INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce republic portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2007 subscription price: US$1,395 (Print, ISSN# 1934-578X); US$1,095 (Web edition, ISSN# 1555-9475); US$1,795 (Print + single site online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Chemical Composition, Insecticidal Effect and Repellent Activity of Essential Oils of Three Aromatic Plants, Alone and in Combination, towards *Sitophilus oryzae* L. (Coleoptera: Curculionidae)

Martin B. Ngassouma*, Leonard S. Ngamo Tinkeub, Iliassa Ngatankoc, Leon A. Tapondjoud, Georges Lognaye, François Malaissee and Thierry Hance

aDepartment of Applied and Environmental Chemistry, University of Ngaoundéré, PO BOX 455 Ngaoundéré, Cameroon

bDepartment of Biological Sciences, University of Ngaoundéré, PO BOX 454 Ngaoundéré, Cameroon

cDepartment of Food and Nutrition, University of Ngaoundéré, PO BOX 455 Ngaoundéré, Cameroon

dDepartment of Applied Chemistry, University of Dschang, PO BOX Dschang, Cameroon

eFaculty of Agronomy and Agricultural Sciences, 2, passage des déportés, 5030 Gembloux, Belgium

fResearch Centre on the Biodiversity, UCL, Place la Croix du Sud, 4-5, 1348 Louvain-la-Neuve, Belgium

ngassoum@yahoo.fr

Received: June 29th, 2007; Accepted: July 13th, 2007

Essential oils of aromatic plants with insecticidal properties are nowadays considered as alternative insecticides to protect stored products from attack by insect pests. A combination of some of these plants in the granaries is a current practice in certain localities of northern Cameroon. The aim of the present work was to analyze the impact of the combinations of the essential oils of *Vepris heterophylla* (Rutaceae), *Ocimum canum*, and *Hyptis spicigera* (both Lamiaceae), the three most used local aromatic plants because of their insecticidal activity and their repellent effect on *Sitophilus oryzae*. The present work revealed that these plants are rich in monoterpenoids. The GC/MS analyses have shown that monoterpenoids represented 65.5% for *H. spicigera*, 92.1% for *O. canum* and 47.0% for *V. heterophylla*. The crude essential oil of *O. canum* was the most insecticidal with a LD$_{50}$ of 42.9 ppm. The most repellent effect was obtained by a combination of the essential oils of *H. spicigera* and *O. canum*, with a repellent percentage at 77.5%. These results suggest a suitable strategy for pest management of stored products.

Key words: Aromatic plants, combination, essential oils, repellent effect, stored products.

In northern Cameroon, the most important insect grain pests are *Sitophilus zeamais* and *S. oryzae* (Coleoptera: Curculionidae), *Callosobruchus maculatus* (Coleoptera: Bruchidae) and *Tribolium castaneum* (Coleoptera: Tenebrionidae) [1]. Smallholders lose up to 80% of their stock each year because of insects [2]. To prevent the losses, producers usually rely on a relish of chemical insecticides. These tools, used frequently and abusively, consequently result in pollution of the environment and intoxication of consumers. There is, therefore, an urgent need to develop user-friendly storage methods with minimal adverse effects on the environment and on consumers. Essential oils of aromatic plant that have insecticidal properties could be considered as alternative insecticides [3,4]. These oils are volatile with high insecticidal efficiency and very low persistence. Most of the active compounds of the essential oil are specific to particular insect groups and not to mammals [5], and, therefore, should be considered in pest management strategies. One of the most important qualities of aromatic plants is their odors, which confer them their repellent effects. To maximize the effects of these
plants, farmers in the past utilized many of them in the same granary. This present work investigates the insecticidal and repellent efficiency of three local aromatic plants, Vepris heterophylla (Engl.) Letouzey (Rutaceae), Ocimum canum Sims (Lamiaceae), and Hyptis spicigera Lam. (Lamiaceae), frequently used alone and in combination.

The essential oil yields obtained ranged from 1.7 to 5.8% (Table 1). Flowers of H. spicigera produced less essential oil than the leaves of V. heterophylla and O. canum.

The GC/MS analyses of each of the three essential oils showed that they contain abundant monoterpenes (Table 2): 65.5% for H. spicigera; 92.1% for O. canum and 47.0% for V. heterophylla. The amount of sesquiterpenes observed was also different between the essential oils. That of V. heterophylla had the highest percentage, 51%, and that of O. canum the lowest, 7%. The most abundant active compounds in these essential oils differed from one oil to another. Thus, 49.2% of O. canum was composed of limonene, 8.8% of α-pinene and 3.2% of elemene. The essential oil of H. spicigera had two main components, 1,8-cineol (24.0%) and (E)-caryophyllene (22.2%). Other active compounds found in this essential oil were α-pinene (9.1%), β-pinene (5.7%), α-terpinol (8.3%) and linalool (8.4%). The essential oil of V. heterophylla contained elemol (19.4%), sabine (17.3%), (E)-β-ocimene (10.6%), guaiazol (15.3%), limonene (4.0%), (E)-caryophyllene (2.3%) and additional compounds such as myrcene and terpinolene.

The chemical composition of combinations of essential oils (Table 3), as expected, represent averages of the percentages of each of the components in the individual oils. The LD50 values obtained for each of the essential oils, as well as their combinations, are presented in Table 4. The most active essential oil, with the lowest LD50 value, was that of O. canum oil.

The insecticidal activity of an essential oil depends on its chemical composition and the sensitivity of the target pest to the active compounds [6]. The essential oil of O. canum, which is the most toxic, contains 49% limonene, according to the GC/MS analysis. It has been shown that limonene is highly toxic to Coleopterans [7]. All the essential oils tested showed remarkable insecticidal activity, the least active of which was Vepris heterophylla with a LD50 of 349.8 ppm. H. spicigera oil showed a high concentration of 1,8 cineol (24.5%) and (E)-caryophyllene (22.2%).

These compounds, along with α-phellandrene, terpinolene, and (+)-limonene have shown high toxicity towards S. oryzae [8]. The insecticidal efficiency observed is due to both major and minor components of each active oil [4,7-9]. These synergistic effects could explain the differences between observed LD50 values and what would be expected based on average activities of the individual
Insecticidal efficiency of essential oils towards *S. oryzae*

Table 4: Insecticidal activity (LD₅₀) of the three essential oils and their combinations towards *Sitophilus oryzae*.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>LD₅₀ (ppm)</th>
<th>Observed</th>
<th>Expected</th>
<th>CHI²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyptis spicigera</td>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum canum</td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vepris heterophylla</td>
<td>349.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyptis + Ocimum</td>
<td>75.8</td>
<td>77.5</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Hyptis + Vepris</td>
<td>182.1</td>
<td>230.9</td>
<td>5.76*</td>
<td></td>
</tr>
<tr>
<td>Ocimum + Vepris</td>
<td>103.8</td>
<td>196.0</td>
<td>28.3***</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Duration of insecticidal potency of the essential oils tested alone and in combination towards *Sitophilus oryzae*.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Duration</th>
<th>Observed</th>
<th>Expected</th>
<th>CHI²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyptis spicigera</td>
<td>6h 2 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum canum</td>
<td>5h 4 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vepris heterophylla</td>
<td>14h 5 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyptis + Ocimum</td>
<td>4h 2 min</td>
<td>5h 5 min</td>
<td>16.8***</td>
<td></td>
</tr>
<tr>
<td>Hyptis + Vepris</td>
<td>13h 4 min</td>
<td>10h 5 min</td>
<td>18.7***</td>
<td></td>
</tr>
<tr>
<td>Ocimum + Vepris</td>
<td>7h 4 min</td>
<td>10h 2 min</td>
<td>23.5***</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Insect repellent activity of the essential oils tested alone and in combination towards *Sitophilus oryzae*.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Repellent rate (McDonald class)</th>
<th>Observed</th>
<th>Expected</th>
<th>CHI²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyptis spicigera</td>
<td>62.5 (IV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum canum</td>
<td>33.7 (II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vepris heterophylla</td>
<td>42.5 (III)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyptis + Ocimum</td>
<td>77.5 (IV)</td>
<td>48.1 (III)</td>
<td>6.9***</td>
<td></td>
</tr>
<tr>
<td>Hyptis + Vepris</td>
<td>41.2 (III)</td>
<td>52.5 (III)</td>
<td>1.3 ns</td>
<td></td>
</tr>
<tr>
<td>Ocimum + Vepris</td>
<td>62.5 (IV)</td>
<td>38.1 (II)</td>
<td>9.5***</td>
<td></td>
</tr>
</tbody>
</table>

Essential oils (Table 4). This synergistic effect has already been demonstrated between essential oils of five aromatic plants used in north Cameroon [10].

The activity of the essential oils decreased with time due to their high volatility, although the decrease was not the same for the three oils tested (Table 5). Those oils with a high proportion of hydrocarbon components lost their activity more rapidly than those composed mainly of oxygenated compounds [4,11].

The essential oil that exhibited the most repellent activity was *H. spicigera*, with a repellent percentage (RP) of 62.5% (Table 6). The least repellent oil, however, was *O. canum*, which had an RP of 33.7%. For the essential oil combinations, *Hyptis + Ocimum* was the most repellent (RP >77%), whereas the combination was expected to have an RP of 48%. The synergy between *O. canum* and *H. spicigera* has increased their repellent effects. Comparable results were observed for *O. canum + V. heterophylla*. The repellent effect of *V. heterophylla* has previously been shown on *S. oryzae*. [8]. Leaves of *V. heterophylla*, *H. spicigera* and *O. canum* are used in traditional medicine against diseases and as purgatives. Their use in combinations in granaries could prove to be beneficial to prevent attack of post harvest insect pests.

Experimental

Plant collection: Leaves of *V. heterophylla* and flowers of *O. canum* were collected at Maroua, far north of Cameroon (10° 39.214’ N, 14° 24.145’ E, 375 m elevation). Flowers of *H. spicigera* were collected near the campus of the University of Ngaoundéré (7° 25.609’ N, 13° 33.549’ E, 1100 m elevation). These data were recorded with a GPS Garmin Geko 301. The collection of all plant materials was made in December 2005. After collection, the plant material was dried in the shade under laboratory conditions for 24 h, cut in pieces, weighed, and hydrodistilled for 4 h using a Clevenger-type apparatus. The essential oils obtained were stored at 4°C until their use for the bioassays.

GC/MS chemical analysis: GC/MS analysis utilized an HP-5MS column (5% phenyl methyl siloxane), 30 m long and 250 µm in diameter. The carrier gas was helium; the temperature program applied was from 40°C to 230°C at a rate of 5°C/min and then maintained at 230°C for 5 min. The pressure of the carrier gas was 49.9 KPa with a flux of 74.1mL/min. The ion-source temperature was 230°C and the ion scan range was 50-350 amu. The mass spectrum of each compound was compared with those of the Wiley 275 L library [12,13].

Insects: Insects used for the test were reared in the *in vivo* collection at the Storeprotect laboratory at the University of Ngaoundéré in Cameroon. They were derived from a strain collected in November 2003 from a granary in Bekha hosséré (Ngaoundéré, Cameroon).

Insecticidal activity: In preliminary tests, several doses were chosen between those having no killing effect on the experimental population to the minimal one killing 100% of this population, in order to establish the LD₅₀ of each essential oil. With a micropipette (Rainin Magnetic-assist), the precise volume of essential oil was added to acetone and diluted to 5 mL. From this, 0.5 mL of solution was uniformly applied to a 9 cm disk of filter paper (Whatman N°1) and placed in a Petri dish. Twenty adult insects, less than one month old, were introduced into the dish 5 min later and the dish was covered. A control with acetone alone, was made. For each preparation, 5 replications were made. The number of dead insects was determined 24 h after the application.
Insect repellent activity: Repellent effects of essential oils and their combinations were evaluated at doses of 0.031, 0.062, 0.125, and 0.251 µL/cm². The test was conducted in a 9-cm diameter Petri dish in which two half circles of filter paper were introduced. One half was treated with either essential oil or a combination of essential oils, while the second half was treated with acetone. Twenty insects were placed in the middle of the Petri dish and, after two h, the distribution of insects on each part of the paper was noted. The repellent percentage of the different oils, their combinations and the class were calculated according to the McDonald formula [14,15].

Acknowledgments – The authors are grateful to the Belgian Cooperation for Development (CUD) for its financial support and to the Third World Academy of Science (TWAS) for the GC donation.

References

Volatile Constituents of *Calamintha origanifolia* Boiss. Growing Wild in Lebanon
Carmen Formisano, Daniela Rigano, Francesco Napolitano, Felice Senatore, Nelly Apostolides Arnold, Franco Piozzi and Sergio Rosselli

1253

Essential Oil from *Chenopodium ambrosioides* as a Promising Antileishmanial Agent
Lianet Monzote Fidalgo

1257

Selective Cytotoxic Activities of Leaf Essential Oils from Monteverde, Costa Rica
Debra M. Moriarity, Anita Bansal, Ramona A. Cole, Sayaka Takaku, William A. Haber and William N. Setzer

1263

Chemical Composition of Leaf Essential Oil of *Hedyosmum arborescens* and Evaluation of Its Anticancer Activity
Muriel Sylvestre, André Pichette, Angélique Longtin, Marie-Anna Couppé De Ker Martin, Sylvie Rodin Bercion and Jean Legault

1269

Volatile Leaf Constituents and Anticancer Activity of *Bursera simaruba* (L.) Sarg. Essential Oil
Muriel Sylvestre, André Pichette, Angélique Longtin and Jean Legault

1273

Antibacterial and Cytotoxic Activity of *Nepeta cataria* L., *N. cataria* var. *citriodora* (Beck.) Balb. and *Melissa officinalis* L. Essential Oils
Ulrike Suschke, Frank Sporer, Jürgen Schneele, Heinrich Konrad Geiss and Jürgen Reichling

1277

Chemical Composition, Antiradical and Antifungal Activities of Essential Oil of the Leaves of *Cinnamomum zeylanicum* Blume from Cameroon
Pierre M. Jazet Dongmo, Léopold N. Tatsadjieu, François Tchoumbougnang, Modeste L. Sameza, Bernadin Ndongson Dongmo, Paul H. Amvam Zollo and Chantal Menut

1287

Antifungal and Anti-insect Activities of Three Essential Oils on *Aspergillus flavus* Link and *Sitophilus zeamais* Motsch
Leopold N. Tatsadjieu, Martin B. Ngassoum, Elias N. Nukenine, Augustin Mbawala and Aoudou Yaouba

1291

Review / Account

Biological Activities of Selected Essential Oils
Lawrence A. D. Williams, Roy B. Porter and Grace O. Junor

1295

Antifungal Activity of the Volatile Phase of Essential Oils: A Brief Review
Heather M. A. Cavanagh

1297

The Medicinal Use of Essential Oils and Their Components for Treating Lice and Mite Infestations
Elizabeth M. Williamson

1303

A Review of Aromatic Herbal Plants of Medicinal Importance from Nigeria
Isiaka A. Ogunwande, Tameka M. Walker and William N. Setzer

1311

The Biology of Essential Oils in the Pollination of Flowers
Leland J. Cseke, Peter B. Kaufman and Ara Kirakosyan

1317
Contents

Original paper

Composition and Antinociceptive Activity of the Essential Oil from Protium heptaphyllum Resin
Vietla S. Rao, Juliana L. Maia, Francisco A. Oliveira, Thelma L.G. Lemos, Mariana H. Chaves and Flavia A. Santos 1199

Cruzain Inhibitory Activity of Leaf Essential Oils of Neotropical Lauraceae and Essential Oil Components
William N. Setzer, Sean L. Stokes, Ashley F. Penton, Sayaka Takaku, William A. Haber, Elizabeth Hansell, Conor R. Caffrey and James H. McKerrow 1203

Cruzain Inhibitory Activity of the Leaf Essential Oil from an Undescribed Species of Eugenia from Monteverde, Costa Rica
Sean L. Stokes, Ramona A. Cole, Mariana P. Rangelova, William A. Haber and William N. Setzer 1211

Biological Activities of Essential Oils from Monteverde, Costa Rica
Jennifer Schmidt Werka, Amelia K. Boehme and William N. Setzer 1215

Composition and Antibacterial Screening of the Essential Oils of Leaves and Roots of Espeletiopsis angustifolia Cuatree
Gina Meccia, Luís B. Rojas, Judith Velasco, Tulia Díaz and Alfredo Usubiillaga 1221

GC-MS Analysis of the Leaf Essential Oil of Ipomea pes-caprae, a Traditional Herbal Medicine in Mauritius
Daniel E.P. Marie, Brkic Dejan and Joëlle Quetin-Leclercq 1225

Chemical Composition, Insecticidal Effect and Repellent Activity of Essential Oils of Three Aromatic Plants, Alone and in Combination, towards Sitophilus oryzae L. (Coleoptera: Curculionidae)
Martin B. Ngassoum, Leonard S. Ngamo Tinkeu, Iliassa Ngatanko, Leon A. Tapondjou, Georges Lognay, François Malaisse and Thierry Hance 1229

Chemical Composition and Larvicidal Activity against Aedes aegypti of Essential Oils from Croton zehntneri
Hélcio S. Santos, Gilvandete M. P. Santiago, João P. P. de Oliveira, Angela M. C. Arriaga, Délcio D. Marques and Telma L. G. Lemos 1233

Composition and Larvicidal Activity of Essential Oil from Stemodia maritima L.
Angela M. C. Arriaga, Francisco E. A. Rodrigues, Telma L. G. Lemos, Maria da C. F. de Oliveira, Jefferson Q. Lima, Gilvandete M. P. Santiago, Raimundo Braz-Filho and Jair Mafezoli 1237

Cytotoxic Leaf Essential Oils from Neotropical Lauraceae: Synergistic Effects of Essential Oil Components
Brenda S. Wright, Anita Bansal, Debra M. Moriarity, Sayaka Takaku and William N. Setzer 1241

Chemical Composition and Antibacterial Activity of the Essential Oil of Baccharis latifolia Pers. and B. pruinifolia H. B. &K. (Asteraceae)
Jannie Rojas, Judith Velasco, Luis B. Rojas, Tulia Díaz, Juan Carmona and Antonio Morales 1245

Biological Activity and Composition of the Essential Oil of Tetrataenium nephrophyllum (Apiaceae) from Iran
Ali Sonboli, Mohammad Reza Kanani, Morteza Yousefzadi and Mehran Mojarrad 1249

Continued inside back cover