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ABSTRACT

Recent developments in high-throughput sequencing (HTS), also
called next-generation sequencing (NGS), technologies and bioinfor-
matics have drastically changed research on viral pathogens and spurred
growing interest in the field of virus diagnostics. However, the reliability
of HTS-based virus detection protocols must be evaluated before adopting
them for diagnostics. Many different bioinformatics algorithms aimed at
detecting viruses in HTS data have been reported but little attention has
been paid thus far to their sensitivity and reliability for diagnostic
purposes. Therefore, we compared the ability of 21 plant virology
laboratories, each employing a different bioinformatics pipeline, to detect
12 plant viruses through a double-blind large-scale performance test using
10 datasets of 21- to 24-nucleotide small RNA (sRNA) sequences from
three different infected plants. The sensitivity of virus detection ranged

between 35 and 100% among participants, with a marked negative effect
when sequence depth decreased. The false-positive detection rate was very
low and mainly related to the identification of host genome-integrated viral
sequences or misinterpretation of the results. Reproducibility was high
(91.6%). This work revealed the key influence of bioinformatics strategies
for the sensitive detection of viruses in HTS sRNA datasets and, more
specifically (i) the difficulty in detecting viral agents when they are novel or
their sRNA abundance is low, (ii) the influence of key parameters at both
assembly and annotation steps, (iii) the importance of completeness of
reference sequence databases, and (iv) the significant level of scientific
expertise needed when interpreting pipeline results. Overall, this work
underlines key parameters and proposes recommendations for reliable
sRNA-based detection of known and unknown viruses.

During the infection process, viruses and viroids are targeted by
the host silencingmachinery and, as a consequence, virus- or viroid-
derived small RNAs (sRNAs) accumulate in infected host cells. In
plants, these sRNAs are predominantly 21, 22, and 24 nucleotides
(nt) in length, and each size class is produced by a different branch
of the silencing machinery (Ding and Voinnet 2007). In 2009, the
high-throughput sequencing (HTS) of sRNA populations followed
by bioinformatic analysis was used for the first time; a powerful tool
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to identify and characterize viruses and viroids that infect plants,
even in the case of novel viral agents (Kreuze et al. 2009).
In this way, HTS and the bioinformatics analysis of the data have

already contributed to a paradigm shift in the fields of virus
discovery and diagnosis (Adams et al. 2009;AlRwahnih et al. 2015;
Massart et al. 2014). Among various possible target nucleic acid
pools such as virion-associated nucleic acids, double-stranded
RNAs, total RNAs, ribosomal-RNA-depleted RNAs, or messenger
RNAs, sRNAs offer the advantage of theoretically allowing the
identification of all types of plant virus or virus-like agents (if they
are targeted by the host silencing machinery), regardless of their
genome nature or structure (DNA or RNA, single or double
stranded, or satellite or viroid) (Roossinck et al. 2015). sRNA
sequencing has consequently been a very popular strategy, used in
approximately 50% of the publications on virus detection or
symptom etiology (Barba et al. 2014; Hadidi et al. 2016).
Despite the fact that complete assemblies of viral genomes from

sRNAs have been regularly achieved (Kreuze et al. 2009; Seguin et al.
2014; Vainio et al. 2015), in many cases only partial sequences,
sometimes quite short, have been reconstructed or a virus has not been
detected. This may reflect low proportions of viral sRNAs in total
sRNA populations or insufficient sequencing depth (observations of
several authors of the present study) but the assembly of viral sRNA
sequences into contigs also faces specific computational challenges.
Assemblers have to simultaneously deal with the very small size

and large number of total (viral and host) sRNA reads (typically
millions for an individual sample) and, frequently, with the large
diversity of the viral population infecting the sample. Several short-
read assemblers are available today to perform this task, including
Velvet (Zerbino and Birney 2008), Oases (Schulz et al. 2012),
MetaVelvet (Namiki et al. 2012), ABySS (Simpson et al. 2009), or
those integrated into commercial software packages such as
Geneious (Biomatters) or CLC Genomics Workbench (Qiagen).
In viral discovery and diagnostics, the quality of the initial sRNA
assembly is critical for the effectiveness of the ensuing step (the
annotation of contigs in order to identify the viruses present). This is
particularly true when trying to identify a novel agent that is not
represented in reference sequence databases (Barrero et al. 2017;
Massart et al. 2014).
The annotation of contigs is usually performed using homology

searches with tools such as BLAST, in its various forms (e.g.,
BLASTN or BLASTX) (Altschul et al. 1990), or MegaBLAST
(Morgulis et al. 2008) on general (National Center for Bio-
technology Information [NCBI] GenBank) or custom viral da-
tabases. In some cases, this can be complemented by read or contig
mapping strategies on general or virus-specific databases using
tools such as BWA (Li and Durbin 2009), tools integrated in
commercial software packages, or publicly available online tools.
Such mapping approaches have the theoretical advantage of being
potentially more sensitive to detect poorly represented viral agents
but are obviously very limited when confronted with novel viruses
or viroids absent from databases. If the host genome sequence is
available, a filtering step can be applied to separate viral sRNAs or
viral contigs from the host sRNAs or contigs, which may facilitate
virus genome reconstruction (Seguin et al. 2014).
Although conceptually very simple, the analysis of an sRNA

dataset to identify virus or virus-like agents is, in fact, a complex
task (Soueidan et al. 2014; Wu et al. 2015), with many possible
choices and options in terms of both general strategy and specific
tools and parameters, all of whichmay impact the ultimate ability to
pose a sensitive, specific, and repeatable diagnosis. Given the broad
interest in the sRNA-based approach for virus detection (Hadidi
et al. 2016; Massart et al. 2014; Wu et al. 2015), many laboratories,
in particular in the plant virology field, have embraced it and
developed in-house pipelines and strategies for sRNA HTS data
analysis. However, the performance levels of these various tools
and, more broadly, their comparative advantages or limits for virus
detection have not been scrutinized thus far.

In the available literature, the comparison of bioinformatic pipe-
lines is always carried out by a single group of scientists developing a
new algorithm. Such small-scale comparisons are necessary but
may generate some bias. Indeed, they reflect the performance of
the algorithms as assessed by the pipeline developers. This will not
necessarily reflect the performance of the algorithms once they are
used by the scientific community. Performance testing of laboratory
protocols by end users has been a common approach formore than a
decade. Nevertheless, there have been very few studies comparing
and benchmarking on a large scale the efficiency of bioinformatics
analyses; moreover, they were carried out by individual laborato-
ries, based on a restricted number of strategies (Barrero et al. 2017;
Seguin et al. 2014; Visser et al. 2016). It is noteworthy that
performance testing as addressed here is a key step toward the
selection of specific protocols that can be further ring tested
on a large scale for official validation and inclusion in rou-
tine diagnostics (following, for example, the EPPO standard PM
7/122).
Bearing this in mind, a large-scale performance test of the

bioinformatic pipelines implemented by a wide range of plant
virology laboratories was set up. The comparative, double-blind
study reported here provides the first large-scale evaluation of the
sensitivity, specificity, and reproducibility of sRNA data analysis
using a range of bioinformatics strategies and tools on 10 files
generated from three different datasets rarefied at three different
sequencing depths. Therefore, this performance testing repre-
sents a first attempt at large-scale comparison and validation of
bioinformatics pipelines by end users. It fills a key gap toward the
standardization of HTS-based detection of viruses and will be a
strong foundation for the development of diagnostic protocols. It
also highlights key elements to be considered when performing
such analyses for virus detection and diagnostic.

MATERIALS AND METHODS

Origin of the sequencing data. Three sRNA datasets from
different origins and hosts and displaying different complexity
levels were selected (Supplementary Material S1). The sRNA
dataset from grapevine was previously generated from Vitis
berlandieri × V. riparia ‘Kober 125AA’, planted in a screenhouse
of the Crop Research Institute (Prague, Czech Republic) (Komı́nek
et al. 2009). Seven viruses and two viroids have been detected in
leaf samples from this plant by HTS (Eichmeier et al. 2016) and
confirmed by reverse-transcription polymerase chain reaction
(RT-PCR) or enzyme-linked immunosorbent assay (ELISA):
Grapevine leafroll-associated virus 1 (GLRaV-1, whole genome
sequence deposited as KY827404), Grapevine virus A (GVA),
Grapevine virus B, Grapevine rupestris stem pitting-associated
virus (GRSPaV), Grapevine rupestris vein feathering virus,
Grapevine Syrah virus 1, Grapevine red globe virus (GRGV),
Hop stunt viroid (HSVd), and Grapevine yellow speckle viroid 1
(GYSVd1). In the case of GRGV, only very partial sequence data
were available in GenBank when the present evaluation was
performed.
The sRNAdataset from potato (Solanum tuberosum, unidentified

cultivar) was collected from a field inQuichas, Cerro de Pasco, Peru
in 2011. Two viruses were detected by HTS and confirmed by RT-
PCR: Potato virus X (PVX) (present under the form of two distinct
isolates) (Kutnjak et al. 2014) and a new nepovirus, Potato virus B
(PVB), not yet available in the databases when the evaluation was
performed (De Souza et al. 2017).
The sRNA dataset of apple was generated from mature leaf

material collected from a Malus × domestica ‘Golden Delicious’
(NIVV) apple plant grafted onto an MM.109 rootstock, grown in a
greenhouse of the Agricultural Research Council (Stellenbosch,
South Africa). The Apple stem grooving virus (ASGV, under the
form of two distinct isolates) was detected in this plant by HTS and
confirmed by RT-PCR (Visser et al. 2014).
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Fastq file preparation and quality control of sRNA
reads. Three sequencing depths were selected for each sample: the
highest depth (2.5M reads) can be considered within the range of
realistic sequencing depths for virus detection, whereas the lower
depths are not realistic for a routine use of sRNA sequencing but
have the advantage of rarefying the viral sequences, creating
datasets where virus detection is therefore expected to be more
difficult. They also simulate “worst-case” situations in which virus
titer is very low in a sample, even at high sequencing depth. The
resulting datasets are publicly available online (https://github.com/
plantvirology/COST_Action_PT/releases) and should prove a
valuable resource for future performance testing of bioinformatics
strategies. CLC Genomic Workbench (Qiagen) was used to
randomly subsample the original fastq files of 21-to 24-nt sRNA
sequencing datasets from the three above-described plant samples.
The chosen subsample data sizes were 50,000 (50K), 250,000
(250K), and 2,500,000 (2.5M) reads for each sample (Table 1). In
addition, a second randomsubsamplingwas carried out at the 250K-
read depth for the grapevine dataset to create two technical
pseudoreplicates. The quality of the resulting 10 fastq files was
controlled by running FastQC (unpresented data) and calculating
the percentage of viral reads for each virus in each sample. For each
of the 10 fastq files, a mapping of the reads against a set of reference
sequences for each of the virus or viroid species was performed.
Because the reference sequences for the fastq files derived from the
grapevine samplewere not known, the complete genome sequences
providing the best cumulative e-value in BLAST analyses of reads
were chosen. To reduce the bias of possible divergent strains, when
the addition of a second reference sequence significantly im-
proved the number of mapped reads for a given virus or viroid, a

simultaneous mapping on both reference sequences was computed.
All mappings were carried out using the software BWA (version
0.7.12) to allow aminimumof 17 consecutive identities (–l= 17 and
–k= 0) or 19 identities in an alignment of 20 nucleotides (–l= 20 and
–k = 1). The numbers of mapped reads and percentages of breadth
and depth of coverage for each fastq file as well as the GenBank
accession numbers used as reference sequences for each virus or
viroid are shown in Table 1.

Organization of the performance test. The participants,
anonymous to one another and designated alphabetically (A
through X), obtained access to the 10 double-blinded fastq files
and analyzed them using their own bioinformatics pipelines to
identify the viral agents present in each dataset. The bioinformatics
protocols used by the 21 participants are detailed in Table 2. The
results were reported by each participant in twoExcel files. The first
file contained the list of contigs with homologies to viral sequences
generated by each pipeline and their characteristics (name coverage
of the contig, contig sequence) for each fastq file. The second file
contained the diagnostic report with the names of the viral agents
detected in each sample. After submitting the first file, the
participants received information on the host plant and they had
to analyze the contig list to deliver a final list of theviruses or viroids
detected in each sample.

Analyses of viral contigs. These analyses were carried out
using the contigs reported as viral by each participant and their
characteristics (number of reads and sequence).
To evaluate the ability of each pipeline to assemble reads into

identifiable viral contigs, the number of reads integrated into
contigs annotated as viral was calculated as a percentage of total
reads and compared among the various datasets. The three apple
datasets were not included in this comparison because too few
participants successfully reported the identification of viral contigs.
In addition, the numbers and respective lengths of the contigs

identified as viral by different pipelines were plotted as a violin
graph (ggplot 2.1.0; RStudio 0.99.489). Pipelines H and O were
excluded from this analysis because they provided incomplete
contig sequences. Furthermore, the PVB, PVX, and GLRaV-1
contig sequences submitted by participants were examined to
compare efficiency levels in contig building and to identify possi-
ble assembly artifacts (chimeric or misidentified contigs). The
reference genome sequences (obtained from the samples) were
KJ534601 and KJ534604 for the two PVX isolates, KY827404 for
GLRaV-1, and KX656670 and KX656671 for the two genomic
RNAs of PVB (unpublished at the time of the analyses). For this
analysis, CLC Genomic Workbench 8.5.1 (Qiagen) built-in map-
ping tool was used with the following parameters: minimum
overlap and similarity 0.9, mismatch cost 2, linear insertion or
deletion gap cost 3, open cost 6, and extent cost 1. Unmapped
contigs were then subjected to BLASTN analysis (BLAST 2.2.29 +
running within Geneious 9.1.6, with word size = 11, e-value = 1e-5,
gap cost – open= 5, extend= 2, scoring –match= 2, andmismatch=
_3; cutoff minimum coverage and identity criteria were similar to
the mapping parameters) against the NCBI nt nucleotide database
and a local database constructed from the above-listed reference
sequences. The unmapped contigs that did not return specific
BLASTN hits or did not pass the cutoff were marked as failed
quality control (QC) sequences.

Data analysis. The results sent by participants were further
analyzed using R v.3.3.2. The data files collected from the par-
ticipating laboratories were first corrected for format compatibil-
ity and then merged into a single data table containing one line per
lab × sample × detected virus. Reported virus names were cleaned
by a semiautomatic procedure to avoid discrepancies due to minor
typing errors.
For each aggregation level (lab, virus, depth, or a combination of

them), diagnostic sensitivity (referred to as sensitivity in the pre-
sent article) and false discovery rates (FDR) were calculated
by first comparing the reported virus to the provided reference list

TABLE 1. Numbers of mapped reads, percentage of genome coverage (%),
and average mapping depth (×) for the 10 fastq files and for each of the
detected viruses and viroidsa

Virus or
viroid

Mapped reads, percentage, depth per number of
reads in the fastq files (thousands of reads)

50 250 2,500

ASGV 74, 20%, 1× 304, 45%, 2× 2,971, 92%, 11×
PVB
RNA 1 1,681, 87%, 6× 8,333, 99%, 25× 82,407, 100%, 244×

PVB
RNA 2 869, 87%, 5× 4,363, 98%, 21× 43,442, 100%, 203×

PVX 11,507, 100%, 38× 58,204, 100%, 193× 580,150, 100%, 1,921×
HSVd 237, 91%, 19× 1,152, 95%, 90× 11,748, 100%, 877×

… 1,181, 93%, 95× …
GLRaV-1 2,864, 73%, 4× 14,246, 96%, 17× 142,298, 100%, 162×

… 14,292, 96%, 17× …
GRSPaV 223, 32%, 2× 1,056, 64%, 4× 10,445, 92%, 27×

… 1,002, 63%, 4× …
GRGV 21, 2%, 3× 79, 10%, 2× 796, 38%, 7×

… 78, 8%, 3× …
GRVFV 93, 12%, 2× 572, 28%, 7× 5,773, 46%, 40×

… 593, 28%, 7× …
GSyV-1 10, 3%, 1× 71, 13%, 2× 689, 51%, 4×

… 60, 14%, 1× …
GVB 597, 57%, 3× 2,937, 87%, 9× 29,959, 98%, 85×

… 2,984, 87%, 10× …
GYSVd1 84, 69%, 7× 294, 94%, 19× 3,437, 100%, 204×

… 341, 97%, 21× …

a For grapevine, the first line and second lines correspond to samples 2 and 9
(pseudoreplicates), respectively. The reference sequences are ASGV = Apple
stem grooving virus (NC_001749, JX080201), PVB = Potato virus B RNA 1
(KX656670.1) and RNA 2 (KX656671.1), PVX = Potato virus X (KJ534603
and KJ534604), HSVd = Hop stunt viroid (X87924), GLRaV-1 = Grapevine
leafroll-associated virus 1 (KY827404), GRSPaV = Grapevine rupestris
stem pitting-associated virus (AY881626 and KR054734), GVA = Grapevine
virus A (AF007415 and DQ855084), GVB = Grapevine virus B (GU733707),
GYSVd1 = Grapevine yellow speckle viroid 1 (AB028466), family Tymoviridae
corresponds to Grapevine red globe virus (GRGV) (KX171167), GSyV-1 =
Grapevine Syrah virus 1 (FJ436028), and GRVFV = Grapevine rupestris vein
feathering virus (AY706994).

490 PHYTOPATHOLOGY

https://github.com/plantvirology/COST_Action_PT/releases
https://github.com/plantvirology/COST_Action_PT/releases


TABLE 2. Summary of the pipelines used by the participating laboratories for proficiency testinga

Building the contigs

BLAST comparison
Lab
ID Software

Extension
step

Minimal
contig

length (nt)
k-mer
Range

Removal
redundant
reads

Host
filtering Method Database Cutoff used

A Velvet/Oases then
Seqman

N 100 13–21 Y Y MegaBLAST + BLASTN GenBank (nr) None

B CLC Genomics
Workbench

Y 60 Variable N N BLASTX + BLASTN GenBank (viruses
and viroids)

e-value of 10
_3

C CLC Genomics
Workbench

N 30 16–19 N N BLASTN Local databases of
complete virus and
viroid genomes
mined from
GenBank

None

D Velvet/Assembly
Assembler

Y 38 (9–)11–25 N Y BLASTX + BLASTN GenBank (viruses
and viroids)

None

E CLC Genomics
Workbench

N 50 15–21 N N BLASTX + BLASTN GenBank (nr + nt) None

F Velvet Y 26 13–17 N N BLASTX + BLASTN GenBank (nr) e-value of 10
_2

Homology
cutoff > 80%,
100% coverage
for known viruses
identification

G Velvet N N 17 N N BLASTN + TBLASTX
of non-ID contigs

Local databases
(viruses and viroids;
ribosomal RNA;
host) and GenBank
(nr) for TBLASTX

Sequencing
depth > 5

H Velvet/Assembly
Assembler

N 21 7–21 N N BLASTX + BLASTN GenBank (nr) None

J Velvet Y (Only the
2,52.5M
depth)

40 13–15–17 N N BLASTN/X/P GenBank (nr) Default parameters,
e-value 10

_1

K Mapping and then
de novo
assembly with
Velvet

N 31 13–15–17 Y N MegaBLAST, BLASTN GenBank (viruses
and viroids)

e-value 10
_10,

homology > 95%

M Velvet N 29 15–17 N N BLASTX + BLASTN GenBank (viruses
and viroids)

e-value 10
_4

(BLASTX),
e-value 10

_6

(BLASTN)
N Velvet and BWA

backtrack
N 50 11–19 Y N BLASTX + BLASTN GenBank (viruses

and viroids)
Bit score ³ 30

O CLC Genomics
Workbench

N 50 16–19 N N BLASTN GenBank (nt) e-value 10
_3,

homology > 85%
P Velvet/Assembly

Assembler
N 21 9–31 N N BLASTX + BLASTN GenBank (nr + nt) e-value 10

_3

R Mapping against
refseqdB,
and de novo
assembly, both
in CLC Genomics
Workbench

Y 21 12 N Y BLASTX + BLASTN GenBank (nr) None

S VirusDetect N 40 9–19 N Y BLASTX + BLASTN GenBank (nt + nr) Sequencing depth >
5; reference
genome coverage
> 10%;
e-value 10

_5

T Blasting raw reads
against GenBank
(nt) and de novo
assembly with
CLC Genomics
Workbench

N 50 17 N N BLASTN GenBank (nt) +
Refseq virus and
viroids

e-value 10
_4

V AByss N 16 16 N N BLASTN GenBank (nt) e-value 10
_5

W1 CLC Genomics
Workbench

N 60 14 N N BLASTX GenBank (viruses
and viroids)

e-value 10
_3

W2 CLC Genomics
Workbench

N 60 Variable N N BLASTX GenBank (viruses
and viroids)

e-value 10
_3

X CLC Genomics
Workbench

Y 21 17 N N BLASTN + BLASTX GenBank virus +
viroid

e-value 10
_3

a These pipelines were used for a proficiency test performed on the same dataset of 10 fastq files containing small RNA sequences. Description of the methodology
used by the 21 participants (A to X) to build the contigs (software, extension step, minimal contig length, k-mer range, removal of redundant reads, and host
filtering) and BLAST comparison (method, database, and cutoff) are summarized. Parameters for each pipeline are classically used for this type of analyses and
are not chosen by default or randomly. Pipelines are then detailed for each participant.
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(P = number of viruses in the reference list), then calculating the
number of true- and false-positive detections (TPD and FPD,
respectively) for each member of the level, followed by the
sensitivity and FDR using the formulas Sensitivity = TPD/P and
FDR = FPD/(TPD + FPD).
Therefore, the pipeline sensitivity was estimated as the percent-

age of detected virus or viroid species over the total number of the
viral agents known to be present in each plant sample. The FDRwas
estimated as the proportion of virus or viroids erroneously reported
to be present over the total number of reported agents.
A partial least square regression (PLSR) was also conducted to

identify the most important pipeline parameters on the detec-
tion performance (sensitivity and FDR). The parameters were the
following: minimum contig length, minimum k-mer, k-mer range,
average contig length, number of contigs, and average number of
reads. Pipelines B, W2, D, and H were removed from this analysis
due to missing information about k-mer for the first two and an
inconsistent reported number of reads for the latter two.

Criteria for evaluating the sensitivity of virus detection.
Detection sensitivity was defined as the ability to detect a virus or
viroid species known to be present in the analyzed plant. Different
scenarios were available to rate TPD and FPD. For example, several
pipelines reported the presence of an unknown nepovirus in the
potato sample (PVB),whichwas absent in the sequence databases at
the time of our test, while others reported the detection of a known
nepovirus such as Tomato black ring virus (TBRV) or Beet ringspot
virus (BRSV) because these viruses showed the highest BLAST
score with the contigs representing the new viral agent. According
to a stringent interpretation, the reports on TBRVor BRSV could be
considered false positives because the sample was, in fact, infected
by PVB and not by TBRV or BRSV. However, a less stringent
interpretation would consider that the TBRV- or BRSV-reporting
pipelines correctly detected the presence of a nepovirus in the
sample. Such a complex situation also occurred in the case of the
grapevine sample infected by a different member of the Tymovir-
idae family, whose taxonomy is complex and for which partial
sequences are difficult to unambiguously assign to one or another
of several closely related viral species (GRGV, Grapevine vein
feathering virus, and so on). Therefore, we assessed sensitivity
using relaxed interpretation criteria, assuming positive detection
when the presence of any kind of nepovirus and any kind of

Tymoviridae member was reported in the potato and grapevine
samples, respectively. The use of more stringent criteria would
obviously have decreased sensitivity and conversely increased the
FPD rate.

RESULTS

Comparison of detection sensitivity among pipelines.
The detailed results delivered by the participants of this perfor-
mance testing are summarized in Table 3 and Supplementary
Material S2 and are detailed in Supplementary Material S3. Global
sensitivity for all 21 pipelines was 70%, taking into consideration
all of the sequencing depths. As expected, detection sensitivity
increased with increasing sequencing depths, ranging from 46% at
the minimum depth (50K) to 87% at the maximum depth (2.5M).
Taken together, these results indicate a variable and, in some
instances limited, performance level by end users, and demonstrate
that the detection of viruses present from HTS data might be
complex.
When the sensitivity levels of different pipelines were compared,

substantial differences were obtained. One-third of the pipelines (7
of 21) reached fully accurate detection (100% sensitivity) at the
maximum sequencing depth (and 3 of them had false positives; see
below). One pipeline (R) showed 100% sensitivity at all three
sequencing depths and a second one (T) reached 90% sensitivity at
the lowest depth (50K) and 100% at the two higher depths.
Noticeably, both pipelines included an additional mapping step of
all sRNA reads against existing databases. The four pipelines that
used a host-filtering step (performed after inferring host species
for each dataset) had higher average sensitivity (88%) than the
other pipelines (68%).
Of 11 pipelines using Velvet as the first (or the only) de novo

assembler (A, D, F, G, H, J, K, M, N, P, and S), 5 detected all the
viruses at the highest sequencing depth (D, F, G, J, and S). Among
the Velvet-based pipelines, pipeline J, which used lower k-mer
values of 13, 15, and 17, was very sensitive for viral detection at the
medium sequencing depth (94%) and at the lowest depth (70%).
Comparatively, pipeline G, which used a single k-mer value of 17,
showed only 53 and 20% sensitivity at the medium or low
sequencing depths, respectively. Pipeline M, which used k-mer
values of 15 and 17, reached good sensitivity at the medium and
high sequencing depths (94 and 90%, respectively) but had a poorer
performance at the lowest depth (50%). These elements suggest that
the use of a wide range of k-mers (13 to 21) could be beneficial.
Furthermore, a combination of Velvet (k-mer = 13 to 17) and
Geneious (for Velvet contig extension), applied in pipeline F,
showed better sensitivity at the lowest sequencing depth (80%) than
those pipelines that used only Velvet. However, the use of a broad
range of k-mer values did not yield a high detection level at the
medium and lower sequencing depths when Velvet was combined
with Assembly Assembler (pipelines D, H, and P). Likewise,
pipeline A, which used Velvet/Oases and Seqman (for assembling
Oases contigs filtered through the host genome), did not reach good
sensitivity at the medium and low depths, although a broad k-mer
range was applied. It should be noted, however, that this pipeline
used the highest minimum contig length cutoff (100 nt).
Importantly, this latter pipeline failed to detect one virus (ASGV)
in the apple sample even at the highest sequencing depth because
the minimum contig length cutoff was higher than the maximum
lengths of the viral contigs generated by Velvet (<60 nt).
Pipeline S uses a specific Velvet- and BWA-based software

program (VirusDetect_v1.5) that performs sRNA mapping to the
viral reference sequence database as the first step and then
(optionally) alignment to a host reference sequence to subtract
nonviral sRNAs before de novo assembly. It reached 100% sen-
sitivity at the highest and medium sequencing depths. Its sen-
sitivity was poorer at the lowest depth (50%), possibly due to a
sequencing depth cutoff of 5 (i.e., an identified contig needs to

TABLE 3. Average virus detection sensitivity for the participant laboratories
(A to X) at the three sequencing depths and for all samples

Sensitivity (%)
False discovery
rate (FDR) (%)

Lab ID 2,500,000 250,000 50,000 Average 2,500,000 250,000 50,000

A 90 53 10 51 0 0 0
B 80 35 30 48 0 0 0
C 80 71 60 70 0 0 0
D 100 82 50 77 17 7 9
E 80 82 30 64 0 0 0
F 100 88 80 89 0 0 0
G 100 53 20 58 0 0 0
H 70 65 30 55 0 0 0
J 100 94 70 88 0 0 9
K 90 71 40 67 0 0 0
M 90 94 50 78 0 6 18
N 90 82 30 67 0 0 0
O 40 41 20 34 0 0 0
P 70 59 20 50 0 0 0
R 100 100 100 100 9 6 9
S 100 100 50 83 0 0 0
T 100 100 90 97 0 0 0
V 80 88 60 76 0 0 0
W1 90 82 40 71 0 0 0
W2 90 82 60 77 0 0 0
X 80 71 30 60 0 8 27
Average 87 76 46 70 Global FDR = 1.9
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exceed an average sequencing depth of 5 to be reported) that is
applied in default settings in VirusDetect to avoid false positives
(which may occur in multiplexed libraries at high sequencing
depths). On the other hand, the mapping step was not applicable
for detection of a new nepovirus (absent in the viral database).
Finally, the pipelines that used either CLCGenomicsWorkbench

(B, C, E, O, W1, W2, and X), or Abbyss (V) for de novo assembly
did not reach 100% sensitivity at any sequencing depth, except the
two most sensitive pipelines, R and T, for which the CLC assembly
was complemented by a mapping step (see above).

Comparison of sensitivity levels for different viral agents.
There were large variations among pipelines as to their sensitivity
in detecting the viruses and viroids present in the samples (Fig. 1).
The proportion of reads for each agent in the dataset was a good
indicator of the sensitivity of detection of each pathogen, although
with a few notable exceptions. The high proportion of viral reads
for PVX (23%) and GLRaV-1 (6%) likely explains their highest
detection sensitivity, regardless of the pipeline or the sequencing
depth.Most pipelines identified these viruses at the three coverage
depths, except two that did not detect GLRaV-1 at the lowest
depth.
On the other hand, even though PVB produced the third greatest

percentage of sRNAs (5%), one-quarter of the pipelines failed to
detect it even at the high and intermediate sequencing depths. De
novo assemblers generated long viral contigs at these depths; thus,
the differences in detection rates between PVX/GLRaV-1 and PVB
could be related to the annotation strategies or expert analysis of the
data. For example, pipelines C, K, and O used only BLASTN and
not BLASTX to annotate the contigs and likely had too-stringent
parameters (e.g., identity threshold > 85% and e-value of 10_10) to
detect this new virus, similarly to pipeline A, which used
MegaBLAST. At the minimum sequencing depth, sensitivity was
strongly reduced, because only 5 of 21 pipelines detected PVB. This
indicates that, for novel agents, especially at low sequencing depth,

the number and size of viral contigs may become too limiting for
efficient annotation by BLAST: because the virus species was new, no
specific BLAST hits were expected, resulting in only low-similarity
hits, with other viruses in the same genus likely to be discarded as
nonspecific.
Another situation was reflected by sensitivity in the detection of

the two viroids HSVd and GYSVd1 present in the grapevine
sample. At the lowest sequencing depth, sensitivity in their
detection was >2 times higher than sensitivity in detecting virus
GVA with a similar proportion of reads in the same sample. This
likely reflects the fact that viroids have amuch smaller genome size
(approximately 20 times smaller than GVA), so that, for a given
proportion of viral reads, the coverage of a viroid genome and,
therefore, the assembly of reads into contigs are much better
(percentage of genome coverage and genome fold coverage in
Table 1) than for viruses with much bigger genomes.
ASGV present in the apple sample and GRSPaV present in the

grapevine sample were detected with the lowest sensitivity level.
For example, at the lowest sequencing depth, only two pipelines (R
and T) correctly identified both viruses. As discussed above, these
two pipelines combine de novo assembly and mapping all reads
against viral reference databases. This separate step likely allowed
these pipelines to detect ASGV and GRSPaV under the most
stringent conditions, contrary to other pipelines that used a pure de
novo assembly approach.
ASGV and GRSPaV represented the lowest proportion of viral

reads as compared with the other viral agents. In this respect, it is
noteworthy that they were detected with significantly greater
sensitivity at the highest sequencing depth as compared with the
intermediate sequencing depth. In contrast, sequencing depth did
not play such a key role in the detection of other viral agents. Taken
together, these results indicate that the proportion (and therefore the
absolute number) of viral reads is likely the limiting factor in the
detection of ASGVand GRSPaV.

Fig. 1. Mean diagnostic sensitivity for each virus and viroid at different sequencing depths. Results are presented for the 21 participating laboratories or pipelines.
Percentage of reads for each virus or viroid in the original dataset is shown under the graph. PVX = Potato virus X, GLRaV-1 = Grapevine leafroll-associated virus
1, HSVd = Hop stunt viroid, GYSVd = Grapevine yellow speckle viroid, GVB = Grapevine virus B, GVA = Grapevine virus A, PVB = Potato virus B, GRSPaV =
Grapevine rupestris stem pitting-associated virus, and ASGV = Apple stem grooving virus.
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FDR. FDR was evaluated as the capacity of a pipeline to detect
only the viruses present in the sample, as opposed to viral agents
not present in the sample (false positives). Only five of the pipelines
(D, J, M, R, and X) did report erroneously a total of 11 counts of
detection of pararetroviruses belonging to the Caulimoviridae
family (Caulimovirus, Badnavirus, andCavemovirus), mostly from
the potato sample (9 cases) but also in grapevine (2 cases). In
addition, one pipeline (X) reported the presence of Grapevine fleck
virus. This gives an overall FDR of approximately 2.1%, taking into
account all pipelines, all samples, and all three sequencing depths
(Table 3). This is an excellent performance but maybe not a
surprising one given that a contig (or contigs) with sufficient
homology with a known virus has to be assembled from the small
interfering RNAs in order to result in FPD.
The second situation in which erroneous assignment of contigs

can occur concerns the identification of novel agents that are
not represented in the database or of agents whose taxonomic
classification is unclear. The interpretation of these two cases is
detailed in the Materials and Methods section. In such a case, the
contig may be annotated by pipelines on the basis of the target
sequence showing the highest BLAST score. Although the presence
of a virus is correctly reported, its taxonomic identification is
erroneous and, if several contigs are obtained, the presence of
several agents may be reported. Such a situation was encountered,
for example, in the case of PVB in the potato sample, which led two
pipelines to report the presence of several different nepoviruses in
the sample. Ultimately only additional expertise or curation efforts
can sort out these situations.

Reproducibility. Two grapevine technical pseudoreplicates
were provided to the different participants (see Materials and
Methods). The comparison of the results obtained by the different
pipelines provided information about the reproducibility of data
analysis. Therefore, we analyzed (i) global reproducibility (taking
into account all pipelines) and (ii) reproducibility per pipeline and
per virus for the two pseudoreplicated grapevine samples.
Of a total of 119 instances of detection of one of the viral agents

by one of the pipelines, 10 (8.4%) were not reproduced between the
pseudoreplicated samples, indicating that the overall reproducibil-
ity of the performance test was quite high (91.6%). However,
reproducibility varied between pipelines (Fig. 2). For 15 pipelines
(71%), results were fully consistent between the pseudorepli-
cates, regardless of the sensitivity of detection of individual viral
agents. For the other participants, some viral agents (1, 2, or 3)
were not detected in both pseudoreplicates, and the pipelines
with lower detection sensitivity tended to show lower reproduc-
ibility (Fig. 2).

As expected, a parallel analysis that addressed the reproducibility
of the detection of different viruses and viroids by various pipelines
similarly showed that the highest reproducibility was correlated
with the highest sensitivity, with perfect reproducibility only for
GLRaV-1 (100% sensitivity and reproducibility) and HSVd (90%
sensitivity and 100% reproducibility) (Fig. 3). For all other viruses
or viroids, one to three pipelines had discrepancies in their results
between the two pseudoreplicate datasets, with the highest rate of
discrepancies for GRSPaV (37.5%), the virus whose detection rate
was also the lowest. Surprisingly, GYSVd1 was among the well-
detected viral agents but also among those with the lowest
reproducibility of detection, with three pipelines showing non-
convergent results.

Percentage of reads in viral contigs. The percentages of
viral reads assembled into contigs annotated as viral by each
participant are summarized in Supplementary Material S4. For the
grapevine sample, the percentages of reads in viral contigs dropped
when depth decreased, as a probable consequence of a reduced
assembly of viral sequences and a higher proportion of viral
singletons or viral contigs falling below the minimal length (or
average depth and genome coverage, in the case of VirusDetect)
cutoff. All of the pipelines followed this trend, except pipeline R,
with a peak for the 250Kdatasets, and pipelineO,with a drop for the
2.5M dataset. Although general trends were similar, large differ-
ences were observed among pipelines for a single dataset. For
example, the proportion of reads in viral contigs varied between 1%
(A) and 11% (R) for the 250K datasets. However, pipelines A andM
applied only nonredundant (unique) reads from each dataset for
both contig assembly and read percentage counting. Together with
the minimum contig length cutoff that varied greatly between
pipelines (Table 2), this parameter could obviously influence the
proportion of reads finally integrated into contigs annotated as viral.
We further focused on GLRaV-1, which was identified by all
pipelines but A at the 50K depth. The quantity of reads in contigs
annotated as GLRaV-1 for each pipeline was correlated with global
sensitivity when analyzing the 50K and 250K datasets but not with
the 2.5M dataset.
For the potato sample, a similar drop of the percentage of reads in

viral contigs was observed with decreasing sequencing depth,
although in lower proportion and with a plateau between the
intermediate and high sequencing depths. Exceptions concern
pipelines A, M, T, and, to a lesser extent, W1, for which the lowest
proportion of viral reads in contigs was observed with the 2.5M
datasets. Pipeline T performed well at 50K reads (21%) but seemed
to fail with the higher number of reads: proportions dropped to 5
and 0.5% for 250K and 2.5M, respectively. For a single dataset,

Fig. 2. Individual rate and reproducibility of detection of viral agents in the
two grapevine pseudoreplicated datasets. Results are given for the seven
viruses and viroids and for all the different participating laboratories at a
sequencing depth of 250K reads. Bars indicate the total number of viral agents
detected (sensitivity of detection) and the number of viral agents detected in
both pseudoreplicates (reproducibility of detection).

Fig. 3. Global rate and reproducibility of viral agents’ detection in the two
grapevine pseudoreplicated datasets. Results are given for the seven viruses
and viroids, taking into account the results of the 21 different participating
laboratories globally, at a sequencing depth of 250K reads. Bars indicate
the total number of positive detections for each viral agent (sensitivity of
detection = total column height) and the number of parallel detections in the
two pseudoreplicates (reproducibility of detection).
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the percentage of reads in viral contigs varied at least fivefold
among pipelines. For potato, there was no relationship between the
proportion of reads in viral contigs and pipeline sensitivity.

QC of the contigs. Violin plots summarizing the lengths of
viral contigs in different samples showed huge diversity among
pipelines (Supplementary Material S5). There was up to 100-fold
difference in average contig size between pipelines Vand J for the
2.5M potato dataset. Laboratory J used contig extension after de
novo assembly, hence this difference. For all pipelines, longer
contigs were built at higher sequencing depth but the presence of
longer contigs did not correlate with increased sensitivity. During
the QC of contigs generated for the potato sample, the average
proportion of PVX and PVB contigs passing QC was 97%
(Supplementary Material S6). For PVX, 5 of 19 pipelines had
100% of contigs passing QC (B, C, D, F, and G) and 5 pipelines (out
of 13 that had detected PVBat least once) reached this level for PVB
(A, E, G, R, and T). Again, large variations in pipeline performance
were obtained: the percentages of incorrect contigs for each
pipeline varied from 0% (pipelines G and R detected both viruses
while B, C, F, and M detected only PVX) to 12.5% (pipeline T,
concentrated on PVX at 50K). The proportion of contigs passing
QC for GLRaV-1 was 96%. Pipelines B, F, G, M, N, R, and V
assigned the contigs unerroneously, while pipeline X had 23.7% of
failed contigs. A closer examination of the contigs that failed QC
(data not shown) revealed that they were (i) chimeric plant–virus or
viral strain–strain sequences (in the case of two PVX strains in the
potato sample), (ii) misidentified (i.e., they either belonged to
another viral species or to the host plant genome), or (iii) of
unknown origin. Surprisingly, although the majority of failed QC
contigs were produced by a few pipelines, there was no correlation
with the assembler or extra parameters such as host sRNA filtering
or additional contig extension steps.

PLSR. A graphical two-dimensional representation of the
PLSR, including all pipelines and sequencing depths, is shown in
Figure 4. The pipelines were dispersed over the four quadrants of
the graph without clear clustering. Better sensitivity was clearly
related to a higher number of contigs and a smaller minimal contig
length (and, as a consequence, a shorter average contig length). The

minimum k-mer size, the k-mer range, as well as the FDR had little
influence on sensitivity (perpendicular vectors).
PLSR analyses were also carried out separately at each se-

quencing depth (results not shown) and led to the same observation,
except for the 2.5M depth, for which the correlation between
sensitivity and pipeline parameters vanished because all pipelines
achieved very high performances at this level.
The correlation analysis between sensitivity and five quantitative

parameters (k-mer range, minimum k-mer, minimum contig length,
average contig length, and number of contigs) revealed a maximal
correlation of 0.45 with contig numbers (data not shown).

DISCUSSION

The present large-scale performance test highlights a huge di-
versity of bioinformatics pipelines and expertise level for sRNA
sequence analysis currently used by different participants. None of
the 22 pipelines was fully identical to another one. This diversity
and the lack of a thorough comparison between strategies rendered
large-scale performance testing by end users mandatory to define
the best practices and bioinformatics pipelines for virus discovery
experiments and the future diagnostic use ofHTS technologies. The
test was therefore designed to evaluate, on a diverse set of viruses,
(i) the performance of bioinformatics strategies (e.g., the selection
of software, database, and parameters) and (ii) the expertise of the
scientists who had to take diagnostic decisions based on the results
of the bioinformatics analysis. Therefore, results depended on (i)
the characteristics of the viral sequences in the dataset, (ii) the
pipeline performance, (iii) the database accuracy and extensive-
ness, and (iv) the scientists’ expertise.
The results clearly illustrate that, even if a reasonably high

sequencing depth such as 2.5M reads is used, identifying all of the
viral agents present in a plant sample is a nontrivial task and many
elements have to be taken into consideration when trying to select a
bioinformatics analysis strategy.
The most important characteristic for the viral sequences

themselves is their relative abundance in the sequence dataset, a
higher proportion being correlated with higher sensitivity of

Fig. 4. Graphical two-dimensional representation of the partial least square (PLS), including all of the pipelines and sequencing depths. A, Partial least square
regression (PLSR) correlations between pipeline parameters and sensitivity and false discovery rate (FDR) and B, position of the laboratories’ pipelines in the new
PLS projection space. Abbreviations: minContigL = minimum contig length, contigLen = average contig length, nbContig = number of contigs, minkmer =
minimum k-mer, kmerange = k-mer range, and nbRead = average number of reads.
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detection. The size of the viral genome is also important, as shown
with the better detection of viroids compared with viruses at similar
relative proportions in the grapevine sample. A further character-
istic corresponds to the distribution of sRNA reads along the viral
genome. For example, ASGV sRNA reads were generally aggre-
gated in narrow specific hotspots that either share short overlaps
or have gaps between them, resulting in the generation of short
contigs (data not presented).
The performance of the pipelines can be evaluated through their

sensitivity. Higher sensitivity was achieved by the pipelines that
used a dual approach, combining de novo assembly and direct
mapping of unassembled sRNAs against reference viral databases.
In this scenario, sensitivity was increased by the mapping step,
which can detect single reads that are not assembled into contigs or
assembled in contigs smaller than the setminimumcontig length (as
for ASGV).Nevertheless, small sequence reads of 21 to 24 nt can be
mapped on conserved regions shared by virus genera and families,
thereby potentially leading to a reporting of virus species that are
not present in the sample. In addition, HTS-based approaches are
likely to meet contamination problems or issues, similar to PCR-
based detection methods, so that the detection of a single or a few
viral reads might not be considered sufficient to consider a sample
positive. Ideally, all parts of a viral genome should be represented by
sRNAs (and their contigs) to ensure that the virus species is
correctly identified, even if very low levels of contamination
between samples cannot be ruled out. With this in mind, dedicated
pipelines such as VirusDetect provide percentages of genome
coverage together with total and normalized sequencing depths as
standard outputs to aid users in evaluating the significance of
identified contigs.
Concerning de novo assembly of sRNAs, a parameter that

significantly affected sensitivity was the minimum contig length
cutoff, which should be kept under 60 nt. Retrospective analysis
showed that the failure to detect ASGV was correlated in some
pipelines to a cutoff of 60 nt or above that eliminated shorter
contigs, including all those representing ASGV. As shown for
GLRaV-1, sensitivity was also related to the ability of the pipelines
to assemble reads in viral contigs with decreasing sequencing
depths. This can also explain the failure of some of the pipelines to
detect the same virus or viroid in the two grapevine pseudorepli-
cates: contig length for a virus or viroid may have fallen below the
detection threshold in one of the two replicates. In addition, the use
ofVelvetwith lowk-mer values (13, 15, and 17),with broader k-mer
ranges, or in combination with contig extension by Geneious
seemed to deliver the most sensitive results. This observation needs
to be considered carefully because it was not confirmed by the
PLSR analysis performed only on the pipelines that used Velvet but
was confirmed by a principal component analysis on the same
pipelines (data not shown). However, it is generally acknowledged
that, as a counterpart, it can also increase the computing run time.
Other critical but more trivial limiting factors include the choice

of the BLAST significance thresholds and the BLAST strategy
(BLASTN only versus BLASTX or a combination of BLASTN and
BLASTX). Given the need to detect both protein-coding and
noncoding parts of viruses, and protein-noncoding viral agents such
as viroids, the use of a BLASTN-only strategy with too-stringent
thresholds resulted in lower sensitivity, in particular for the
detection of PVB. Using NCBI online BLAST, the choice of highly
similar sequences (MegaBLAST) also failed to identify even long
contigs derived from PVB due to its genetic divergence with
nepoviruses present in databases.
The situation observed for Tymoviridae (macula- and marafivi-

ruses) illustrates another caveat in data analysis, that of database
accuracy and extensiveness. In this particular example, the full
extent of the high intraspecific diversity and of the relationships
between viral agents is still unknown, and only very partial ge-
nomic sequences were available for one of them. Consequently, the
small contigs may have yielded a correct or incorrect annotation

depending on their positions in the genome. The very low coverage
of the viral agents involved, which are phloem-limited, further
complicated the analysis. As a consequence of these difficulties,
even at the 2.5M sequencing depth, only two participants managed
to correctly report the presence of all three viral agents. This result
suggests that, for such complex situations, even this sequencing
depth may represent a strong limiting factor to complete viral
indexing. When the results were discussed, it appeared that many
pipelines had detected sequence polymorphisms in the Tymoviridae
contigs but that scientists considered the data insufficient for
diagnostic assignment and that it was necessary to investigate the
presence of these low-titer viruses by classical molecular biology
tools before reporting them. This underlined the importance of
expert scientist evaluation in final results and the usefulness of such
performance testing. More positively, the results obtained in the
present test prompted a reevaluation of the grapevine sample using
classical PCRapproaches,which ultimately confirmed the presence
of the three putative Tymoviridae species (data not shown).
Despite the very low false detection rates observed whatever the

bioinformatic pipeline, the importance of expert analysis is clearly
illustrated in the present study. False discoveries fell into two
categories. One, which concerned the false detection of various
known nepoviruses such as TBRV in the potato sample by several
pipelines, reflected their reporting strategy of listing only the
highest BLAST score without additional expert analysis. The
second involved the detection of various DNA pararetroviruses and
corresponded to BLASTannotations of contigs that likely represent
endogenous viral elements (EVEs) known to be integrated in plant
genomes and represented in the population of endogenous plant
sRNAs (Aiewsakun and Katzourakis 2015). This is a well-known
hurdle with pararetroviruses (and other plant DNA viruses), for
which distinguishing between an EVE and an episomaly replicating
virus may require additional experimental efforts (Massart et al.
2017) or additional expertise in order to analyze BLAST
annotations or the distribution of sRNAs along the virus genome
in detail (Rajeswaran et al. 2014). In addition, as stated above, the
mixed approach combining de novo assemblywith readmapping on
viral reference databases requires a high level of expertise when
interpreting the results to avoid false-positive results. Expert
analysis by trained scientists or diagnosticians is indeed required
to validate the viral hit through the exploration of other BLAST
homologies for the read, and to identify other reads mapping on the
same sequence and their mapping location or the presence of reads
with hits on taxonomically related viruses. This expert analysis is
also necessary to spot the presence of a new virus, as exemplified in
the case of PVB.
In conclusion, our large-scale evaluation of HTS bioinformatics

pipelines, including 21 participants and 22 bioinformatics pipe-
lines, is the first ever organized for virus detection. It represents a
key milestone for the transition of HTS bioinformatics toward its
use for virus diagnosis. It underlined the huge diversity in the
performance of algorithms among pipelines and the key influence
of scientist expertise for appropriate diagnostic interpretation of the
pipeline results, especially in four cases: the identification of low
titer virus, a new virus, integrated viral sequences, and poorly
characterized viral species. This performance testing paves theway
for designing future diagnostic standards because technical
recommendations for the diagnostic use of sRNA sequencing can
be proposed: (i) using, at the very minimum, 2.5M high-quality
sequencing reads; (ii) using a deBrujin graph-based assembler such
as Velvet with a broad range of k-mers for de novo assembly; (iii)
using a combination of de novo assembly and database mapping;
(iv) setting a low threshold for minimal contig length; (v)
combining BLASTn and BLASTx analyses with low e-value
thresholds to identify viral contigs; and (vi) analyzing carefully the
results generated by the pipeline taking into account virus biology
and taxonomy, sequence similarity between viruses, genome
coverage, and database completeness for the identified species.
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Whatever the pipeline, scientists and diagnosticians must have
expert knowledge of viral taxonomy and be trained in data analysis
to detect false-positive results. Our study also provides data and
opens discussion on key aspects of HTS for diagnostic use: (i) a
higher sequencing depth is recommended but it increases the cost of
analysis, underlining the need to evaluate cost/benefit ratios; (ii) for
some viral species and genera, more genomic sequences will be
needed in the databases to allow streamline diagnosis; (iii)
recommending a range of acceptable parameters and software
might be preferred over defining a unique “one-fit-for-all” standard
protocol for bioinformatics analysis; (iv) the development of a curated
reference database could accompany the setting up of recom-
mended bioinformatics pipelines; (v) the definition of threshold
levels related to genome coverage or to a number of reads required
to detect a viruswill be needed, even though their definitionwill be a
complex task due to the huge diversity of viral agents and sample
types in plant virology; and (vi) these and other specificities of HTS
technologies, with a paramount importance of bioinformatics, will
probably require adaptation of Quality Management Systems and
Standards.
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