Computing the k-binomial complexity of the Tribonacci word

LA LIBERTÉ DE CHERCHER

June 20, 2019
Marie Lejeune (FNRS grantee)
Joint work with Michel Rigo and Matthieu Rosenfeld

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Plan

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u.

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=$ aababa,

$$
|u|_{a b}=\text { ? and }\binom{u}{a b}=\text { ? }
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=a a b a b a$,

$$
|u|_{a b}=1 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=1 .
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=2 .
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=3 .
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=4 .
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=5 \text {. }
$$

Factors and subwords

Definition

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word. A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Example

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

Example

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=5 \text {. }
$$

Plan

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}. The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \# \operatorname{Fac}_{\mathbf{w}}(n)
$$

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}. The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathrm{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathrm{w}}(n) / \sim_{=}\right)
$$

where $u \sim_{=} v \Leftrightarrow u=v$.

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}. The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathrm{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathrm{w}}(n) / \sim_{=}\right)
$$

where $u \sim_{=} v \Leftrightarrow u=v$.
We can replace $\sim=$ with other equivalence relations.

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:
If $k \in \mathbb{N}^{+}$,

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A \leq k$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:
If $k \in \mathbb{N}^{+}$,

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A \leq k$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:
If $k \in \mathbb{N}^{+}$,

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A \leq k$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

We will deal with the last one.

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=1=\binom{v}{a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=1=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=2=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=3=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a} & =2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6 & =\binom{v}{b b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=1=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=2=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=3=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
&\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
&\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=1=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=2=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=3=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=4=\binom{v}{b a} .
\end{aligned}
$$

Some properties

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Some properties

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Proposition

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Some properties

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Proposition

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Definition (Reminder)

The words u and v are 1-abelian equivalent if

$$
\binom{u}{a}=|u|_{a}=|v|_{a}=\binom{v}{a} \forall a \in A .
$$

k-binomial complexity

Definition

If w is an infinite word, we can define the function

$$
\mathbf{b}_{w}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{w}(n) / \sim_{k}\right)
$$

which is called the \mathbf{k}-binomial complexity of \mathbf{w}.

k-binomial complexity

Definition

If \mathbf{w} is an infinite word, we can define the function

$$
\mathbf{b}_{w}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{k}\right)
$$

which is called the k -binomial complexity of \mathbf{w}.
We have an order relation between the different complexity functions.

Proposition

$$
\rho_{\mathbf{w}}^{a b}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k+1)}(n) \leq p_{\mathbf{w}}(n) \quad \forall n \in \mathbb{N}, k \in \mathbb{N}^{+}
$$

where $\rho_{\mathbf{w}}^{a b}$ is the abelian complexity function of the word \mathbf{w}.

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

A famous word...

The k-binomial complexity function was already computed on some infinite words.

A famous word...

The k-binomial complexity function was already computed on some infinite words.
The classical Thue-Morse word, defined as the fixed point of the morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 \\
1 & \mapsto & 10
\end{array}\right.
$$

has a bounded k-binomial complexity.

A famous word...

The k-binomial complexity function was already computed on some infinite words.
The classical Thue-Morse word, defined as the fixed point of the morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 \\
1 & \mapsto & 10
\end{array}\right.
$$

has a bounded k-binomial complexity. The exact value is known.
Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Another family

Definition: Sturmian words

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Another family

Definition: Sturmian words

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)=n+1
$$

for all $n \in \mathbb{N}$ and for all $k \geq 2$.

Another family

Definition: Sturmian words

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)=n+1,
$$

for all $n \in \mathbb{N}$ and for all $k \geq 2$.
Since $\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k+1)}(n) \leq p_{w}(n)$, it suffices to show that

$$
\mathbf{b}_{\mathbf{w}}^{(2)}(n)=p_{\mathbf{w}}(n)
$$

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=\underline{0} 1 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=0 \underline{102} \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=010201 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=010 \underline{2} 010 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=0102 \underline{0} 1001 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=01020100102 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=010201 \underline{0} 010201 \cdots
$$

The Tribonacci word

From now, let $A=\{0,1,2\}$. Let us define the Tribonacci word.
Definition
The Tribonacci word \mathcal{T} is the fixed point of the morphism

$$
\tau:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

We have

$$
\mathcal{T}=0102010010201 \cdots
$$

Plan
(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Its k-binomial complexity

The next result was first conjectured by Michel Rigo, and then proved.
Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)
For all $k \geq 2$, the k-binomial complexity of the Tribonacci word equals its factor complexity.

Its k-binomial complexity

The next result was first conjectured by Michel Rigo, and then proved.
Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)
For all $k \geq 2$, the k-binomial complexity of the Tribonacci word equals its factor complexity.

To show this result, it suffices to show that, for all $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
u, v \in \operatorname{Fac}_{\mathcal{T}}(n) \\
u \neq v
\end{array} \Rightarrow u \not \chi_{2} v .\right.
$$

Its k-binomial complexity

The Parikh vector of a word u is classicaly defined as

$$
\Psi(u):=\left(\binom{u}{0} \quad\binom{u}{1} \quad\binom{u}{2}\right)^{\top} \in \mathbb{N}^{3} .
$$

Its k-binomial complexity

The Parikh vector of a word u is classicaly defined as

$$
\Psi(u):=\left(\binom{u}{0} \quad\binom{u}{1} \quad\binom{u}{2}\right)^{\top} \in \mathbb{N}^{3} .
$$

Let us define the extended Parikh vector of a word u as

$$
\Phi(u):=\left(\binom{u}{0} \quad\binom{u}{1} \quad\binom{u}{2} \quad\binom{u}{00} \quad\binom{u}{01} \quad \ldots \quad\binom{u}{22}\right)^{\top} \in \mathbb{N}^{12} .
$$

Its k-binomial complexity

The Parikh vector of a word u is classicaly defined as

$$
\Psi(u):=\left(\binom{u}{0} \quad\binom{u}{1} \quad\binom{u}{2}\right)^{\top} \in \mathbb{N}^{3} .
$$

Let us define the extended Parikh vector of a word u as

$$
\Phi(u):=\left(\binom{u}{0} \quad\binom{u}{1} \quad\binom{u}{2} \quad\binom{u}{00} \quad\binom{u}{01} \quad \ldots \quad\binom{u}{22}\right)^{\top} \in \mathbb{N}^{12} .
$$

```
Remark
We have \(u \sim_{2} v \Leftrightarrow \Phi(u)=\Phi(v) \Leftrightarrow \Phi(u)-\Phi(v)=0\).
```


Plan

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Intuitive introduction to templates

We will be interested into values of $\Phi(u)-\Phi(v)$ for $u, v \in \operatorname{Fac}_{\mathcal{T}}$. We will thus express the difference using the notion of templates.

Intuitive introduction to templates

We will be interested into values of $\Phi(u)-\Phi(v)$ for $u, v \in \operatorname{Fac}_{\mathcal{T}}$. We will thus express the difference using the notion of templates.

Informally, we will associate to every pair of words several templates, which are 5-uples:

$$
A^{*} \times A^{*} \leadsto \mathbb{Z}^{12} \times \mathbb{Z}^{3} \times \mathbb{Z}^{3} \times A \times A
$$

Intuitive introduction to templates

We will be interested into values of $\Phi(u)-\Phi(v)$ for $u, v \in \operatorname{Fac}_{\mathcal{T}}$. We will thus express the difference using the notion of templates.

Informally, we will associate to every pair of words several templates, which are 5-uples:

$$
A^{*} \times A^{*} \leadsto \nless \mathbb{Z}^{12} \times \mathbb{Z}^{3} \times \mathbb{Z}^{3} \times A \times A
$$

We will restrict this relation to factors of \mathcal{T} :

$$
\mathrm{Fac}_{\mathcal{T}} \times \mathrm{Fac}_{\mathcal{T}} \longleftrightarrow \nVdash \mathbb{Z}^{12} \times \mathbb{Z}^{3} \times \mathbb{Z}^{3} \times A \times A
$$

Intuitive introduction to templates

We will be interested into values of $\Phi(u)-\Phi(v)$ for $u, v \in \operatorname{Fac}_{\mathcal{T}}$. We will thus express the difference using the notion of templates.

Informally, we will associate to every pair of words several templates, which are 5-uples:

$$
A^{*} \times A^{*} \text { «ぃ } \mathbb{Z}^{12} \times \mathbb{Z}^{3} \times \mathbb{Z}^{3} \times A \times A
$$

We will restrict this relation to factors of \mathcal{T} :

$$
\mathrm{Fac}_{\mathcal{T}} \times \mathrm{Fac}_{\mathcal{T}} \longleftrightarrow \mathbb{Z}^{12} \times \mathbb{Z}^{3} \times \mathbb{Z}^{3} \times A \times A
$$

There exists a strong link between this notion and our thesis:

$$
\begin{aligned}
\mathbf{b}_{\mathcal{T}}^{(2)}(n) & <p_{\mathcal{T}}(n) \\
& \Leftrightarrow \\
\exists(u, v) \in \operatorname{Fac}_{\mathcal{T}} \times \mathrm{Fac}_{\mathcal{T}} & \leftrightarrow[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b], a \neq b
\end{aligned}
$$

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathbf{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{*}: u=u^{\prime} a_{1}, \\
\exists v^{\prime} \in A^{*}: v=v^{\prime} a_{2}, \\
\Phi(u)-\phi(v)=d+P_{3}\left(D_{b} \otimes \psi(u)+\psi(u) \otimes D_{e}\right)
\end{array}\right.
$$

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{*}: u=u^{\prime} a_{1}, \\
\exists v^{\prime} \in A^{*}: v=v^{\prime} a_{2}, \\
\Phi(u)-\Phi(v)=d+P_{3}\left(D_{b} \otimes \psi(u)+\psi(u) \otimes D_{e}\right)
\end{array}\right.
$$

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathrm{d}, \mathrm{D}_{\mathrm{b}}, \mathrm{D}_{\mathrm{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{\prime} u=u^{\prime} a_{1}, \\
v^{\prime} \in A^{*}(u)-\Phi(v)=d+P_{3}\left(D_{b} \otimes \Psi(u)+\Psi(u) \otimes \mathrm{D}_{\mathrm{e}}\right),
\end{array}\right.
$$

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{\prime} u=u^{\prime} a_{1}, \\
v^{\prime} \in A^{*}(u)-\Phi(v)=\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \Psi(u)+\Psi(u) \otimes \mathbf{D}_{\mathbf{e}}\right),
\end{array}\right.
$$

where the matrix P_{3} is such that, for all $\mathbf{x} \in \mathbb{Z}^{9}, P_{3} \cdot \mathbf{x}=\left(\begin{array}{llll}0 & 0 & 0 & \mathbf{x}\end{array}\right)^{\top}$,

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$, $\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{\prime}: u=u^{\prime} x_{1} \\
\nabla(u)-\Phi(v)=\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \Psi(u)+\Psi(u) \otimes \mathbf{D}_{\mathbf{e}}\right),
\end{array}\right.
$$

where the matrix P_{3} is such that, for all $\mathrm{x} \in \mathbb{Z}^{9}, P_{3} \cdot \mathbf{x}=\left(\begin{array}{llll}0 & 0 & 0 & \mathbf{x}\end{array}\right)^{\top}$, and where \otimes is the usual Kronecker product: if $A \in \mathbb{Z}^{m \times n}$ and $B \in \mathbb{Z}^{p \times q}$,

$$
A \otimes B:=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right) \in \mathbb{Z}^{m p \times n q} .
$$

Templates: a formal definition

Definition

A template is a 5 -uple of the form $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ where $\mathbf{d} \in \mathbb{Z}^{12}$,
$\mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathbf{e}} \in \mathbb{Z}^{3}$ and $a_{1}, a_{2} \in A$.
The template t is said to be realizable by $(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ if

$$
\left\{\begin{array}{l}
\exists u^{\prime} \in A^{*}: u=u^{\prime} a_{1}, \\
\exists v^{\prime} \in A^{*}: v=v^{\prime} a_{2}, \\
\Phi(u)-\Phi(v)=\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \Psi(u)+\Psi(u) \otimes \mathbf{D}_{\mathbf{e}}\right),
\end{array}\right.
$$

where the matrix P_{3} is such that, for all $\mathbf{x} \in \mathbb{Z}^{9}, P_{3} \cdot \mathbf{x}=\left(\begin{array}{llll}0 & 0 & 0 & \mathbf{x}\end{array}\right)^{\top}$, and where \otimes is the usual Kronecker product: if $A \in \mathbb{Z}^{m \times n}$ and $B \in \mathbb{Z}^{p \times q}$,

$$
A \otimes B:=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right) \in \mathbb{Z}^{m p \times n q} .
$$

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Proof

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

```
Proof
\Leftarrow }\Leftarrow(u,v)\in(\mp@subsup{\operatorname{Fac}}{\mathcal{T}}{}\mp@subsup{)}{}{2}\mathrm{ realizing [0,0,0, a,b].
```


Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Proof

$\Leftarrow \exists(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$. So, $\Phi(u)-\Phi(v)=0$ and $u \neq v$.

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Proof

$\Leftarrow \exists(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$. So, $\Phi(u)-\Phi(v)=0$ and $u \neq v$.
$\Rightarrow \exists u=u_{1} \cdots u_{n}, v=v_{1} \cdots v_{n} \in \operatorname{Fac}_{\mathcal{T}}$ such that $u \neq v$ and $u \sim_{2} v$.

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Proof

$\Leftarrow \exists(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$. So, $\Phi(u)-\Phi(v)=0$ and $u \neq v$.
$\Rightarrow \exists u=u_{1} \cdots u_{n}, v=v_{1} \cdots v_{n} \in \operatorname{Fac}_{\mathcal{T}}$ such that $u \neq v$ and $u \sim_{2} v$.
Let $i \in\{1, \ldots, n\}$ be such that $u_{i} \neq v_{i}, u_{i+1}=v_{i+1}, \ldots, u_{n}=v_{n}$.

Why are templates useful?

Theorem

There exists $n \in \mathbb{N}$ such that

$$
\mathbf{b}_{\mathcal{T}}^{(2)}(n)<p_{\mathcal{T}}(n)
$$

if and only if at least one template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$ is realizable by a pair of factors of \mathcal{T}.

Proof

$\Leftarrow \exists(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$ realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$. So, $\Phi(u)-\Phi(v)=0$ and $u \neq v$.
$\Rightarrow \exists u=u_{1} \cdots u_{n}, v=v_{1} \cdots v_{n} \in \operatorname{Fac}_{\mathcal{T}}$ such that $u \neq v$ and $u \sim_{2} v$.
Let $i \in\{1, \ldots, n\}$ be such that $u_{i} \neq v_{i}, u_{i+1}=v_{i+1}, \ldots, u_{n}=v_{n}$.
Then $\left(u_{1} \cdots u_{i}, v_{1} \cdots v_{i}\right)$ realizes $\left[\mathbf{0}, \mathbf{0}, \mathbf{0}, u_{i}, v_{i}\right]$, because $u \sim_{2} v \Rightarrow u_{1} \cdots u_{i} \sim_{2} v_{1} \cdots v_{i}$.

Using this result

We want to verify that $\forall(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$, the pair (u, v) doesn't realize any template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$.

Using this result

We want to verify that $\forall(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$, the pair (u, v) doesn't realize any template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$.

There exists an infinite number of pairs to check. Hopefully, we have an interesting result:

Using this result

We want to verify that $\forall(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$, the pair (u, v) doesn't realize any template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$.

There exists an infinite number of pairs to check. Hopefully, we have an interesting result:

Let us suppose that there exists a pair (u, v) realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ and let fix $L>0$. Then,

- either $\min (|u|,|v|) \leq L$, or
- there exists an ancestor template of $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ which is realized by a pair of words $\left(u^{\prime}, v^{\prime}\right)="\left(\left(\tau^{-1}\right)^{j}(u),\left(\tau^{-1}\right)^{j}(v)\right)^{\prime}$ such that $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.

Using this result

We want to verify that $\forall(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$, the pair (u, v) doesn't realize any template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$.

There exists an infinite number of pairs to check. Hopefully, we have an interesting result:

Let us suppose that there exists a pair (u, v) realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ and let fix $L>0$. Then,

- either $\min (|u|,|v|) \leq L$, or
- there exists an ancestor template of $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ which is realized by a pair of words $\left(u^{\prime}, v^{\prime}\right)="\left(\left(\tau^{-1}\right)^{j}(u),\left(\tau^{-1}\right)^{j}(v)\right)^{\prime}$ such that $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.

Using this result

We want to verify that $\forall(u, v) \in\left(\operatorname{Fac}_{\mathcal{T}}\right)^{2}$, the pair (u, v) doesn't realize any template of the form $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ with $a \neq b$.

There exists an infinite number of pairs to check. Hopefully, we have an interesting result:

Let us suppose that there exists a pair (u, v) realizing $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ and let fix $L>0$. Then,

- either $\min (|u|,|v|) \leq L$, or
- there exists an ancestor template of $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ which is realized by a pair of words $\left(u^{\prime}, v^{\prime}\right)="\left(\left(\tau^{-1}\right)^{j}(u),\left(\tau^{-1}\right)^{j}(v)\right)^{\prime}$ such that $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.

Preimages

Example: intuitive definition
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot .
$$

Preimages

Example: intuitive definition
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot \ldots
$$

Let $u=2010102010$.

Preimages

Example: intuitive definition
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{0}^{\tau(2)} \cdot 01 \cdots
$$

Let $u=2010102010$.

Preimages

Example: intuitive definition
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{0}^{\tau(2)} \cdot 01 \cdots
$$

Let $u=2010102010$. The word $u^{\prime}=100102$ is a preimage of u.

Preimages

Example: intuitive definition
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{02}^{\tau(1)} \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{0}^{\tau(2)} \cdot 01 \cdots
$$

Let $u=2010102010$. The word $u^{\prime}=100102$ is a preimage of u.

Definition

Let u and u^{\prime} be two words. The word u^{\prime} is a preimage of u if

- u is a factor of $\tau\left(u^{\prime}\right)$, and
- u^{\prime} is minimal: for all factors v of u^{\prime}, u is not a factor of $\tau(v)$.

Preimages (continued)

A word can have several preimages.
Example
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot .
$$

Take $u=010$.

Preimages (continued)

A word can have several preimages.
Example
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdots
$$

Take $u=010$. It has 00,01 and 02 as preimages.

Preimages (continued)

A word can have several preimages.
Example
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{01}^{\tau(0)} \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdots
$$

Take $u=010$. It has 00,01 and 02 as preimages.

Preimages (continued)

A word can have several preimages.
Example
Recall that

$$
\mathcal{T}=\overbrace{01}^{\tau(0)} \cdot \overbrace{02}^{\tau(1)} \cdot 01 \cdot 0 \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdots
$$

Take $u=010$. It has 00,01 and 02 as preimages.

Preimages (continued)

A word can have several preimages.
Example
Recall that

$$
\mathcal{T}=01 \cdot 02 \cdot \overbrace{01}^{\tau(0)} \cdot \overbrace{0}^{\tau(2)} \cdot 01 \cdot 02 \cdot 01 \cdot 01 \cdot 02 \cdot 01 \cdot 0 \cdot 01 \cdots
$$

Take $u=010$. It has 00,01 and 02 as preimages.

Templates have parents...

We will now introduce the notion of parents of a template.
Theorem
Let t be a template and let (u, v) be a pair of factors realizing t. (resp., $\left.v^{\prime}\right)$ be a preimage of $u(r e s p ., v)$.
There always exists a template t^{\prime} which is realized by $\left(u^{\prime}, v^{\prime}\right)$. and which is, in some way, related to t.

$$
(u, v) \quad \quad \quad\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]=t
$$

Templates have parents...

We will now introduce the notion of parents of a template.
Theorem
Let t be a template and let (u, v) be a pair of factors realizing t. Let u^{\prime} (resp., v^{\prime}) be a preimage of u (resp., v).

$$
\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]=t
$$

Templates have parents...

We will now introduce the notion of parents of a template.

Theorem

Let t be a template and let (u, v) be a pair of factors realizing t. Let u^{\prime} (resp., v^{\prime}) be a preimage of u (resp., v).
There always exists a template t^{\prime} which is realized by $\left(u^{\prime}, v^{\prime}\right)$ and which is, in some way, related to t.
$\tau^{-1}\left(\begin{array}{ccc}\left(u^{\prime}, v^{\prime}\right) & {\left[\mathbf{d}^{\prime}, \mathbf{D}_{\mathbf{b}}^{\prime}, \mathbf{D}_{\mathbf{e}}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right]=t^{\prime}} \\ (u, v) & \\ & \\ & \end{array}\right.$

Templates have parents...

We will now introduce the notion of parents of a template.

Theorem

Let t be a template and let (u, v) be a pair of factors realizing t. Let u^{\prime} (resp., v^{\prime}) be a preimage of u (resp., v).
There always exists a template t^{\prime} which is realized by (u^{\prime}, v^{\prime}) and which is, in some way, related to t.

The template t^{\prime} is called a parent template of t.

Templates have parents...

Remark

- Since a word can sometimes have several preimages, a template can also have several parents.

Templates have parents...

Remark

- Since a word can sometimes have several preimages, a template can also have several parents.
- There exists a formula allowing to compute all parents of a given template.
.. and ancestors

Definition

Let t and t^{\prime} be templates. We say that t^{\prime} is an (realizable) ancestor of t if there exists a finite sequence of templates t_{0}, \ldots, t_{n} such that

$$
\left\{\begin{array}{l}
t_{0}=t^{\prime}, \\
t_{n}=t, \\
\forall i \in\{0, \ldots, n-1\}, t_{i} \text { is a (realizable) parent of } t_{i+1} .
\end{array}\right.
$$

The formal theorem

We can now state the formal theorem:

The formal theorem

We can now state the formal theorem:
Theorem
Let $L \geq 0$ be an integer, and let t be a template. If there exists a pair of factors (u, v) realizing t, then

The formal theorem

We can now state the formal theorem:
Theorem
Let $L \geq 0$ be an integer, and let t be a template. If there exists a pair of factors (u, v) realizing t, then

- either $\min (|u|,|v|) \leq L$

The formal theorem

We can now state the formal theorem:
Theorem
Let $L \geq 0$ be an integer, and let t be a template. If there exists a pair of factors (u, v) realizing t, then

- either $\min (|u|,|v|) \leq L$, or
- there exist an ancestor t^{\prime} of t, and a pair $\left(u^{\prime}, v^{\prime}\right)$ of factors realizing t^{\prime}, such that $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.

Plan

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
(2) State of the art
(3) Next result: the Tribonacci word
- Definition
- The theorem
- Introduction to templates and their parents
- Using templates to compute $\mathbf{b}_{\mathcal{T}}^{(2)}$

Verifying that no template $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ is realizable

To show that $\mathbf{b}_{\mathcal{T}}^{(2)}=p_{\mathcal{T}}$, we have to show that no template from

$$
T:=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}
$$

is realizable.

Verifying that no template $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ is realizable

To show that $\mathbf{b}_{\mathcal{T}}^{(2)}=p_{\mathcal{T}}$, we have to show that no template from

$$
T:=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}
$$

is realizable.
The following steps can be done using Mathematica:

Verifying that no template $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ is realizable

To show that $\mathbf{b}_{\mathcal{T}}^{(2)}=p_{\mathcal{T}}$, we have to show that no template from

$$
T:=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}
$$

is realizable.
The following steps can be done using Mathematica:
(1) We check that no pair of factors (u, v) with $\min (|u|,|v|) \leq L$ realizes a template of T.

Verifying that no template $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ is realizable

To show that $\mathbf{b}_{\mathcal{T}}^{(2)}=p_{\mathcal{T}}$, we have to show that no template from

$$
T:=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}
$$

is realizable.
The following steps can be done using Mathematica:
(1) We check that no pair of factors (u, v) with $\min (|u|,|v|) \leq L$ realizes a template of T.
(2) We compute all the ancestors of T and we check that none of them is realized by a pair $\left(u^{\prime}, v^{\prime}\right)$ with $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.

Verifying that no template $[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]$ is realizable

To show that $\mathbf{b}_{\mathcal{T}}^{(2)}=p_{\mathcal{T}}$, we have to show that no template from

$$
T:=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}
$$

is realizable.
The following steps can be done using Mathematica:
(1) We check that no pair of factors (u, v) with $\min (|u|,|v|) \leq L$ realizes a template of T.
(2) We compute all the ancestors of T and we check that none of them is realized by a pair $\left(u^{\prime}, v^{\prime}\right)$ with $L \leq \min \left(\left|u^{\prime}\right|,\left|v^{\prime}\right|\right) \leq 2 L$.
Problem: there exists an infinite number of ancestors.

Keeping a finite number of templates

Instead of computing all the ancestors of T, we will focus on the possibly realizable ones.

Keeping a finite number of templates

Instead of computing all the ancestors of T, we will focus on the possibly realizable ones.

The last step is thus to find necessary conditions on templates to be realizable.

Keeping a finite number of templates

Instead of computing all the ancestors of T, we will focus on the possibly realizable ones.

The last step is thus to find necessary conditions on templates to be realizable.

That will leave us with a finite number of candidates.
It is then possible to verify with a computer that, in fact, none of them is realizable by a pair (u, v) with $L \leq \min (|u|,|v|) \leq 2 L$.

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{lll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$.

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$. We have

$$
M_{\tau}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

because

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$. We have

$$
M_{\tau}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

because

$$
M_{\tau}^{\prime} \Psi(u)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
u \\
0 \\
0 \\
1 \\
1 \\
u \\
2
\end{array}\right)
$$

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$. We have

$$
M_{\tau}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

because

$$
M_{\tau}^{\prime} \Psi(u)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\binom{\left(\begin{array}{l}
u \\
0 \\
u \\
1 \\
u \\
2
\end{array}\right)}{2}=\binom{\binom{u}{0}+\left(\begin{array}{l}
u \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
u \\
0 \\
0
\end{array}\right)}{\binom{u}{1}}
$$

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$. We have

$$
M_{\tau}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

because

A matrix associated to τ

Let us consider the matrix associated to $\tau:\left\{\begin{array}{rll}0 & \mapsto & 01 ; \\ 1 & \mapsto & 02 ; \\ 2 & \mapsto & 0 .\end{array}\right.$ It has the property that, for all $u \in \operatorname{Fac}_{\mathcal{T}}, M_{\tau}^{\prime} \Psi(u)=\Psi(\tau(u))$. We have

$$
M_{\tau}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

because

We define its extended version M_{τ}, such that, for all $u \in \operatorname{Fac}_{\mathcal{T}}$, we have $M_{\tau} \Phi(u)=\Phi(\tau(u))$.

The extended version

We have

$$
M_{\tau}=\left(\begin{array}{lll|lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The extended version

We have

$$
M_{\tau}=\left(\begin{array}{lll|lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The extended version

We have

$$
M_{\tau}=\left(\begin{array}{lll|lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

The extended version

We have

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

The extended version

We have

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

The extended version

We have

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

The extended version

We have

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

The extended version

We have

For example, since $\tau(0)=01$ and 1 is present only in $\tau(0)$ while 0 occurs once in every $\tau(a)$,

$$
\binom{\tau(u)}{01}=\binom{u}{0}+\binom{u}{00}+\binom{u}{10}+\binom{u}{20} .
$$

About its eigenvalues

The Perron-Frobenius eigenvalue of M_{τ}^{\prime} is $\theta \approx 1.839$. The matrix M_{τ} has

- the eigenvalue θ once;
- the eigenvalue θ^{2} once;
- two pairs of complex conjugate eigenvalues of modulus in $] 1 ; \theta[$;
- a real eigenvalue of modulus less than 1 , of geometric multiplicity 2 ;
- two pairs of complex conjugate eigenvalues of modulus less than 1 .

About its eigenvalues

The Perron-Frobenius eigenvalue of M_{τ}^{\prime} is $\theta \approx 1.839$. The matrix M_{τ} has

- the eigenvalue θ once;
- the eigenvalue θ^{2} once;
- two pairs of complex conjugate eigenvalues of modulus in $] 1 ; \theta[$;
- a real eigenvalue of modulus less than 1 , of geometric multiplicity 2 ;
- two pairs of complex conjugate eigenvalues of modulus less than 1.

The bounds we will give on possibly realizable templates will concern projections of templates on the left eigenvectors associated to eigenvalues of modulus less than θ.

First restrictions

Theorem

Let λ be an eigenvalue of modulus less than 1 . Let \mathbf{r} be an associated eigenvector. If the template $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ is realizable, then

$$
\min _{\delta \in \Delta}\left|\mathbf{r} \cdot\left(\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \boldsymbol{\delta}+\boldsymbol{\delta} \otimes \mathbf{D}_{\mathbf{e}}\right)\right)\right| \leq 2 C(\mathbf{r}),
$$

where $C(\mathbf{r})$ is an easily computable constant such that, for all factors $w \in \operatorname{Fac}_{\mathcal{T}}$, we have

$$
|\mathbf{r} \cdot \Phi(w)| \leq C(\mathbf{r}) .
$$

First restrictions

Theorem

Let λ be an eigenvalue of modulus less than 1 . Let \mathbf{r} be an associated eigenvector. If the template $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ is realizable, then

$$
\min _{\boldsymbol{\delta} \in \Delta}\left|\mathbf{r} \cdot\left(\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \boldsymbol{\delta}+\boldsymbol{\delta} \otimes \mathbf{D}_{\mathbf{e}}\right)\right)\right| \leq 2 C(\mathbf{r}),
$$

where $C(\mathbf{r})$ is an easily computable constant such that, for all factors $w \in \operatorname{Fac}_{\mathcal{T}}$, we have

$$
|\mathbf{r} \cdot \Phi(w)| \leq C(\mathbf{r})
$$

For the sake of notations, we wrote

$$
\Delta=\left\{\left(\begin{array}{l}
\delta_{0} \\
\delta_{1} \\
\delta_{2}
\end{array}\right) \in[-1.5 ; 1.5]^{3}: \delta_{0}+\delta_{1}+\delta_{2}=0\right\}
$$

First restrictions

Theorem

Let λ be an eigenvalue of modulus less than 1 . Let r be an associated eigenvector. If the template $t=\left[\mathbf{d}, \mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathrm{e}}, a_{1}, a_{2}\right]$ is realizable, then

$$
\min _{\boldsymbol{\delta} \in \Delta}\left|\mathbf{r} \cdot\left(\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \boldsymbol{\delta}+\boldsymbol{\delta} \otimes \mathbf{D}_{\mathrm{e}}\right)\right)\right| \leq 2 C(\mathbf{r}),
$$

where $C(\mathbf{r})$ is an easily computable constant such that, for all factors $w \in \operatorname{Fac}_{\mathcal{T}}$, we have

$$
|\mathbf{r} \cdot \Phi(w)| \leq C(\mathbf{r})
$$

For the sake of notations, we wrote

$$
\Delta=\left\{\left(\begin{array}{l}
\delta_{0} \\
\delta_{1} \\
\delta_{2}
\end{array}\right) \in[-1.5 ; 1.5]^{3}: \delta_{0}+\delta_{1}+\delta_{2}=0\right\}
$$

Other restrictions

Theorem

Let λ be an eigenvalue of modulus in $] 1, \theta[$. Let \mathbf{r} be an associated eigenvector. If the template $t=\left[\mathbf{d}, \mathbf{D}_{\mathbf{b}}, \mathbf{D}_{\mathbf{e}}, a_{1}, a_{2}\right]$ is realizable by a pair (u, v) with $|u| \geq L$, then

$$
\begin{aligned}
& \left|\mathbf{r} \cdot P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \boldsymbol{\alpha}+\boldsymbol{\alpha} \otimes \mathbf{D}_{\mathbf{e}}\right)\right| \leq \\
& \qquad \frac{2 L-\sum_{i=1}^{3} \mathbf{d}_{i}}{L} C(\mathbf{r})+\max _{\boldsymbol{\delta} \in \Delta} \frac{\left|\mathbf{r} \cdot\left(\mathbf{d}+P_{3}\left(\mathbf{D}_{\mathbf{b}} \otimes \boldsymbol{\delta}+\boldsymbol{\delta} \otimes \mathbf{D}_{\mathbf{e}}\right)\right)\right|}{L},
\end{aligned}
$$

where $C(\mathbf{r})$ is an easily computable constant such that, for all factors $w \in \operatorname{Fac}_{\mathcal{T}}$, we have

$$
\frac{|\mathbf{r} \cdot \Phi(w)|}{|w|} \leq C(\mathbf{r})
$$

For the sake of notations, we wrote $\boldsymbol{\alpha}=\left(\begin{array}{lll}\alpha_{0} & \alpha_{1} & \alpha_{2}\end{array}\right)^{\top}$ the vector of densities of letters in \mathcal{T}.

Other restrictions

Theorem

Let λ be an eigenvalue of modulus in $] 1, \theta[$. Let r be an associated eigenvector. If the template $t=\left[\mathrm{d}, \mathrm{D}_{\mathbf{b}}, \mathrm{D}_{\mathrm{e}}, a_{1}, a_{2}\right]$ is realizable by a pair (u, v) with $|u| \geq L$, then

$$
\begin{aligned}
& \left|\mathbf{r} \cdot P_{3}\left(\mathrm{D}_{\mathrm{b}} \otimes \boldsymbol{\alpha}+\boldsymbol{\alpha} \otimes \mathrm{D}_{\mathrm{e}}\right)\right| \leq \\
& \qquad \frac{2 L-\sum_{i=1}^{3} \mathbf{d}_{i}}{L} C(\mathbf{r})+\max _{\boldsymbol{\delta} \in \Delta} \frac{\left|\mathbf{r} \cdot\left(\mathbf{d}+P_{3}\left(\mathrm{D}_{\mathrm{b}} \otimes \boldsymbol{\delta}+\boldsymbol{\delta} \otimes \mathrm{D}_{\mathrm{e}}\right)\right)\right|}{L}
\end{aligned}
$$

where $C(\mathbf{r})$ is an easily computable constant such that, for all factors $w \in \operatorname{Fac}_{\mathcal{T}}$, we have

$$
\frac{|\mathbf{r} \cdot \Phi(w)|}{|w|} \leq C(\mathbf{r})
$$

For the sake of notations, we wrote $\boldsymbol{\alpha}=\left(\begin{array}{lll}\alpha_{0} & \alpha_{1} & \alpha_{2}\end{array}\right)^{\top}$ the vector of densities of letters in \mathcal{T}.

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=T$ and seen $=\{ \}$

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents
- Keep, among them, only the ones that verify the previous theorems for all eigenvalues of modulus less than θ

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents
- Keep, among them, only the ones that verify the previous theorems for all eigenvalues of modulus less than θ
- Add them in toSee, if they are neither in toSee, nor in seen

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents
- Keep, among them, only the ones that verify the previous theorems for all eigenvalues of modulus less than θ
- Add them in toSee, if they are neither in toSee, nor in seen
- toSee $=$ toSee $\backslash\{t\}$ and seen $=$ seen $\cup\{t\}$

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents
- Keep, among them, only the ones that verify the previous theorems for all eigenvalues of modulus less than θ
- Add them in toSee, if they are neither in toSee, nor in seen
- toSee $=$ toSee $\backslash\{t\}$ and seen $=$ seen $\cup\{t\}$
- If the program stops, seen contains all the possibly realizable ancestors of T, which is a finite set

Final algorithm

Recall that we want to compute the ancestors of T and check that none of them is realized by a pair (u, v) with

$$
L \leq \min (|u|,|v|) \leq 2 L
$$

- Initialize toSee $=\mathrm{T}$ and seen $=\{ \}$
- While toSee $\neq\{ \}$, take a template $\mathrm{t} \in$ toSee
- Compute its parents
- Keep, among them, only the ones that verify the previous theorems for all eigenvalues of modulus less than θ
- Add them in toSee, if they are neither in toSee, nor in seen
- toSee $=$ toSee $\backslash\{t\}$ and seen $=$ seen $\cup\{t\}$
- If the program stops, seen contains all the possibly realizable ancestors of T , which is a finite set
- Check that none of them is realized by a pair (u, v) of factors of \mathcal{T} satisfying (\star)

Our implementation

In our implementation, we took $L=15$.
Computing all the possibly realizable ancestors gave us a list of 241544 elements, in more or less eight hours.

The program then checks in less than three hours that none of them is realized.

Our implementation

In our implementation, we took $L=15$.
Computing all the possibly realizable ancestors gave us a list of 241544 elements, in more or less eight hours.

The program then checks in less than three hours that none of them is realized.

Thus, no template from $T=\{[\mathbf{0}, \mathbf{0}, \mathbf{0}, a, b]: a \neq b\}$ is realizable.
That implies that $p_{\mathcal{T}}(n)=\mathbf{b}_{\mathcal{T}}^{(2)}(n)$ for all $n \in \mathbb{N}$.

Last remark

Remark (G. Richomme, K. Saari, L. Zamboni, 2010)

The necessary conditions we found are related to the 2-balancedness property of \mathcal{T}, and more precisely, to the fact that, for all $w \in \operatorname{Fac}_{\mathcal{T}}$ and for all $a \in\{0,1,2\}$,

$$
\left\|\left.w\right|_{a}-\alpha_{a} \mid w\right\|<1.5
$$

where $\alpha_{a}=\lim _{n \rightarrow+\infty} \frac{\left|w_{0} \cdots w_{n-1}\right|_{a}}{n}$ is the density of a in \mathcal{T}.

Last remark

Remark (G. Richomme, K. Saari, L. Zamboni, 2010)

The necessary conditions we found are related to the 2-balancedness property of \mathcal{T}, and more precisely, to the fact that, for all $w \in \operatorname{Fac}_{\mathcal{T}}$ and for all $a \in\{0,1,2\}$,

$$
\left\|\left.w\right|_{a}-\alpha_{a} \mid w\right\|<1.5
$$

where $\alpha_{a}=\lim _{n \rightarrow+\infty} \frac{\left|w_{0} \cdots w_{n-1}\right|_{a}}{n}$ is the density of a in \mathcal{T}.

To end with an open question...

Is it true that for every Arnoux-Rauzy word w, we have

$$
\mathbf{b}_{w}^{(k)}(n)=p_{w}(n)
$$

for all $n \in \mathbb{N}$ and for all $k \geq 2$?

Thank you!

