new N,-fixation machinery that could operate in the presence
of the rising O,, leading to the evolution of heterocytous cyanobacterial
taxa, probably as early as the GOE [227], and possibly supported by
Paleoproterozoic [134-136] and Neoproterozoic [128] microfossils.
However, this hypothesis might be questioned as heterocytous cyano-
bacteria age estimates resulted from models that used poorly preserved
putative fossil akinetes from 2.1 Ga Franceville Gabon. In the Paleo-
proterozoic redox stratified oceans, cyanobacteria may have performed
anoxygenic (rather than oxygenic) photosynthesis using H,S above
euxinic layers, or may have been outcompeted by anoxygenic photo-
synthetic bacteria metabolizing H,S or Fe>" above ferruginous water
[248]. However, they became important primary producers in the still
stratified mid-Proterozoic oceans [38].

4.4. Origin of chloroplast

Chloroplasts form a monophyletic cluster within the Cyanobacteria
phylum [12]. This observation is elegantly interpreted as the result of a
primary endosymbiosis at the origin of the chloroplast [249]. Although
this theory is well accepted in the scientific community (but see
Ref. [250] for a more complex model involving Chlamydiales), the
precise position of the plastid within the extant diversity of Cyano-
bacteria has been a matter of discussion. Two major scenarios are op-
posed, one postulating an ancient origin (early-branching)
[13,14,105,202,203,209,211,220] and the other one postulating a
(relatively) recent (late-branching) origin [12,208,251]. The hypothesis
of an early origin is more frequent in the literature, and it has recently
been strengthened by the study of Ponce-Toledo et al. (2017) [13], who
identified the early-branching Gloeomargarita lithophora as the closest
extant relative of plastids. In an attempt to date the primary en-
dosymbiosis, Falcon and colleagues [12] assumed that the closest re-
lative of chloroplasts was a unicellular N-fixing cyanobacterium (late-
branching hypothesis) and that it occurred during the middle of the
Proterozoic [12] (Fig. 3). However the calibration used included Ar-
chean ages for the highly controversial Apex chert microstructures and
sterane that were subsequently reassessed as contaminants (see above).
Later studies of ATP synthases subunits and elongation factors per-
mitted to estimate the first endosymbiosis event at approximately
0.9Ga [220]. Taking advantage of the recent discovery of Gloeo-
margarita [13,252], Sanchez-Baraccaldo et al. (2017) estimated the age
of the origin of the chloroplast at 1.9 Ga (2.12-1.75 Ga) [15]. This re-
sult is similar to the one reported in Ref. [14], although the topologies
used in the two studies were slightly different with respect to plastid
position. In contrast, Shih et al., 2017 [219] recovered a quite different
age for plastids (1.1 Ga). Interestingly, this latter estimate is more si-
milar to the result of [12], even if assuming an early-branching hy-
pothesis for plastid emergence. This suggests that discrepancies in
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estimated chloroplast ages rather stem from differences in calibration
points and/or dating models than from topologies (early vs late-
branching hypotheses). Indeed, if differences do exist in tree topologies
concerning chloroplast emergence, the wide age intervals obtained in
the various analyses often exceed the branch length variation implied
by topological changes. This is not surprising given the very short
length of the corresponding internodes in the cyanobacterial backbone.

As exploitable cyanobacterial microfossils are not numerous, a lo-
gical strategy is to use the morphologically more complex and more
recent eukaryotic algae as calibration points. However, the oldest un-
ambiguous fossil record of eukaryotic algae are silicified multicellular
bangiophyte red algae preserved in hypersaline shallow-water en-
vironment [195] and recently well dated at 1.047 Ga [253]. These
fossils were interpreted as benthic multicellular red algae based on their
morphology, longitudinal division pattern, attachment structures, and
ecology [195]. Other 1.6 Ga microfossils are interpreted as more di-
vergent Florideophyte red algae based on morphology [254], but their
age is debated because of the complex geology of the area [253]. Mi-
crofossils interpreted as green algae may also provide an estimation of
the minimum age for chloroplast acquisition. Their fossil record ranges
from unambiguous 0.6 Ga prasinophytes based on wall ultrastructure
[255], 0.8 Ga probable siphonocladalean chlorophytes and probable
hydrodictyacean chlorophyte based on distinctive morphology and
ecology [134], the latter also found in 1.1-0.9 Ga lower Shaler Group of
arctic Canada [256], to 1.65 Ga acritarchs whose putative algal inter-
pretation needs confirmation [257]. Using the new age of 1.047 Ga
calibration for Bangiomorpha, Gibson et al. [253] estimated the primary
chloroplast endosymbiosis at 1.25 Ga, consistent with most of the un-
ambiguous algal fossil record.

5. Conclusions

Cyanobacterial fossil record starts unambiguously at 1.89-1.84 Ga
and the minimum age for the oxygenic photosynthesis starts with the
GOE around 2.4 Ga. Eoentophysalis, Polybessurus and Eohyella micro-
fossils present a combination of distinctive morphologies, modes of
division and ecology that are diagnostic of the cyanobacteria phylum
[41]. Therefore, their placement into this phylum is strongly supported,
unlike other Proterozoic microfossils that display a simpler morphology
widespread among other prokaryotes. Older possible geochemical
traces of oxygenation and the metabolisms involved in stromatolites
and MISS builders in the Archean are discussed. Moreover, the origin
and timing of oxygenic photosynthesis is also still debated although
some studies corroborate that the evolution of oxygenic photosynthesis
happened right before the GOE which would then be a consequence of
this evolution. The origin, timing and environment of the primary en-
dosymbiotic event giving rise to eukaryotic algae are also still debated.
Therefore, it is essential to define new biosignatures indicative of cya-
nobacteria in order to reassess their fossil record and provide new ca-
libration points for molecular clocks. Those biosignatures will combine
analyses of the morphology, ultrastructure and ecology of promising
microfossils identified in this review, with their molecular (lipids and
pigments), metal and isotopic composition. Identifying these fossils, not
only as cyanobacteria, but of specific clades within the cyanobacteria,
will improve our understanding of their diversification record and
provide new calibration points. Coupling these new microfossil cali-
bration points with improved molecular phylogenies and alternative
molecular clocks (such as tip-dating) will then enable to date the
minimum ages of important biological events such as the origin of
oxygenic photosynthesis and the acquisition of chloroplasts among
photosynthetic eukaryotic lineages.
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