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Factors and subwords

Definition
Let u = u1u2 · · · um be a finite or infinite word. A (scattered) subword of
u is a finite subsequence of the sequence (uj)

m
j=1. A factor of u is a

contiguous subword.

Example
Let u = 0102010. The word 021 is a subword of u, but not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Let
(u
x

)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

Example
If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?
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Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

The simplest complexity function is the following. Here, N = {0, 1, 2, . . .}.

Definition
The factor complexity of the word w is the function

pw : N→ N : n 7→ #Facw(n).

Definition
The factor complexity of the word w is the function

pw : N→ N : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

We can replace ∼= with other equivalence relations.
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Other equivalence relations

Different equivalence relations from ∼= can be considered:

If k ∈ N+,

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.
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Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 3 =

(
v

ab

)

,

(
u

ba

)
= 4 =

(
v

ba

)
.
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Some properties

Proposition
For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

Proposition
For all words u, v ,

u ∼1 v ⇔ u ∼ab,1 v .

Definition (Reminder)
The words u and v are 1-abelian equivalent if(

u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.
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k-binomial complexity

Definition
If w is an infinite word, we can define the function

b(k)
w : N→ N : n 7→ #(Facw(n)/∼k),

which is called the k-binomial complexity of w.

We have an order relation between the different complexity functions.

Proposition

ρabw (n) ≤ b(k)
w (n) ≤ b(k+1)

w (n) ≤ pw(n) ∀n ∈ N, k ∈ N+

where ρabw is the abelian complexity function of the word w.
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A famous word...

The k-binomial complexity function was already computed on some infinite
words.

The classical Thue–Morse word, defined as the fixed point of the morphism

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 10,

has a bounded k-binomial complexity. The exact value is known.

Theorem (M. L., J. Leroy, M. Rigo, 2018)

Let k be a positive integer. For every n ≤ 2k − 1, we have

b(k)
t (n) = pt(n),

while for every n ≥ 2k ,

b(k)
t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.
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Another family

Definition: Sturmian words
A Sturmian word is an infinite word having, as factor complexity,
p(n) = n + 1 for all n ∈ N.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have

b(k)
w (n) = pw(n) = n + 1,

for all n ∈ N and for all k ≥ 2.

Since b(k)
w (n) ≤ b(k+1)

w (n) ≤ pw (n), it suffices to show that

b(2)
w (n) = pw(n).
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The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 0102010010201 · · ·
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The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :
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The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 0102 · · ·
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The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 010201 · · ·

Marie Lejeune (Liège University) June 20, 2019 10 / 33



The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 0102010 · · ·
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The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 010201001 · · ·
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The Tribonacci word

From now, let A = {0, 1, 2}. Let us define the Tribonacci word.

Definition
The Tribonacci word T is the fixed point of the morphism

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

We have
T = 01020100102 · · ·
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Its k-binomial complexity

The next result was first conjectured by Michel Rigo, and then proved.

Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)
For all k ≥ 2, the k-binomial complexity of the Tribonacci word equals its
factor complexity.

To show this result, it suffices to show that, for all n ∈ N,{
u, v ∈ FacT (n)
u 6= v

⇒ u 6∼2 v .
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Its k-binomial complexity

The Parikh vector of a word u is classicaly defined as

Ψ(u) :=
((u

0

) (u
1

) (u
2

))ᵀ ∈ N3 .

Let us define the extended Parikh vector of a word u as

Φ(u) :=
((u

0

) (u
1

) (u
2

) ( u
00

) ( u
01

)
. . .

( u
22

))ᵀ ∈ N12 .

Remark
We have u ∼2 v ⇔ Φ(u) = Φ(v) ⇔ Φ(u)− Φ(v) = 0.
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Intuitive introduction to templates

We will be interested into values of Φ(u)− Φ(v) for u, v ∈ FacT . We will
thus express the difference using the notion of templates.

Informally, we will associate to every pair of words several templates, which
are 5-uples:

A∗ × A∗ ! Z12×Z3×Z3×A× A.

We will restrict this relation to factors of T :

FacT ×FacT ! Z12×Z3×Z3×A× A.

There exists a strong link between this notion and our thesis:

b(2)
T (n) < pT (n)

⇔
∃(u, v) ∈ FacT ×FacT ! [0, 0, 0, a, b], a 6= b
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Templates: a formal definition

Definition
A template is a 5-uple of the form t = [d,Db,De, a1, a2] where d ∈ Z12,
Db,De ∈ Z3 and a1, a2 ∈ A.

The template t is said to be realizable by (u, v) ∈ (FacT )2 if
Ψ(u)−Ψ(v) = d + P3 (Db ⊗Ψ′(u) + Ψ′(u)⊗De) ,
∃u′ ∈ A∗ : u = u′a1,
∃v ′ ∈ A∗ : v = v ′a2,

where the matrix P3 is such that, for all x ∈ Z9, P3 · x =
(
0 0 0 x

)ᵀ,
and where ⊗ is the usual Kronecker product: if A ∈ Zm×n and B ∈ Zp×q,

A⊗ B :=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Zmp×nq .
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Why are templates useful?

Theorem
There exists n ∈ N such that

b(2)
T (n) < pT (n)

if and only if at least one template of the form [0, 0, 0, a, b] with a 6= b is
realizable by a pair of factors of T .

Proof
⇐ ∃(u, v) ∈ (FacT )2 realizing [0, 0, 0, a, b]. So, Φ(u)− Φ(v) = 0 and
u 6= v .
⇒ ∃u = u1 · · · un, v = v1 · · · vn ∈ FacT such that u 6= v and u ∼2 v .
Let i ∈ {1, . . . , n} be such that ui 6= vi , ui+1 = vi+1, . . . , un = vn.
Then (u1 · · · ui , v1 · · · vi ) realizes [0, 0, 0, ui , vi ], because
u ∼2 v ⇒ u1 · · · ui ∼2 v1 · · · vi .
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Using this result

We want to verify that ∀(u, v) ∈ (FacT )2, the pair (u, v) doesn’t realize
any template of the form [0, 0, 0, a, b] with a 6= b.

There exists an infinite number of pairs to check. Hopefully, we have an
interesting result:

Let us suppose that there exists a pair (u, v) realizing [0, 0, 0, a, b] and let
fix L > 0. Then, either
• min(|u|, |v |) ≤ L, or;
• there exists an ancestor template of [0, 0, 0, a, b] which is realized by

the pair (u′, v ′) = ”((τ−1)j(u), (τ−1)j(v))” of words such that
min(|u′|, |v ′|) ≤ L.
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Preimages

Example: intuitive definition
Recall that

T = 01 · 02 · 01 · 0 · 01 · 02 · 01 · 01 · 02 · 01 · 0 · 01 · · ·

Let u = 2010102010. The word u′ = 100102 is a preimage of u.

Definition
Let u and u′ be two words. The word u′ is a preimage of u if

u is a factor of τ(u′), and
u′ is minimal: for all factors v of u′, u is not a factor of τ(v).
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Preimages (continued)

A word can have several preimages.

Example
Recall that

T = 01 · 02 · 01 · 0 · 01 · 02 · 01 · 01 · 02 · 01 · 0 · 01 · · ·

Take u = 010.

It has 00, 01 and 02 as preimages.
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Templates have parents...

We will now introduce the notion of parents of a template.

Theorem
Let t be a template and let (u, v) be a pair of factors realizing t. Let u′

(resp., v ′) be a preimage of u (resp., v).
There always exists a template t ′ which is realized by (u′, v ′). and which is,
in some way, related to t.

The template t ′ is called a parent template of t.

(u, v) [d,Db,De, a1, a2] = t

(u′, v ′) [d′,D′b,D
′
e, a
′
1, a
′
2] = t ′

τ−1 Par(.)
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Templates have parents...

Remark
Since a word can sometimes have several preimages, a template can
also have several parents.

There exists a formula allowing to compute all parents of a given
template.
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... and ancestors

Definition
Let t and t ′ be templates. We say that t ′ is an (realizable) ancestor of t
if there exists a finite sequence of templates t0, . . . , tn such that

t0 = t ′,
tn = t,
∀i ∈ {0, . . . , n − 1}, ti is a (realizable) parent of ti+1.
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The formal theorem

We can now state the formal theorem:

Theorem
Let L ≥ 0 be an integer, and let t be a template. If there exists a pair of
factors (u, v) realizing t, then
• either min(|u|, |v |) ≤ L, or
• there exist an ancestor t ′ of t, and a pair (u′, v ′) of factors realizing t ′,

such that L ≤ min(|u′|, |v ′|) ≤ 2L.

Marie Lejeune (Liège University) June 20, 2019 22 / 33



The formal theorem

We can now state the formal theorem:

Theorem
Let L ≥ 0 be an integer, and let t be a template. If there exists a pair of
factors (u, v) realizing t, then

• either min(|u|, |v |) ≤ L, or
• there exist an ancestor t ′ of t, and a pair (u′, v ′) of factors realizing t ′,

such that L ≤ min(|u′|, |v ′|) ≤ 2L.

Marie Lejeune (Liège University) June 20, 2019 22 / 33



The formal theorem

We can now state the formal theorem:

Theorem
Let L ≥ 0 be an integer, and let t be a template. If there exists a pair of
factors (u, v) realizing t, then
• either min(|u|, |v |) ≤ L

, or
• there exist an ancestor t ′ of t, and a pair (u′, v ′) of factors realizing t ′,

such that L ≤ min(|u′|, |v ′|) ≤ 2L.

Marie Lejeune (Liège University) June 20, 2019 22 / 33



The formal theorem

We can now state the formal theorem:

Theorem
Let L ≥ 0 be an integer, and let t be a template. If there exists a pair of
factors (u, v) realizing t, then
• either min(|u|, |v |) ≤ L, or
• there exist an ancestor t ′ of t, and a pair (u′, v ′) of factors realizing t ′,

such that L ≤ min(|u′|, |v ′|) ≤ 2L.

Marie Lejeune (Liège University) June 20, 2019 22 / 33



Plan

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity

2 State of the art

3 Next result: the Tribonacci word
Definition
The theorem
Introduction to templates and their parents
Using templates to compute b(2)

T



Verifying that no template [0,0,0, a, b] is realizable

To show that b(2)
T = pT , we have to show that no template from

T := {[0, 0, 0, a, b] : a 6= b}

is realizable.

The following steps can be done using Mathematica:
1 We check that no pair of factors (u, v) with min(|u|, |v |) ≤ L realizes

a template of T .
2 We compute all the ancestors of T and we check that none of them is

realized by a pair (u′, v ′) with L ≤ min(|u′|, |v ′|) ≤ 2L.
Problem: there exists an infinite number of ancestors.
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Keeping a finite number of templates

Instead of computing all the ancestors of T , we will focus on the possibly
realizable ones.

The last step is thus to find necessary conditions on templates to be
realizable.

That will leave us with a finite number of candidates.

It is then possible to verify with a computer that, in fact, none of them is
realizable by a pair (u, v) with L ≤ min(|u|, |v |) ≤ 2L.
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A matrix associated to τ

Let us consider the matrix associated to τ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

It has the

property that, for all u ∈ FacT , M ′τΨ(u) = Ψ(τ(u)).
We have

M ′τ =

1 1 1
1 0 0
0 1 0


because

M ′τΨ(u) =

1 1 1
1 0 0
0 1 0

(u0)(u
1

)(u
2

)
 =

(u0)+
(u
1

)
+
(u
2

)(u
0

)(u
1

)
 =


(
τ(u)

0

)(
τ(u)

1

)(
τ(u)

2

)
 .

We define its extended version Mτ , such that, for all u ∈ FacT , we have
MτΦ(u) = Φ(τ(u)).
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The extended version

We have

Mτ =



1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0



For example, since τ(0) = 01 and 1 is present only in τ(0) while 0 occurs once in
every τ(a), (

τ(u)

01

)
=

(
u

0

)
+

(
u

00

)
+

(
u

10

)
+

(
u

20

)
.
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The extended version

We have
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About its eigenvalues

The Perron-Frobenius eigenvalue of M ′τ is θ ≈ 1.839. The matrix Mτ has
the eigenvalue θ once;
the eigenvalue θ2 once;
two pairs of complex conjugate eigenvalues of modulus in ]1; θ[;
a real eigenvalue of modulus less than 1, of geometric multiplicity 2;
two pairs of complex conjugate eigenvalues of modulus less than 1.

The bounds we will give on possibly realizable templates will concern
projections of templates on the left eigenvectors associated to eigenvalues
of modulus less than θ.
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First restrictions

Theorem
Let λ be an eigenvalue of modulus less than 1. Let r be an associated
eigenvector. If the template t = [d,Db,De, a1, a2] is realizable, then

min
δ∈∆
|r · (d + P3 (Db ⊗ δ + δ ⊗De))| ≤ 2C (r),

where C (r) is an easily computable constant such that, for all factors
w ∈ FacT , we have

|r · Φ(w)| ≤ C (r).

For the sake of notations, we wrote

∆ =


δ0δ1
δ2

 ∈ [−1.5; 1.5]3 : δ0 + δ1 + δ2 = 0

 .
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Other restrictions

Theorem
Let λ be an eigenvalue of modulus in ]1, θ[. Let r be an associated
eigenvector. If the template t = [d,Db,De, a1, a2] is realizable by a pair
(u, v) with |u| ≥ L, then

|r · P3 (Db ⊗α + α⊗De)| ≤

2L−
∑3

i=1 di

L
C (r) + max

δ∈∆

|r · (d + P3 (Db ⊗ δ + δ ⊗De))|
L

,

where C (r) is an easily computable constant such that, for all factors
w ∈ FacT , we have

|r · Φ(w)|
|w |

≤ C (r).

For the sake of notations, we wrote α =
(
α0 α1 α2

)ᵀ the vector of
densities of letters in T .
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Final algorithm

Recall that we want to compute the ancestors of T and check that none of
them is realized by a pair (u, v) with

L ≤ min(|u|, |v |) ≤ 2L. (?)

Initialize toSee = T and seen = {}
While toSee 6= {}, take a template t ∈ toSee

I Compute its parents
I Keep, among them, only the ones that verify the previous theorems for

all eigenvalues of modulus less than θ
I Add them in toSee, if they are neither in toSee, nor in seen
I toSee = toSee\{t} and seen = seen ∪ {t}

If the program stops, seen contains all the possibly realizable
ancestors of T, which is a finite set
Check that none of them is realized by a pair (u, v) of factors of T
satisfying (?)
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Our implementation

In our implementation, we took L = 15.

Computing all the possibly realizable ancestors gave us a list of 241544
elements, in more or less eight hours.

The program then checks in less than three hours that none of them is
realized.

Thus, no template from T = {[0, 0, 0, a, b] : a 6= b} is realizable.

That implies that pT (n) = b(2)
T (n) for all n ∈ N.
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Last remark

Remark (G. Richomme, K. Saari, L. Zamboni, 2010)
The necessary conditions we found are related to the 2-balancedness
property of T , and more precisely, to the fact that, for all w ∈ FacT and
for all a ∈ {0, 1, 2},

||w |a − αa|w || < 1.5,

where αa = limn→+∞
|w0···wn−1|a

n is the density of a in T .

To end with an open question...
Is it true that for every Arnoux-Rauzy word w, we have

b(k)
w (n) = pw(n)

for all n ∈ N and for all k ≥ 2?
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Thank you!

Marie Lejeune (Liège University) June 20, 2019 33 / 33


	Preliminary definitions
	Words, factors and subwords
	Complexity functions
	k-binomial complexity

	State of the art
	Next result: the Tribonacci word
	Definition
	The theorem
	Introduction to templates and their parents
	Using templates to compute bT(2)


