FIRST-PRINCIPLES STUDY OF PIEZOELECTRIC (Ba,Ca)(Ti,Zr)O₃ SOLID SOLUTIONS

Danila AMOROSO^{1,2}, Andres CANO² & Philippe GHOSEZ¹

¹ Theoretical Materials Physics, Q-MAT, CESAM, University of Liege (B5), B-4000 Liege, Belgium

² ICMCB, CNRS, University of Bordeaux, UPR 9048, F-33600 Pessac, France

EJD-FunMat Training School and Annual Meeting 2018 – Luxembourg, 18-23 March 2018

Because of the search of high-performing Pb-free piezoelectric materials *W. Liu et X. Ren* designed **BaTiO₃-CaTiO₃-BaZrO₃** pseudo-ternary system by discovering a large electromechanical response [*PRL* **103**, 257602 (2009)]

Great number of later experiments, but underlying physics still unclear

Step-by-step analysis via first-principles calculations based on DFT (GGA functional) to unravel microscopic mechanisms tuning ferroelectric properties in (Ba,Ca)(Ti,Zr)O₃

Parent Compounds : BaTiO₃ & CaTiO₃

LIÈGE université

Parent Compounds : BaTiO₃ & CaTiO₃

Solid Solution : BaTiO₃-doping with CaTiO₃

Two key mechanisms characterize (Ba,Ca)TiO₃

Solid Solution : BaTiO₃-doping with CaTiO₃

Solid Solution : (Ba,Ca)TiO₃

Solid Solution : (Ba,Ca)TiO₃

- → Emergence of monoclinic phases
- → Same values of P
- Enhanced piezo-response

R3m phase	d ₃₃ (pC/N)	d ₂₂ (pC/N)	d ₁₅ (pC/N)
B _{7/8} C _{1/8} TO	<u>1</u> 6	344	1455
BTO	15	76	270

Solid Solution : (Ba,Ca)TiO₃

> ArXiv.org > cond-mat > arXiv: 1801.08886

Parent Compounds : BaZrO₃

Two key factors characterize BaZrO₃

1)
$$t = \frac{(r_A + r_O)}{\sqrt{2}(r_B + r_O)} = 1 \longrightarrow$$
 A and B
fit ideal cubic perovskite

2) Repulsive Zr-O interaction \leftrightarrow Zr polar inactive

Solid Solution : BaTiO₃-doping with BaZrO₃

Zr introduces local break of correlated Ti-O-Ti-O chains sustaining BaTiO₃-polar distortion

Solid Solution : Ba(Ti,Zr)O₃

LAYERED

COLUMNAR ROCK-SALT

P₁₁₀

P₁₀₀

Solid Solution : Ba(Ti,Zr)O₃

(1-y)BaTiO₃ + (y)BaZrO₃

Zr-Ti correlation globally weakens $BaTiO_3$ -like polar distortion with increasing *y* . . .

. . .But, can the Zr-Ti correlation locally make Zr polar active?

BaZrO₃/*m*BaTiO₃ system : Ti – Zr correlation

1x2xL

2x2xL

BaZrO₃/*m*BaTiO₃ system : Ti – Zr correlation

 $P_{BZO}=P_{BTO} \rightarrow zero$ electrostatic energy cost

Solid Solution : Ba(Ti,Zr)O₃

(1-y)BaTiO₃ + (y)BaZrO₃

Progressive weakening of ferroelectricity with increasing Zr-doping ↓ y≈0.30 limit for ferroelectric BTZ HOWEVER Ferroelectric domains locally preserved in Ti-rich region via Ti-O-Ti-O and Zr-O-Ti-O-Ti-O dipoles

ArXiv.org > cond-mat > arXiv: 1801.08886

(Ba,Ca)TiO₃ & Ba(Ti,Zr)O₃ toward (Ba,Ca)(Ti,Zr)O₃

Appearance of different monoclinic phases *Cm*-like close in energy

Outlook: (Ba,Ca)(Ti,Zr)O₃

Can this landscape justify the enhanced piezoelectricity in BCTZ with low Ca- and Zr- concentration?

Part 1 on ArXiv.org > cond-mat > arXiv: 1801.08886

Outlook: (Ba,Ca)(Ti,Zr)O₃

Can this landscape justify the enhanced piezoelectricity in BCTZ with low Ca- and Zr- concentration?

Thank you for your attention

Parent Compounds : BaTiO₃

Two key factors characterize BaTiO₃

1)
$$t = \frac{(r_A + r_O)}{\sqrt{2}(r_B + r_O)} > 1 \longrightarrow B$$
 too small

2) Destabilizing Ti-O interaction

Parent Compounds : BaTiO₃

BaTiO₃ ($a_c = 3.975 \text{ Å}$, t = 1.06)

cooperative atomic motions along correlated Ti-O-Ti-O chains [Ph. Ghosez *et al.*, *Ferroelectrics*, **206**, 205 (1998)]

3 polar states in the phase diagram with **stabilization** of the **R3m-phase**

Parent Compounds : CaTiO₃

Two key factors characterize CaTiO₃

1)
$$t = \frac{(r_A + r_O)}{\sqrt{2}(r_B + r_O)} < 1 \longrightarrow A \text{ too small}$$

2) Destabilizing Ca-O interaction

Parent Compounds : CaTiO₃

Spread energy landscape **CaTiO₃** ($a_c = 3.840 \text{ Å}$, <u>t = 0.97</u>) with paraelectric Pnma ground-state 900 750 **FE phases AFD** phases 600 Frequency (cm⁻¹) 450 0 -35 300 150 -70 0 -105 -150 -140(meV/f.u.) -300 -175 Х Μ Г R M -210 Ш -245 -280 -315 In-phase (+) Polar Out-of-phase (-) rotations -350 distortion rotations

Pm-3m P4mm Amm2 R3m P4/mbm I4/mcm R-3c Imma Pnma

Parent Compounds : CaTiO₃

(Ba,Ca)TiO₃ : VCA vs SUPERCELL

(Ba,Ca)TiO₃ : VCA vs SUPERCELL

Ba(Ti,Zr)O₃ : VCA vs SUPERCELL

Ba(Ti,Zr)O₃: VCA vs SUPERCELL

BaZrO₃/*m*BaTiO₃ system : Ti – Zr correlation

