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Abstract
Aims Supplying phytolith-rich biochar in agrosystems
increases soil pH, CEC and nutrient availability, adding to
the impact of Si uptake on plant growth. Here we studied
this specific impact as influenced by soil properties, and
assessed the role of phytoliths to provide plant available Si.
Methods We used a young Cambisol and a highly
weathered, poorly buffered, desilicated Nitisol. The bio-
chars were produced from rice plants respectively enriched
(Si+) and depleted (Si-) in Si. They had identical pH and

nutrient contents, but largely differed in Si content (51.3 g
Si kg−1 in Si + vs 0.3 g Si kg−1 in Si-). We compared their
effects to that of wollastonite (CaSiO3) on the biomass and
mineralomass of wheat plants in a soil:solution:plant de-
vice. The contents of soil bioavailable Si and biogenic Si
were assessed through an original CaCl2 kinetic extraction
and the DeMaster Na2CO3 alkaline dissolution,
respectively.
Results The DeMaster technique dissolved Si from
phytolith as well as fromwollastonite. The soil buffering
capacity (cmolc kg

−1) was 31 in the Cambisol and 0.2 in
the Nitisol. An identical supply of phytolithic biochar
increased pH from 4.5 to 4.8 in the Cambisol, and from
4.8 to 7.4 in NI. It further increased the content of
bioavailable Si (from 55 to 97 mg kg−1 in the Cambisol,
and 36 to 209 mg kg−1 in the Nitisol), as well as plant Si
uptake, biomass and Si mineralomass. That increase
was largest in the Nitisol.
Conclusions The DeMaster technique did not specifi-
cally quantify the phytolith pool. This pool was the main
source of plant available Si in both the Cambisol and
Nitisol amended with phytolithic biochar. At identical
phytolithic Si supply, however, soil pH and soil buffer-
ing capacity controlled the transfer of Si in the soil-plant
system, which was largest in the poorly buffered Nitisol.
The effect of phytolithic biochar on Si bioavailability
was depending on soil constituents and properties, and
thus on soil type.
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Introduction

Natural soil desilication and crop harvesting contribute
to the long-term removal of bioavailable silicon (Si)
(Guntzer et al. 2012) that can be challenged through Si
fertilization. The primary source of Si for plant uptake is
the reserve of weatherable lithogenic silicates
(Alexandre et al. 1997; Henriet et al. 2008b;
McKeague and Cline 1963). Their dissolution delivers
aqueous H4SiO4

0 (dissolved Si: DSi), aluminum (Al),
iron (Fe) and other solutes, which may form pedogenic
alumino-silicates, Al and Fe oxides. These alumino-
silicates can in turn dissolve depending on H4SiO4

0

activity (Garrels and Christ 1965; Kittrick 1977). With
advanced desilication and Si depletion, Al and Fe oxides
accumulate in highly weathered soils. DSi can be taken
up by plant roots, translocated to transpiration sites in
plant shoots (Jones and Handreck 1965) where it poly-
merizes as amorphous biogenic Si (BSi), called phyto-
lith, which returns to soil within plant residues
(Smithson 1956). BSi minerals readily dissolve at com-
mon soil solution pH (Fraysse et al. 2006, 2009; Koning
et al. 2002), and replenish the DSi pool. The biological
pumping of Si thus alleviates soil desilication in highly
weathered soils (Lucas 2001; Lucas et al. 1993;Meunier
et al. 1999; Riotte et al. 2018).

Under natural or semi-natural vegetation, the BSi
pool may progressively become the most important
source of DSi along a global soil weathering gradient
with increasing depletion of lithogenic and pedogenic
silicates (Lucas et al. 1993; Cornelis and Delvaux 2016).
In agrosystems, however, crop harvesting disrupts Si
biocycling because of Si exportation through phytomass
removal and water flows (Guntzer et al. 2012; Haynes
2017; Keller et al. 2012; Meunier et al. 2008;
Vandevenne et al. 2012). Thus, soil weathering and crop
harvesting contribute to soil desilication that may reduce
crop yield since Si increases plant photosynthetic activ-
ity and tolerance against biotic and abiotic stresses
(Belanger 1995; Epstein 1994; Exley 1998). Enhancing
Si biocycling through Si fertilization thus presents a
major agronomic interest in croplands established on
highly weathered soils. Silicate slag and minerals can
be used, but they are expensive, limited worldwide and
poor in DSi, and they may contain toxic elements
(Berthelsen et al. 2001; Datnoff and Heckman 2014;
Haynes 2014; Haynes et al. 2013). Over 250 million
farmers in the tropics commonly use burnt phytomass to
challenge the infertility of highly weathered soils. The

supply of pyrolyzed biomass increases pH, CEC and the
contents of organic carbon and plant nutrients (Glaser
et al. 2002; Laird et al. 2010; Lehmann and Joseph
2015; Liang et al. 2006; Sohi et al. 2010). Plant-
derived phytoliths concentrate in biochar particles
(Wang et al. 2018; Xiao et al. 2014). Biochar is thus a
potential Si fertilizer (Glaser et al. 2002; Houben et al.
2014) able to deliver DSi (Li et al. 2018) because of the
increase in phytolith solubility after pyrolysis (Unzué-
Belmonte et al. 2016; Xiao et al. 2014). Furthermore,
biochar has a liming effect (Glaser et al. 2002) promot-
ing phytolith dissolution the rate of which increases by 2
orders of magnitude from pH 4 to 8 (Fraysse et al.
2009). The increase in Si bioavailability due to liming
(Keeping et al. 2017; Klotzbücher et al. 2018; Haynes
2019) must depend, however, on pH increase and thus
soil buffering capacity, hence on soil constituents and
weathering stage. This is unknown, despite that these
soil properties can control the ability of phytolithic
biochar to increase Si bioavailability, and enhance Si
biocycling. Here we study the specific effects of
phytolithic biochar to supply bioavailable Si in
soil:solution:plant systems involving a Cambisol and a
Nitisol differing in weathering stage, soil constituents
and buffering capacity.

Materials and methods

Soils and external Si sources

The two selected soils differ in weathering stage. They
key out as a Dystric Cambisol (CA) and a Rhodic
Nitisol (NI) in the WRB system (IUSS 2014). Under a
climax beech forest (Fagus sylvatica), the Cambisol CA
(Grand Han, Belgium) is moderately weathered; it de-
rives from Famenian schist under humid temperate con-
ditions, and contains weatherable Mg, K and Na sili-
cates (Mg-chlorite, feldspar, oxidized biotite, albite) as
well as quartz, vermiculite, smectite and kaolinite
(Titeux and Delvaux 2009). Without any vegetation
cover, NI is a buried paleosol from the quarry of
Transinne (Belgium) formed from Early Devonian bed-
rock under humid tropical paleo-conditions. The Nitisol
(NI) is highly weathered; it contains kaolinite, Fe ox-
ides, muscovite and quartz (Thiry et al. 2006). In both
soils CA and NI, we sampled the topsoil (00-20 cm
depth). Soil samples were air-dried and sieved at
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2mm. Further experiments and analyses were all carried
out on the fine earth fraction (f ≤ 2 mm).

Si sources

The wollastonite (Wo) (CaSiO3) was used as a reference
non-biochar silicon source, which was provided by R.T
Vanderbilt Company, Inc., Norwalk, CT, USA.We used
powdered VANSIL® W-10 that contains wollastonite
(≤99%) and quartz (0.8–1.3%).

The Si-enriched and Si-depleted biochars (Si + and
Si-) were produced from rice straws. Rice seeds (Oryza
sativa subsp. indica IR64 from IRRI, Philippines) were
germinated on a polystyrene plate floating on a Yoshida
nutrient solution (Yoshida 1981) in 10 plastic tanks each
of 25 L. Three seeds were placed in each of the 30 holes
perforating the plate. Si + and Si- rice plants were each
produced in 5 respective tanks. After one week, the
solutions for Si + plants were enriched with aqueous
H4SiO4

0 at a concentration of 40 mg L−1. H4SiO4
0

was prepared through dissolving Na2SiO3·5H2O, and
further leaching on an H+ cation exchanger
(Amberlite®IR-120) to fix Na+ ions until the threshold
level of Na+ was below 10−2 mM Na (Henriet et al.
2006). Si + and Si- nutrient solutions were renewed
every week. After two weeks, the seedlings were
thinned to one plant per hole. pH was adjusted daily
to 5.0–5.3 by using 2 M KOH or HCl. Si + and Si-
plants grew in greenhouse controlled conditions: 80%
relative humidity, 28/25 °C day/night, 12 h photope-
riod with 360 μmol m−2 s−1 light intensity. After
12 weeks, the plants were harvested. The above-
ground biomass was measured fresh, then dry after
7 days at 55 °C. The biochars were obtained from,
respectively, Si + and Si-rice straws according to a
slow pyrolysis procedure as described by Ronsse
et al. (2013). Dried straws (2 cm fragments) were
placed in a vertical, tubular, stainless steel reactor
(d × L = 3.8 × 30 cm), and further pyrolyzed at a
heating rate of 17 °C min−1 up to 500 °C. The reactor
was maintained at 500 °C for 60 min, and then
progressively cooled. Nitrogen was continuously sup-
plied to remove gases and tars produced during the
pyrolysis process. Biochar yields were calculated as
the mass ratio of biochar to the dried RS used for the
pyrolysis process. The Si-enriched (Si+) and Si-
depleted (Si-) biochars were passed through a
0.154 mm sieve prior to experimental use.

Soil:Amendment mixtures

Soil:Wollastonite (Cambisol:Wollastonite CA:Wo
and nitisol:Wollastonite NI:Wo)

Wollastonite (Wo) was added in triplicates at the rate of
3.2 g Wo kg−1 soil to CA and NI, resulting in supplying
810 mg Si kg−1 of soil.

Soil:Biochar (Cambisol:Biochar CA:Si+, CA:Si-;
nitisol:Biochar NI:Si+, NI:Si-)

Biochar materials were added to soils in triplicates at the
rate of 15 g biochar per kg of soil resulting in supplying
810 mg Si per kg of soil for both CA:Si + and Ni:Si+,
and 3 mg Si per kg of soil for both CA:Si- and NI:Si-.
These application rates fall within the range of field
applications (Liu et al. 2013; Ma and Takahashi 2002).

Basic analyses of soils, amendments
and soil:Amendment mixtures

Elemental contents (Si, Al, Fe, K, Ca, Na and Mg) in
soils, amendments and soil:amendment mixtures were
determined by inductively coupled plasma/atomic emis-
sion spectrometry (ICP–AES, Jarrell Ash Iris Advan-
tage) after alkaline fusion using Li-metaborate + Li-
tetraborate at 1000 °C, followed by ash dissolution with
concentrated HNO3 (Chao and Sanzolone 1992). The
contents of major alkaline and alkaline-earth cations in
soils were summed up to compute the total reserve in
bases (TRB) (Herbillon 1986). The contents of C and N
(and H for rice straw and biochar) were measured using
a Flash 2000 Elemental Analyzer (Thermo Fisher Sci-
entific, Waltham, MA, USA). pH was measured in H2O
and 1 M KCl using 5 g:25 mL suspensions respectively
for soils but only in water for biochar materials. The
cation exchange capacity (CEC) and content of ex-
changeable cations were determined on soil and
soil:amendment using 1 M CH3COONH4 buffered at
pH 7 (Chapman 1965). The buffering capacity was
measured by supplying metered additions of OH− ions
in the form of CaCO3 equivalent doses using a
solid:liquid ratio of 1:5. Suspensions were shaken over-
night, then opened to ambient air. They were stirred
intermittently, and the pH was measured after equilibra-
tion with atmospheric CO2. The identification of crys-
talline soil minerals was confirmed by X-ray diffraction
(XRD) on powder soil samples using CuKα radiation in
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a Bruker Advance diffractometer. Scanning Electron
Microscopy coupled with Energy Dispersive X-ray
analysis (SEM-EDX) were performed on rice straw
and biochar without any chemical pretreatment using a
field emission gun SEM (FEG-SEM; Zeiss Ultra55)
equipped with an EDX system (Jeol JSM2300 with a
resolution <129 eV), and operating at 15 keV with a
working distance of 8 mm. The acquisition time of the
EDX spectra lasted 100 s with a probe current of 1 nA.

Specific Si extractions

The contents of alkaline- and CaCl2-extractable Si were
determined through kinetic extractions in triplicate. (I)
Alkaline extractable Si content (Sialk) was determined to
assess biogenic silica (BSi) minerals in soils (DeMaster
1981; Koning et al. 2002; Saccone et al. 2006). Thirty
mg of dried soil (< 2 mm) was mixed in 40 ml of
Na2CO3 0.1 M, pH = 11.2, and digested for 5 h at
85 °C. One ml of extraction solution was taken at 1, 2,
3, 4 and 5 h, then neutralized and acidified by adding
100 μl of HNO3 7 M to analyze dissolved Si using ICP-
AES. The extracted Si (mg g−1) was plotted against time
(DeMaster 1981). Corrections for the simultaneous al-
kaline dissolution of amorphous and crystalline Si using
time course extractions (DeMaster 1981; Koning et al.
2002), assume that (a) most of the amorphous pool is
dissolved within the first 2 h of extraction, and (b) the
clay minerals release Si at a much slower and constant
rate during the whole extraction. The concentration of
Sialk is determined by the intercept of the linear part of
the plot, using the lm function of the R programming
language to fit a first-order kinetic model (Cornelis et al.
2011). (II) CaCl2-extractable Si content (CaCl2-Si) is
considered to assess the bioavailable Si pool in soils
(Haysom and Chapman 1975; Sauer et al. 2006). It was
measured through an original kinetic extraction using a
solid:liquid ratio 5 g:50 mL (0.01 M CaCl2) in 100 mL
polyethylene cups shaken at 25 °C. The 1:10
solid:liquid ratio was kept constant using replicates for
both the extraction and analysis. At each time step (6 h,
12 h, 1 day, 2 days, 4 days, 8 days, 16 days, 32 days,
64 days and 128 days), the collected suspension (50mL)
was centrifuged at 3000 g for 20 min. The supernatant
(40 mL) was filtered and separated in two aliquots of
20 mL to measure, respectively, pH and solutes concen-
trations. The latter extract was acidified by adding
100 μl of HNO3 7 M, then stored in darkness at 4 °C
prior to further analyses.

Experimental system

Wheat seeds (Triticum aestivum L.) were sterilized with
NaOCl for 10 min and washed three times using deion-
ized water. They germinated on a polystyrene plate
floating in a 700 mL polypropylene beaker in a
soil:solution system including 500 mL deionized water
and 10 g of, respectively, soil (CA, NI) and
soil:amendment mixtures (CA:Wo, CA:Si+, CA:Si-;
NI:Wo, NI:Si+, NI:Si-). After one week, both the pH
and DSi content were measured in the liquid phase of
the solid:liquid device, before planting (solid = soil or
soil:amendment mixture). Wheat seedlings and further
plantlets grew under greenhouse conditions: 25/
20 °C day/night, 70% relative humidity, and 12 h pho-
toperiod with 360 μmol m−2 s−1 light intensity. Ten
seedlings after germination were kept for growing in
greenhouse till harvest. The ten seedlings with approx-
imately 5 cm roots were randomly planted in each
treatment. After 4 days, 5 out of these 10 were selected.
After 32 days, wheat shoots were collected and washed
using deionized water, 1 M HCl, 70% ethanol, and
further rinsed with Milli-Q water to avoid any contam-
ination (Kelly 1990). Shoots were dried at 55 °C for
7 days to weigh the dry matter (DM). The dried plant
materials were further analyzed following the proce-
dures described above for rice straw.

Data analyses

Statistical analyses were performed using SPSS 24.0
software. The effects of the various treatments in all
Tables and Figures were analyzed through a one-way
analysis of variance (ANOVA) and a non-parametric
(Kruskal-Wallis) test at the level of p < 0.05.

Efficiency of Si release (RSi) The efficiency of Si release
(RSi) from the soil:amendment mixture was assessed
using the time release of CaCl2 extractable Si content
following Eq 1:

RSi ¼ CaCl2−Si in soil : amendment½ �− CaCl2−Si in soil½ �
Total Si input from amendment

� 100

ð1Þ
where CaCl2-Si was the amount (mg) of Si released after
128d respectively in each pot; total Si input from
amendment was the amount (mg) of Si brought by
biochar (Si- and Si+) and Wo in each pot.

Plant Soil



Results

Properties of rice-straws, biochars and wollastonite
(wo) The Si- and Si + rice-straws differed in their re-
spective biomasses, O contents, ash percentages and Si
contents (Table 1). The biochar yield, as defined in
Table 1, was significantly lower for Si than for Si+.
The contents of K, Ca, Na, Mg and Si differed signifi-
cantly between Wo and biochars (Table 1). The Si- and
Si + biochars also differed in their respective O concen-
trations, ash percentages and Si contents. Following
pyrolysis, the O:C ratio markedly decreased by 5- and
9-fold in Si- and Si + biochars, respectively. The SEM
micrographs and related EDX spectra further illustrated
that Si-depleted rice-straw (Fig. 1a, e) and Si- biochar
(Fig. 1c, g) were free of phytoliths. In contrast, rice-
straw enriched in Si contained dumbbell-shaped, fine
silt-sized phytoliths (Fig. 1b, f) whereas Si + biochar
contained phytoliths in abundance (Fig. 1d, h).

Prop e r t i e s o f s o i l s a nd s o i l : Amendmen t
mixtures Table 2 showed that the Total Reserve in Bases
(TRB) amounted to 144 cmolc kg

−1 in the Cambisol CA
and 107 cmolc kg−1 in the Nitisol NI. X-ray dif-
fraction (XRD) data (not shown) confirmed previ-
ous identifications. In CA, XRD data showed that
primary silicates were quartz, oxidized biotite, feld-
spar, chlorite and albite. CA clay minerals
consisted of kaolinite and an assemblage of 2:1:1
and 2:1 clay minerals involving chlorite, illite, ver-
miculite and smectite. The Nitisol (NI) contained
muscovite and kaolinite phyllosilicates as well as
quartz, rutile (not shown), and Fe oxide. In NI, K
was by far the largest dominant cation in TRB
(Table 2). Biochar application did not result in a
significant increase of TRB (p < 0.05). However,
Wo application generated a marked increase of
total Ca content (cmolc kg−1): from 2.7 to 8.1 in
CA and from 1 to 8.4 in NI.

Table 1 Selected properties of Si-depleted, Si-enriched rice-straws and their respective biochars (Si-, Si+), and wollastonite (Wo): average
values of their respective elemental contents; H:C, O:C, C:N atomic ratios, biochar ash content and yield†, and pH-H2O

Properties Rice straw Biochar Wo ANOVA p

Si depleted Si enriched Si- Si+

C g kg−1 396.1 384.6 520.0 486.5 nd nd

H 55.0 54.6 22.6 20.6 nd nd

O 391.8* 350.6* 106.2*** 57.5*** nd nd

N 39.0 37.1 41.1 37.1 nd nd

H:C 0.1 0.1 0.04 0.0 nd nd

O:C 1.0 0.9 0.2 0.1 nd nd

C:N 10.2 10.4 12.6 13.2 nd nd

K g kg−1 40.7 40.7 84.9 95.2 A 1.1 B <0.001

Ca 5.9 3.7 13.7 B 11.6 B 313.5 A <0.001

Na 0.6 0.5 1.1 A 1.3 A 0.4 B <0.001

Mg 5.9 4.9 16.5 A 14.1 A 11.0 B 0.003

Si 0.9*** 16.3*** 0.3 C 51.3 B 235.4 A <0.001

Ash % 11.8** 17.3** 31.0* 39.6* nd nd

Yield † % nd nd 31.0* 36.4* nd nd

Biomass (Dry weight) g plant−1 (n = 300) 3.5** 6.7** nd nd nd nd

pHH2O nd nd 10.6 A 10.7 A 9.1 B 0.02

The average values (n = 3) of pH-H2O and contents of K, Ca, Na, Mg and Si are presented with different uppercase letters (A, B, C) between
amendments (Si-, Si + and Wo) at the p < 0.05 level of confidence according to Tukey’s mean separation test. p values within the various
amendments are given through a one-way analysis of variance (ANOVA)

nd: not determined

†: The biochar yield is the ratio of the mass of biochar to the initial dry mass of rice straw expressed as a percentage

Asterisks (*p < 0.05; ** p < 0.01; ***p < 0.0001) indicates significant difference between Si- and Si + (rice straw) or Si and Si + (biochar)

Plant Soil



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
keV

0

2

4

6

8

10

 cps/eV

 C  O 

1.00 * 8
1.00 * 9

1 2 3 4 5
keV

0

1

2

3

4

5

 cps/eV

 C  O  Si 

1.00 * 5-09

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
keV

0

2

4

6

8

10

12

14

 cps/eV

 C  O  Mg  P  K 

1.00 * 10
1.00 * 11

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 cps/eV

 C  O  Si  K 

1.00 * 4
1.00 * 5
1.00 * 6
1.00 * 7

a

b

c

d

e 

f 

g 

h

Fig. 1 SEM images of (a-b) rice straw materials Si-depleted (a),
and Si-enriched (b), (c-d) biochar particles Si- (c) and Si + (d).
Corresponding EDX spectra performed on (e-f) rice straw

materials Si-depleted (e) and Si-enriched (f), (g-h) biochar parti-
cles Si- (g) and Si + (h), demonstrating the presence of phytoliths
in Si +
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As inferred from Table 3, the contents of C, N, and
exchangeable cations were significantly higher in CA
than in NI. As computed from C content, the content of
organic matter was 5.7% in CA and .0.2% in NI. Both the
Cambisol CA and the Nitisol NI were acid, desaturated
soils characterized by low pH and base saturation. How-
ever, they markedly differed in their respective soil

buffering capacity that amounted to 31 and 0.2 cmolc
kg−1 in CA and NI, respectively (Fig. 2). Biochar appli-
cation resulted in a significant increase of C and N
contents in both soils while Wo did not. All amendments
led to a significant pH increase. That increase was below
0.65 pH unit for Wo whatever the soil type, and for
CA:Biochar mixtures. Yet in NI, the pH increase was

Table 2 Total average contents (n = 3) of selected major elements; Total Reserve in Bases (TRB), and Si/(Al + Fe) atomic ratio in CA and
NI, CA:Si-, CA:Si+, CA:Wo; NI, NI:Si-, NI:Si+, NI:Wo

Soils Treatments Total elements *TRB Total elements Si/(Al + Fe)

Ca K Na Mg Si Al Fe
cmolc kg

−1 g kg−1

Cambisol Soil CA 2.7 d 59.6 c 21.6 a 60.2 a 144 a 270.8 b 87.4 b 55.2 a 2.3 b

CA:Si- 4.2 b 61.9 c 21.5 a 60.2 a 148 a 269.8 b 84.1 b 53.4 a 2.3 b

CA:Si+ 3.8 c 61.2 c 21.0 a 59.6 a 146 a 272.5 b 84.5 b 54.9 a 2.3 b

CA:Wo 8.1 a 58.8 c 21.6 a 59.2 a 148 a 274.2 b 85.6 b 54.9 a 2.3 b

Nitisol Soil NI 1.7 e 82.9 a 8.4 b 14.6 b 108 b 317.2 a 97.7 a 28.7 b 2.7 a

NI:Si- 2.9 d 75.3 b 7.1 b 14.9 b 100 b 317.2 a 96.2 a 27.0 b 2.8 a

NI:Si+ 4.7 b 75.9 b 7.3 b 15.1 b 103 b 317.0 a 95.8 a 26.2 b 2.8 a

NI:Wo 8.4 a 69.1 b 6.9 b 13.6 b 98 c 310.7 a 95.7 a 26.2 b 2.7 a

ANOVA p <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Within columns, content values followed by the same letter (a, b, c) are not significantly different (p = 0.05, Tukey’s mean separation test). p
values within the various amendments are given through a one-way analysis of variance (ANOVA)
* TRB is the sum of total contents (cmolc kg

−1 ) of Ca, Mg, Na and K (Herbillon 1986)

Table 3 Selected properties of soils (CA, NI) and soil:amendment mixtures: pH, total contents of C and N, Cation Exchange Capacity
(CEC) and contents of exchangeable cations

Soils Treatments pH C N CEC Exchangeable cations BSa

(cmolc kg
−1)

H2O KCl g kg−1 (cmolc kg
−1) Ca2+ K+ Na+ Mg2+ (%)

Cambisol Soil CA 4.5 e 3.7 f 33.5 b 2.4 b 18.4 b 0.4 c 0.3 d 0.05 b 0.3 b 5

CA:Si- 4.7 c 4.2 d 44.1 a 3.2 a 19.3 a 0.9 b 3.3 b 0.09 a 1.2 a 28

CA:Si+ 4.8 c 4.2 d 41.1 a 3.0 a 19.6 a 0.7 b 3.4 ab 0.10 a 1.1 a 27

CA:Wo 4.7 c 4.0 e 35.3 b 2.6 b 18.5 b 2.1 a 0.3 d 0.04 b 0.3 b 14

Nitisol Soil NI 4.8 d 4.2 e 1.0 d 0.4 d 2.2 d 0.2 d 0.04 e 0.01 d 0.3 b 26

NI:Si- 6.5 b 5.5 b 7.9 c 1.0 c 2.8 c 0.6 c 2.7 c 0.02 c 1.1 a >100

NI:Si+ 7.4 a 6.4 a 7.9 c 1.2 c 2.6 c 0.7 c 3.5 a 0.02 c 1.2 a >100

NI:Wo 5.4 b 4.9 c 0.9 d 0.5 d 2.0 d 0.7 c 0.04 e 0.01 d 0.3 b 54

ANOVA p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 nd

Within columns, mean values (n = 3) followed by the same letter (a, b, c) are not significantly different (p = 0.05, Tukey’s mean separation
test). p values within the various treatments are given through a one-way analysis of variance (ANOVA)
a Base Saturation: sum of the exchangeable cations as a percentage of CEC. The values above 100% are due to the release of K from biochar

nd: not determined
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particularly high after biochar application (>1.7 pH
units). Both biochars Si- and Si + exhibited similar con-
tents of ash, C, N, and other mineral elements (Table 1).
Therefore, their respective applications onCA andNI had
similar impacts on the properties of soil:biochar mixtures
such as elemental contents (Table 2), pH, C and N con-
tent, and CEC (Table 3). Furthermore, the contents of

exchangeable K+, Na+, Ca2+ and Mg2+ as well as base
saturation increased in CA:Si+, CA:Si-, NI:Si + and NI:-
Si-, with respect to untreated soils CA and NI.

Na2CO3 extractable Si (Sialk) As shown in Fig. 3a, Sialk
decreased in the order Si+ >Wo > > Si-. In the Cambisol
CA and CA:amendment mixtures (Fig. 3b), Sialk did not
significantly differ between CA, CA:Si- and CA:Wo;
these contents were all below the one measured in
CA:Si+. In the Nitisol NI and NI:amendment mixtures
(Fig. 3c), the same trend was observed: Sialk did not
significantly differ between NI, NI:Si- and NI:Wo, but
was much higher in NI:Si + .

CaCl2 extractable Si (CaCl2-Si) CaCl2-Si is usually
measured in one extract after stirring for 16 h (Haysom
and Chapman 1975; Sauer et al. 2006), 5 h (Henriet et al.
2008a; Houben et al. 2014) or 1 h (Korndörfer et al. 1999).
In this study,we develop a novel kineticmethodology. The
kinetic CaCl2 extraction of Si from amendments, soils and
soil:amendment mixtures were performed for 128 days
(Fig. 4). The H4SiO4 concentration of the CaCl2 extracts
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(Table S1) progressively increased with increasing time,
from 10 to 3.3 to 10–2.9 M for Si- biochar, 10–1.3 to 10–0.97

M for Si + biochar, 10–2.2 to 10–1.3 M for wollastonite. It
increased with time from 10 to 4.6 to 10–3.7 M for both CA
and CA:Si-, 10–4.2 to 10–3.8 M for CA:Si+, and 10–4.4 to
10–3.4 M in CA:Wo. It also increased with time from 10 to

4.8 to 10–3.9 M in both NI and NI:Si-, 10–3.9 to 10–3.1 M in
NI:Si+, and 10–4.8 to 10–3.5 M in NI:Wo. The strong and
positive correlation (r = 0.96) between CaCl2-Si at 128d
and CaCl2-Si at 16 h further illustrates the increase of
CaCl2-Si with increasing time since the regression pre-
dicts that CaCl2-Si at 128d is 2.6 times larger than that at
16 h. As shown in Fig. 4, the Si release exhibited a
classical parabolic shape followed by steady state, except
for the Si- biochar. The slope of the Si release varied in
sharpness according to the material tested. The release
rate of CaCl2-Si was particularly sharp for Si + and Wo.
After 128 days, the cumulative CaCl2-Si was two-fold
higher in Si + than in Wo (Table 4; Fig. 4a). In contrast,
Si- showed a negligible release of CaCl2-Si. As illustrat-
ed in Fig. 4b and 3c, the release of CaCl2-Si fromCA and
NI showed a similar trend: a slow release up to day 32

followed by a plateau. Yet, Si release at day 128 was
much larger in CA than in NI (Table 4). The application
of Si + biochar and Wo significantly increased the con-
tent of CaCl2-Si in both CA and NI. The cumulative
content of CaCl2-Si at day 128 did not significantly differ
between CA:Si + and CA:Wo. However, this content was
much larger in NI:Si + than in NI:Wo.

The contents of total Si, biogenic Na2CO3 extractable
Si (Sialk), and CaCl2-Si at day 128 in amendments and
soil:amendment mixtures were compared in Table 4 to
the efficiency of Si release RSi, as computed using
[Eq.3]. RSi of biochar Si- was negative in both soils.
RSi of biochar Si + was lower in CA than in NI. How-
ever, RSi of Wo did not differ between CA and NI.

The pH dynamic during CaCl2 extraction did not differ
between biochars and wollastonite (Fig. 5a). CaCl2-pH
increased during the first 5 days, and further decreased to
CaCl2-pH values ranging between 7.6 and 8.1 at day 128.
This pH evolution was also observed in soils and
soil:amendment mixtures (Fig. 5b, c). However, the
CaCl2-pH values were smaller than the ones measured
for the amendments (Fig. 5a). They were below 4.8 in
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both soils CA and NI. Biochar and Wo applications
increased CaCl2-pH values in CA and NI. In
CA:amendment mixtures, CaCl2-pH slightly increased
to 4.9–5.2 at day 5, and further decreased to 4.5–4.8 at
day 128. In NI:Si- and NI:Si+, CaCl2-pH increased to
7.0–7.3 at day 5, then decreased to 6.8–7.0 at day 128. In
NI:Wo, CaCl2-pH raised to 7.2, and further slightly in-
creased to 7.4 at day 128. Noteworthy was the large
difference of CaCl2-pH values between, on the one hand,
CA:Wo, CA:Si- and CA:Si + (pH = 4.5–4.8 at day 128),
and, on the other hand, NI:Wo, NI:Si- and NI:Si+, despite
the fact that CaCl2-pH values were low and similar in both
untreated soils at day 128.

Biomass and Si mineralomass of wheat plants The
values of the dry weight of wheat shoots at 32 days
(DMS) are presented in Table 4. DMS was lower in NI
than in CA. Wo significantly increased DMS in CA.
Biochar applications significantly increased DMS in both
CA and NI. Yet this effect was much larger for biochar
Si + than for biochar Si-. As shown in Table 4, Si-, Si +
andWo increased the Si mineralomass of wheat shoots in
both CA and NI. Shoot Si mineralomass increased in the

following orders for the respective soils: CA =CA:Si- <
CA:Si + < CA:Wo; NI < NI:Si- < NI:Si + = NI:Wo.

Discussion

Soil constituents and weathering stage The organic
matter content was nearly 30 times larger in the
Cambisol CA (5.7%) than in the Nitisol NI (0.2%).
The soil mineralogical assemblage of CA was typical
for a moderately weathered soil since it contains Ca-,
Mg-, K- and Na-bearing primary minerals as well as 2:1
and 2:1:1 clay minerals. In contrast, that of NI was
typical for a highly weathered soil as it contained kao-
linite, Fe and Ti oxides, muscovite and quartz. The Total
Reserve in Bases (TRB), which estimates the content of
weatherable minerals (Herbillon 1986), amounted to
144 and 107 cmolc kg−1 in CA and NI, respectively
(Table 2). In the Nitisol NI, K was by far the dominant
cation in TRB (Table 2), confirming the presence of
muscovite, a dioctahedral mica resistant to weathering
in soils. Thus, the large amount of total K had Bhidden^

Table 4 Total contents of Si, Na2CO3 extractable Si (Sialk), and
CaCl2 extractable Si (CaCl2-Si) contents (after 128 days) in the
amendments, soils, and soil:amendment mixtures, as well as wheat

shoot Si content, wheat shoot dry matter (DMs) and Si
mineralomass in soil:amendment mixtures

Materials Total Si Sialk CaCl2-Si
† Efficiency of Si

release RSi
††

Shoot Si content DMs Si mineralomass

g kg−1 g kg−1 mg kg−1 % g kg−1 mg pot−1

Amendements Si- 0.31 c 0.20 c 0.31 × 103 c

Si+ 51.28 b 15.81 a 34.65 × 103 a

Wo 235.44 a 10.27 b 13.69 × 103 b

Cambisol Soil CA 270.8 b 1.9 b 55.1 d 0 c 1.3 e 139.6 c 0.2 d

CA:Si- 269.8 b 1.7 b 54.2 d ††† 2.2 d 149.3 bc 0.3 d

CA:Si+ 272.5 b 2.5 a 97.8 b 5.3 b 3.9 c 178.7 ab 0.7 c

CA:Wo 274.2 b 1.8 b 104.2 b 6.1 b 10.5 a 210.2 a 2.2 a

Nitisol Soil NI 317.2 a 0.8 d 36.3 e 0 c 0.9 f 89.9 d 0.08 e

NI:Si- 317.2 a 0.7 d 35.3 e ††† 1.9 d 160.2 bc 0.3 d

NI:Si+ 317.0 a 1.0 c 208.8 a 20.2 a 6.9 b 198.7 a 1.4 b

NI:Wo 310.7 a 0.7 d 99.7 c 6.1 b 12.0 a 134.9 bc 1.6 b

ANOVA p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Within ‘amendments’ and ‘soils and soil:amendment mixtures’, means followed by the same letter are not significantly different (p = 0.05,
Tukey’s mean separation test). p values within the various treatments are given through a one-way analysis of variance (ANOVA)
† Si amounts after 128-days of kinetic extractions (see Fig. 3)
††RSi computed from [Eq 1]
†††The computed value ofRSi is negative because the amount of Si released from soil:Si- is below the one of Si released in untreated soils CA
and NI
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the advanced weathering stage of NI since muscovite
does not weather in soils. The reserve of weatherable
Ca, Mg, and Na minerals were estimated by the differ-
ence between TRB and the content of non-exchangeable
K [total K – exchangeable K] (Tables 2 and 3), thus
excluding micaceous K. In the Nitisol NI, [TRB - non
exchangeable K] amounted to 24 cmolc kg

−1 which was
far below the upper TRB limit of 40 cmolc kg−1 for
highly weathered ferrallitic soils (Herbillon 1986). The
Cambisol and the Nitisol thus largely differed in consti-
tutive properties that explain the marked difference be-
tween their respective soil buffering capacity (Fig. 2)
and CEC (Table 3). Assuming a CEC of 1.97 cmolc kg

−1

per 1% C (Fig. 5b in Hardy et al. 2016), the contribution
of organic matter amounted to 6.5 and 0.2 cmolc kg

−1 in
CA and NI respectively. In other words, clay minerals
contributed to 65% and 78% of soil CEC in CA and NI
respectively, and CEC majorly rules the soil buffering
capacity. The wheat plantlets, which were grown in a
soil:deionized water system, clearly responded to soil
type and weathering stage since their biomass, Si con-
tent and mineralomass (Table 4) were all lower in NI

than in CA. This observation accords with previous
results showing that increasing soil weathering stage
decreases Si plant content and mineralomass (Henriet
et al. 2008b; Klotzbücher et al. 2016), as well as soil
bioavailable Si content and BSi stock (Table 4) (Henriet
et al. 2008a; Klotzbücher et al. 2015; Meunier et al.
2018).

Biogenic Si The higher BSi content in CA than in NI
suggests that phytoliths are much less abundant in NI
than in CA. The advanced weathering stage of the
Nitisol and the absence of vegetation above that soil
contribute to a low BSi content. Indeed, BSi particles
return to soil through litterfall containing phytoliths in
forest soils (Alexandre et al. 1997; Cornelis et al. 2011;
Gérard et al. 2008; Meunier et al. 2008; Meunier et al.
1999; Sommer et al. 2013), in which phytoliths make
the reactive BSi pool that contributes substantially to the
DSi pool (Cornelis and Delvaux 2016). Adding Si +
biochar significantly increased Sialk in NI and CA com-
pared to Si- biochar and Wo, because of the abundance
of phytoliths in Si + biochar, and their absence in Wo
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and Si- biochar. Since the linear dissolution of Wo
during the first 120 min (Sialk = 0.63*time + 10.08;
time = 1–5 h; not illustrated) was similar to that de-
scribed for primary lithogenic silicates (DeMaster
1981), Sialk was not amorphous in Wo. In soils and
soil:Wo mixtures, Sialk, as determined by the intercept
on the Y axis at time zero (DeMaster 1981), did not
differ between, respectively, CA:Wo and CA, and
NI:Wo and NI (Fig. 2). These findings support the
non-amorphous Si origin of Sialk in Wo. They further
show that the DeMaster technique, though widely used
to quantify amorphous silica, was not specific to amor-
phous silica, and thus to phytoliths, because it dissolved
wollastonite. In contrast, Sialk (g kg−1) was fully amor-
phous (of course biogenic), but negligible in Si- biochar
(0.2), and abundant in Si + biochar (15.8). The applica-
tion of the two biochars on both soils resulted in distinct
effects on Sialk. Si- biochar did not increase the BSi pool
in any soil, confirming the absence of phytoliths in Si-
biochar. The Si + biochar thus consisted of a major BSi
supplier. Sialk indeed increased by 1.3 in NI and 1.4 in
CA, supporting the argument that Sialk in Si + biochar
was fully amorphous and biogenic, and that phytolith
particles present in biochar contributed to the BSi pool
in soils. The addition of phytolithic biochar thus in-
creased Sialk that is assumed to quantify the soil BSi
pool.

Bioavailable Si Given the solubility of phytoliths
(Fraysse et al. 2009), supplying BSi through phytolith-
rich biochar should increase the pool of bioavailable Si,
as measured through CaCl2 extraction in soil (Sauer
et al. 2006). As inferred from Fig. 4, the rate of Si release
decreased after 1–2 days, and became rather constant up
to 128 days. The addition of biochar Si- did not increase
CaCl2-Si in both soils (Table 4, Fig. 4). In contrast, the
addition of Si + biochar largely increased the pool of
bioavailable Si, as previously shown for biochars de-
rived from Miscanthus (Houben et al. 2014; Li et al.
2018), wheat (Liu et al. 2014), rice and switchgrass
(Wang et al. 2018), likely because phytolith solubility
increased after pyrolysis performed at 500 °C. Xiao
et al. (2014) have indeed shown that DSi release from
rice-straw biochar was largely enhanced with increasing
pyrolysis temperature in the range of 150–700 °C, above
which phytolith solubility decreased. However, soil type
also affected Si bioavailability. Although CaCl2-Si
(mg kg−1) content was much higher in Si + (34.7 ×
103) than in Wo (13.7 × 103), it was lower in CA:Si +

(97.8) than in CA:Wo (104.2) (Table 4, Fig. 4). In
contrast, CaCl2-Si (mg kg−1) content was higher in
NI:Si + (208.8) than in NI:Wo (99.7). Furthermore, the
positive impact of Si + biochar on CaCl2-Si was much
larger in NI (208.8) than in CA (97.8). Thus, the effect
of Si-rich biochar on Si bioavailability was soil-depen-
dent. Phytolith solubility varies according to soil type
(Bartoli and Wilding 1980) since soil constituents con-
trol the concentration of H4SiO4

0 in given climatic
conditions. Taking into account the fixed concentration
of Ca2+ at 10−2 M, and concentrations of aqueous
H4SiO4

0and H+ (Table S1), our data suggest that the
H4SiO4

0 concentration at 128d is controlled by clay
minerals in non-amended soils (CA, NI), and by amor-
phous silica (phytolith) in the Nitisol NI amended with
Si + biochar.

Phytolith solubility also largely depends on pH
(Fraysse et al. 2006; Fraysse et al. 2009) and, conse-
quently, on soil buffering capacity. Supporting this view,
the efficiency of Si release RSi (Table 4) was 4 times
larger in NI (20%) than in CA (5%). Four factors could
have enhanced RSi in the Nitisol NI relatively to the
Cambisol CA. Firstly, BSi minerals were present in
the untreated Cambisol, but absent in the untreated
Nitisol. In the former, native BSi minerals could have
contributed to release Si during CaCl2 extraction, and
therefore affected the dissolution rate of biochar-
phytolith or Wo. Secondly, Si could have been retrieved
from the liquid phase through (i) the likely recombina-
tion of Si and Al, and further formation of allophanic
substances in the Cambisol CA (Farmer 1982), (ii)
H4SiO4

0 adsorption on Fe oxides (McKeague and
Cline 1963; Delstanche et al. 2009; Meunier et al.
2018), which is enhanced in acidic conditions. The
former process seems more likely given the availability
of Al in the acidic Cambisol and its low Fe oxide
content. The latter process is not favored in the Nitisol
amended by Si + biochar because of high pH. Thirdly,
phytolith solubility in the Cambisol CAwas limited by
strong acidity (Fraysse et al. 2006). Indeed, pH only
increased by 0.4 unit from 4.4 to 4.7–4.8 after Wo and
biochar addition in CA, whereas it increased from 4.8 in
NI to 5.4 in NI:Wo, 6.5 in NI:Si-, and 7.4 in NI:Si +
(Table 3). Indeed, at identical phytolith supply, pH con-
trolled Si bioavailability and DSi as illustrated in Fig.
6a-b and (Fig. 6c), respectively. Our data corroborate the
results of previous field studies (Miles et al. 2014; Li
et al. 2018; Meunier et al. 2018; Klotzbücher et al. 2018;
Haynes 2019), which highlight the positive relationship
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between pH and CaCl2 extractable Si content after 5 or
16 h of extraction. Fourthly, the soil buffering capacity
had alleviated the pH increase induced by amendments.
In the Nitisol NI, a very small addition of 0.20 OH−

cmolc kg
−1 is enough to increase pH from 4.8 to 7.0. As

discussed above, the large difference between NI and
CA (Fig. 2) was directly linked to soil constituents. The
Cambisol CA contained relatively large amounts of
organic matter (OM) and high activity clays whereas
the Nitisol NI was particularly poor in OM, and
contained low activity clays. Therefore, the pH-effect
of wollastonite and biochars was much smaller in the
highly buffered Cambisol than in the low buffered,
highly weathered Nitisol.

The efficiency of Si release (RSi) followed the se-
quence: NI:Si + (20%) >NI:Wo (6%) = CA:Wo (6%) =
CA:Si + (5%) (Table 4). Thus, biochar Si + was much
more efficient in releasing bioavailable Si in NI than in
CA, and more thanWo whatever the soil type. Phytoliths
present in phytolith-enriched biochar were thus largely
soluble. Phytoliths supplied bioavailable Si in quantities
equivalent to those released by the inorganic fertilizerWo
in the moderately weathered Cambisol. In the highly
weathered Nitisol, however, they supplied bioavailable
Si in quantities four times larger than those released by
Wo, since phytolith dissolution was strongly enhanced
by the pH increase induced by biochar application. The
release of bioavailable Si markedly increased above
pH 7, illustrating the major effects of pH and soil buffer-
ing capacity on phytolith dissolution. In particular, Figs. 2
and 6 highlight the potential to use Si-enriched biochar in
highly weathered soils to boost Si biocycling, particularly
if these soils have a small buffering capacity. The large
liming effect of biochar due to the small soil buffering
capacity of NI enhanced phytolith dissolution since in-
creasing pH by 4 units, from 4.5 to 8.5, increases the
dissolution rate of phytoliths by two orders of magnitude
(Fraysse et al. 2006; Fraysse et al. 2009).

Plant responses to wollastonite and biochar As expect-
ed, wheat shoot biomass was larger in the young
Cambisol than in the highly weathered Nitisol, following
a natural soil fertility gradient linked to weathering stage
(Fig. 7). Applying amendments increased wheat shoot
biomass in the following orders of increasing phytomass
in the respective soils: CA ≤CA:Si- < CA:Si + ≤CA:Wo;
NI ≤NI:Wo <NI:Si- ≤NI:Si + (Fig. 7). The inorganic sil-
icate fertilizer Wo had little significant effect in NI, but
the largest one in CA. In the moderately weathered
Cambisol CA, Wo addition alleviated mineral toxicities,
as it does in other acid soils (Corrales et al. 1997;
Keeping 2017; Liang et al. 2007) and increased plant
biomass (Liang et al. 2015; Liang et al. 1994; Ma et al.
2006; Neu et al. 2017; Song et al. 2014). In contrast,
biochar had a marked effect on biomass in NI. We
attribute this difference to the overall increase of soil
fertility after biochar application in the Nitisol.
Biochar addition is known to increase soil pH,
plant nutrient availability and water retention
(Biederman and Harpole 2013; Jeffery et al. 2011;
Laird et al. 2010; Lehmann et al. 2003; Liang et al.
2006; Rondon et al. 2007; Yamato et al. 2006). As
shown in this study, the application of Si- and Si +
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biochar significantly increased the soil contents of
plant-available Ca, Mg and K as well as of C and
N (Table 3), and further increased the plant con-
tents of Ca, Mg and K (data not shown). The
addition of biochar (Si- and Si+) increased the
contents of exchangeable K and Mg. Enhanced
plant growth induced an increase of plant Si con-
tent and mineralomass even after biochar Si- addi-
tion in both soils, suggesting that the alkalinity of
biochar partly led to elevate Si solubility. In addi-
tion, improved plant growth can induce rhizospheric
mineral weathering through silicate dissolution
(Hinsinger 1998). Noteworthy is the fact that, for both
soils, biochar Si + largely increased wheat shoot bio-
mass, Si content and mineralomass (Table 4). Thus,
our data confirm the positive effects of biochar on soil
fertility, on the one hand, and Si bioavailability on the
other hand, promoting plant biomass. Furthermore, the

relative impact of Si-enriched biochar on plant biomass,
Si content and mineralomass was largest in the most
weathered soil (NI). At identical supply of the two
biochars (Si + and Si-), which exhibit identical
physico-chemical characteristics, wheat biomass was
1.2 fold larger in CA:Si + and NI:Si + than that in
CA:Si- and NI:Si-. As illustrated in Fig. 7, shoot bio-
mass, Si content and mineralomass positively
responded to the size of the bioavailable Si pool
in soils. It further suggests that supplying
phytolithic biochar substantially increases shoot
biomass, and promotes the biocycling of Si accu-
mulated in crop straw residues. The latter may
thus act as a sustainable Si source by reducing
the loss of BSi out of croplands. Furthermore,
the BSi pool was strongly impacted by the pH
increase mediated by biochar addition in the poor-
ly buffered Nitisol. In this respect, we further
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Fig. 7 Wheat shoot biomass as
plotted against (a) soil CaCl2-Si at
16 h (b) CaCl2-Si at 128 days;
Wheat shoot Si mineralomass as
plotted against (c) soil CaCl2-Si at
16 h (d) CaCl2-Si at 128 days;
Wheat shoot biomass (e) and its
Si mineralomass (f) as plotted
against its shoot Si
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point out that the effect of liming on Si bioavail-
ability depends on soil buffering capacity, which in
turn depends on soil constituents, hence on soil
development and weathering stage.

Conclusion

From the kinetic CaCl2-extraction carried out for
128 days, we conclude that the CaCl2-Si content at
128d quantified the pool of bioavailable Si where-
as the one performed at 16 h predicted it. This
confirms the validity of CaCl2 0.01 M to extract plant
available Si as a routine procedure at 16 h. Though
routinely used to quantify amorphous silica, notably
phytolith, the DeMaster technique is not specific to
amorphous silica since it dissolved wollastonite. Our
data thus strengthen the role of phytoliths as a source
of plant available Si, but question the DeMaster tech-
nique to quantify their pool.

Supplying Si through the addition of phytolithic
biochar to soil increases plant available Si if pH condi-
tions enhance phytolith solubility. Indeed, at identical
phytolithic Si supply, soil pH and soil buffering capac-
ity control the transfer of Si from soil to plant because
the liming effect of biochar depended on soil buffering
capacity. The Si soil-to-plant transfer is indeed largest
in the poorly buffered, highly weathered Nitisol, in
which phytolithic biochar performed better than wol-
lastonite in termsof increased soilBSi andbioavailable
Si contents, as well as increased Si uptake, plant shoot
biomass and mineralomass.

The effect of phytolithic biochar on Si bioavail-
ability is depending on soil constituents and prop-
erties, and consequently on soil type. The efficien-
cy of Si fertilization is thus expected to be largely
soil-dependent.
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