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Abstract.  

In this paper, an active tuned inerter damper (ATID) is proposed and theoretically 

analysed. The proposed device is composed of a pair of collocated reactive actuator 

and force sensor. It is functioned by feeding back the output of the force sensor, 

through both single and double integrators to drive the actuator in order to 

destructively interfere with the host structure vibrations. The equivalent mechanical 

components for the single integrator and the double integrator are identified to 

correspond to a dashpot and an inerter, respectively. The ℋ∞ optimisation criterion 

is used for tuning the ATID, and closed-form expressions for the feedback gains are 

derived. Although the ATID is considered as an active approach, it is found that the 

stability of the proposed device is guaranteed because of its full analogy with a 

mechanical network.     
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1. Introduction 

Tuned mass dampers (TMDs) have been widely used to suppress undesirable vibrations of various 

types of mechanical structures such as machinery, helicopters, bridges, buildings, etc. The most 

generic form of a TMD is an auxiliary system which consists of a proof mass and a spring-dashpot 
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pair. The weight of the proof mass of TMDs is particularly important as it ultimately determines 

the vibration reduction performance of TMDs [1], where better control performance comes with a 

heavier proof mass. However, the added mass may be penalising in light weight applications, e.g. 

automotive and aerospace structures. In this context, the advantage of inerters is that their inertance 

can be significantly greater than their actual mass[2]. The inerter was initially proposed to complete 

the synthesis between the mechanical and electrical networks, where the effect of inerters on the 

dynamic behaviour of mechanical systems is designed to be similar to that of electrical capacitors 

in electrical systems [3]. It is defined as a one-port mechanical element which impedes the relative 

acceleration across its terminals [2,3]. Passive spring-damper-inerter systems have been studied 

mainly in the field of vibration isolation [4–6], and lead to a successful implementation in Formula 

One racing car suspension systems[3]. Inerter-based damper systems have also been proposed 

recently as an alternative to TMDs for passive vibration mitigation in [7], with the advantage that 

the realised equivalent mass ratio (inertance over primary structure mass) is greater than its actual 

mass ratio, leading to higher performance for the same effective mass. Alongside the applications 

for passive vibration damping and isolation, Zilletti [8] and Alujevic et al. [9] indicated that inerters 

can also be useful for further improvement of the performance of the traditional active vibration 

absorption and isolation systems in terms of the stability, robustness and vibration suppression 

capabilities. It was reported by Zhang et al. that the performance of nonlinear energy sinks in terms 

of vibration absorption can be further improved by integrating inerters into the design [10].    

Several mechanical forms have been proposed to realise inerters in practice such as rack and pinion 

based inerters [2], ball and screw based inerters [3] and hydraulic inerters [11,12]. However, some 

imperfections due to the mechanical construction will be inevitably present preventing them to act 

as idealised inerters. For instance, the performance of rack and pinion and ball-screw inerters may 

degrade because of the friction and backlash or elastic effect of gears or screws [13], and hydraulic 

inerters may exhibit some nonlinear damping in addition to the inertance-like behaviour [11].     

In order to address the aforementioned problems associated with passive inerters, the potential of 

using active tuneable inerter-dampers (ATID) has been investigated. Høgsberg et.al. [14] proposed 

to realise active inerter-damper systems using reactive actuators and force sensors. Reactive 

actuators are referred to as vibration actuators that are often used for smart structure applications, 

such as moving coil electrodynamic, magnetostrictive, piezoelectric, variable reluctance actuators, 

etc. They are typically embedded in the structures, which is different to inertial actuators where 

vibration actuators act against an inertial mass [15,16]. By feeding back the output of the force 

sensor through a resonant controller to derive the actuator, the proposed device behaves 

equivalently to a parallel connected inerter-damper-spring system. Another type of resonant 

controller, termed   controller, was investigated [17,18] for closing the loop between the force 

actuator and the force sensor, aiming to further improve the performance of the traditional active 

damping strategies, however the physics behind this controller was not yet fully interpreted. For 

both types of controllers, the corresponding controller parameters were optimised using the 
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maximum damping criterion. In this paper, the   controller is simplified to a combination of a 

single integrator and a double integrator; the corresponding active device is shown to be 

dynamically identical to a serially connected inerter-damper pair. An ℋ∞ optimisation criterion is 

employed to derive the optimal parameters of the proposed ATID and the mechanical equivalent 

of the components in the proposed controller are explicitly discussed in order to provide more 

insights.  

The paper is structured into 4 sections. Section 2 illustrates the working principle of the proposed 

ATID. In Section 3, the ATID is mounted into a single-degree-of-freedom (SDOF) system, based 

on which the closed-form optimal feedback gains for implementing the ATID are derived using the 

ℋ∞ optimisation criterion. Section 4 draws the conclusions. 

2. Active tuned inerter-damper 

The proposed ATID is schematically shown in Fig. 2 (a). The system comprises a reactive actuator 

with its stiffness denoted by 
ak  and a collocated force sensor which measures the actual force, 

represented by 
sF , transmitted to the structure. In this paper, idealised force sensors and reactive 

actuators are assumed where their internal dynamics are entirely neglected. The active control loop 

is implemented by feeding the output of the force sensor 
sF  through a controller  sC F  to drive 

the actuator which generates the resultant control force denoted by aF : 

  
0 0 0

t t t

a s s s d sF C F g F dt g F dtdt        (1) 

 where sg  and dg  represent the feedback gains of the single integrator the double integrator, 

respectively.  

The governing equations of the ATID read: 

 sF F    (2) 

 
s a aF F k x     (3) 

where x  represents the relative displacement between the two terminals of the device and F  is 

the force applied on the ATID.   

Substituting Eq. (1) into Eq. (3) and transforming the resulting equation into Laplace domain, one 

obtains, 

  
 

 

2

s d s d

a a a a

V s s g s g g gs
Y s

F s k s k k k s

  
       (4) 

where  Y s  is defined as the driving point mobility of system seen from its terminals,  V s  and 

 F s  are the relative velocity and the applied force in the Laplace domain, and s  represents the 

Laplace variable.  
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The moduli and phases of the driving point mobility of the ATID Y  and its three dependencies are 

plotted in Fig. 1, where the following parameters are used, 1ak  , 1sg   and 100dg  . It can be 

seen that each individual term (from left to right) on the right hand side of Eq. (4) corresponds to 

the definition of the mobility of the mechanical element spring, damper and inerter respectively. 

This indicates that the proposed system with its port mobility defined by Eq. (4) can be alternatively 

realised by a pure mechanical network composed by a spring, a dashpot and an inerter connected 

in series. This equivalent mechanical scheme is shown in Fig. 2 (b), where the equivalent damping 

coefficient ad  and the inertance am  can be expressed by: 

 a
a

s

k
d

g
   (5) 

 a
a

d

k
m

g
   (6) 

Using Eqs. (5) and (6), the desired value of the equivalent damping and inertance can be obtained 

by adjusting the feedback gains sg  and dg  with respect to the actuator stiffness respectively.  

 

Fig. 1 Impedance characteristics as a function of frequency for 1ak  , 1sg   and 100dg  . 

It is also noted that the equivalent mobility of the ATID is frequency dependent. Below the 

frequency defined by dg   the ATID behaves similarly to an inerter whose inertance is determined 

by the feedback gain dg  as defined in Eq. (6). Above this frequency, it dynamics is dominated by 

the actuator spring. Around this frequency, an area is created where the ATID can impede the force 

transmission over its terminals and the minimal value of the modulus of Y  is determined by the 

feedback gain sg .  
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Fig. 2  (a) The scheme of the active tuned inerter damper and (b) its equivalent mechanical model. 

Moreover, it is also worth investigating the dynamic behaviour of the proposed ATID for some 

specific situations:  

 both 
sg  and 

dg  are set to zero (corresponding to no control), there will be no relative 

displacement over 
ad  and 

am  so that 
ak  represents the whole branch and the resultant 

system behaves as a spring;  

 when the condition 0sg   and 0dg   is established, the ATID can be considered as an 

inerter-spring system. At its resonance frequency, the total mobility will be equal to zero as 

shown in Fig. 1, meaning that there is no relative motion transmitted through the system 

regardless of the applied force. For harmonic disturbance suppression, such a system can 

be useful as it introduces an anti-resonance in the coupled system, like the inductance shunt 

circuit to piezoelectric systems [19];  

 on the other hand, when 0sg   and 0dg  , the system becomes a dashpot and a spring 

connected in series, which is also known as a relaxation damper. This system can provide 

vibration suppression over a broad frequency band;  

 finally, when at least one of the feedback gains approaches infinity, the mobility of the 

ATID is infinity (the corresponding impedance is zero) and no force is transmitted through 

this port element. 

3. ℋ∞ optimisation of active tuned inerter-damper 

An undamped, lumped parameter SDOF system as shown in Fig. 3 (a) is employed to illustrate 

how to tune the proposed ATID to reduce certain vibration metrics in the frequency band of interest. 

Its equivalent mechanical network is depicted in Fig. 3 (b). The SDOF system is defined through 

the mass 1m  and the suspension stiffness 
1k . It is excited by a disturbance force F . The ATID is 

placed in parallel with the passive spring 
1k .  

The dynamic equations of the system in Fig. 3 (a) are given: 
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 1 1 sm x k x F F     (7) 

 s a aF F k x    (8) 

In order to come to a more general formulation, the following parameters are introduced to 

normalise the system governing equations:  

 

1 1 2 1 1

0 0

1
1 2

1 1 1 1

, , , ,

, , ,

t t

s d

sn dna s d

t x x x F dtdt m x F k

k g gk
g g

m k

 

 
 

   

   

 
  (9) 
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Fig. 3 (a) The scheme of the system under investigation and (b) its equivalent mechanical model.  

Substituting Eqs. (1) and (9) into Eqs. (7) and (8), the equations of motion with the normalised 

parameters read: 

 1 1 2 dx x x x      (10) 

 
2 2 2 1 0sn dnx g x g x x       (11) 

The ℋ∞ optimisation criterion is employed to optimise the ATID aiming to minimise the maximum 

magnitude of the frequency response of the system under consideration. In this context, the 

magnitude of the normalised driving point receptance 1 dx x  is taken as the performance index. 

The normalised driving point receptance of the primary structure is calculated as: 

 
 

2

1

4 3 21

sn dn

sn dn sn dn
d

x s g s g

x s g s g s g s g

 


     
  (12) 

and the modulus of its frequency response function reads, 
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    

         
        

2 2
4 2

1

2 2 2
8 6 2

2 2 2
2 4

2

2 2 2 2 2 2

2 4 2 2 1

sn dn dn

sn dn dn dn snd

dn dn sn dn

g g g
x

x
g g g g g

g g g g

 

  

    



            

        



  (13) 

where s j  is the normalised frequency.  

As seen from Eq. (12), the control effectiveness of ATID is similar to that of a tuned mass damper 

from the mathematic point of view, where an additional zero is introduced to destructively interfere 

with the dynamics of the primary system. Following the ℋ∞ optimisation procedure, also known 

as the fixed point method, proposed by Den Hartog [1], the parameters of ATID are optimally tuned 

such that the responses at the fixed points are minimised. Fixed point refers to the frequency at 

which the magnitude of the driving point receptance of the primary structure is invariant in terms 

of the damping coefficient of the tuned mass damper or the control parameter sng  for ATID.  

The frequencies at which the fixed points occur can be calculated by differentiating Eq. (13) with 

respect to the damping coefficient, sng , and equating the derivative to zero, which yields: 

 
     

2 2

1

4 4 8 2 2 2

2

dn dn d

f

ng g g    


  



  (14) 

 
     

2 2

2

4 4 8 2 2 2

2

dn dn dn

f

g g g         
    (15) 

 3 0f    (16) 

In fact, the fixed point 3f  only exists for the cases when at least one of the two feedback is non-

zero and it can be neglected during the ℋ∞ optimisation process as it is basically invariant with 

respect to the parameters of ATID. The optimal dng  is thus set to equalise the resulting performance 

index as defined in Eq. (13) at the first two fixed points. This can be done by substituting Eqs. (14) 

and (15) into Eq. (13) and equating the resulting expressions for 0sng  , one obtains, 

 1
2

dn

optg


    (17) 

For the optimal sng , it is sought to make the performance index horizontally pass through the fixed 

points. Thus, two optimal damping coefficients associated with the two fixed points are obtained:    

 
 

1

3 2

2 2

sn

optg
 

   (18) 

 
 

2

3 2

2 2

sn

optg
 

   (19) 



 8 

The optimal sng  can be taken in practice by calculating the quadratic average of Eqs. (18) and (19), 

which is given by: 

 
   

2 2

1 2 3

2 2

sn sn

opt optsn

opt

g g
g


    (20) 

It should be noted that this approach is an empirical method as the resulting resonance points (the 

derivative of Eq. (13) with respect to   is equal to zero) do not necessarily coincide simultaneously 

with the corresponding fixed points. An exact solution for this problem was proposed in [20], with 

which the two resulting resonance points are equally damped. In this study this exact approach is 

not considered because this would result in very long and therefore rather impractical polynomial 

expressions. 

Up to now, only the stiffness ratio   is left un-optimised. The influence of the stiffness ratio   to 

the performance index 1 dx x  can be assessed by evaluating its response at the fixed points. This 

is carried out by substituting Eqs. (14) and (17) or Eqs. (15) and (17) into Eq. (13) for 0sng  , 

yielding the minimal maximum response: 

 1 2

d opt

x

x 
   (21) 

As shown in Eq. (21), the response at the fixed points is inversely proportional to the stiffness ratio 

 , indicating that a stiffer ATID is preferred in practice in order to achieve a better control 

performance. However the maximum value of   is limited by the constraint posed by Eq. (17), 

where the condition 2   should be valid in order to have a positive optimal feedback gain 
dng . 

This constraint can be better understood by looking at the evolution of the fixed point frequency 

2f  defined by Eq. (15), which is feedback gain 
dng  and stiffness ratio   dependent. Substituting 

the optimal value of 
dng  given by Eq. (17) into Eq. (15), it is noted that 2f  shifts to 3f  from the 

right hand side as   approaches 2 from the left hand side and the two fixed points merge together 

at the zero location for any value of   that is greater than 2. In such a scenario, there is only one 

tunable fixed point left which is located at 1f . Although the performance index at this fixed point 

1f  can be still further reduced, for example smaller than one, if a stiffer ATID is chosen as 

predicted by Eq. (21), this minimised maximum is no longer a global one as the value of the 

performance index at zero frequency remains equal to one. Therefore, for the cases where the 

stiffness of the ATID is greater than two times that of the passive spring, it is not necessary to 

include a double integrator into the controller  sC F  as a single integrator is already enough in the 

ℋ∞ norm sense to make the global minimal maximum to one.  

In practice, transducers with high stiffness, such as piezoelectric stack actuators, magnetostrictive 

actuators or electromagnetic actuators with large guiding stiffness, are preferred as this would allow 

for the achievement of a better control performance as illustrated in the text. However, it should be 
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argued that much more force would be then transmitted through the actuator in this case which 

might not be favoured in practice because of the potential failure problem.   

In addition, the stiffness ratio   can be also calculated by: 

 

2

0

2

0

1


  


  (22) 

where 0  and 0  correspond to the resonance frequencies of the system when the actuator is 

installed and removed respectively. In practice, 0  can be alternatively obtained by setting both 

feedback gains to zero and 0  by setting either one of the two gains to infinity. In this context, the 

condition 2   leads to a shift of the resonance frequency by 3  times. 

Although the optimal feedback gains given in Eqs. (17) and (20) are derived for a SDOF system, 

they can be also directly applied to multi-degree-of-freedom systems with well-separated modes in 

a manner analogous to classical TMDs [1] or piezoelectric shunts [21] using the modal information. 

For example, the stiffness ratio between the actuator and primary structure for a specific structural 

mode can be calculated by substituting the resonance frequencies associated with this mode when 

the control gains are set to zeros and infinity into Eq. (22). Afterwards, the optimal feedback gains 

can be obtained using the modal stiffness ratio. 

Considering that the proposed ATID is an active system, its stability needs to be addressed. 

Although it is guaranteed because of its full analogy with a mechanical network given idealised 

force sensors and actuators are employed, it is not clear what are the gain and the phase margins of 

the system if the optimal feedback gains are used. In the forthcoming part, the open loop gain of 

the active system    L G j C j    is derived to study these margins.  G j  and  C j  

represent the frequency response of the dimensionless sensor-actuator open loop transfer function 

and that of the dimensionless controller respectively, which are expressed as: 

  
2

2

1

1
G j




 

 
  (23) 

   2

sn dng g
C j

j
  

 
  (24) 

Substituting the optimal settings of 
sng  and 

dng  as given in Eq. (20) and Eq. (17) into Eq. (24), one obtains: 

 

2

2 2

1 1 3 2

1 2 2
L

j

 



   
         

  (25) 

Fig. 4 plots the frequency response function of the open loop gain L  as defined in Eq. (25) for four 

different stiffness ratios 0.1  , 0.5  , 1   and 1.5  . It shows that the phase margin 

increases with an increase in the stiffness ratio  . Thus, a greater value of the ratio   is preferred 

for better robustness in terms of the phase margin. For the case 0.1  , the phase margin is around 

20°, and it is increased to 70° for 1.5  . As the phase of the open loop gain is bounded between 
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-180° and 180°, the gain margin of the ATID is infinite. This also proves that the closed-loop 

system is unconditionally stable. 

  

Fig. 4 Frequency response of the open loop gain L   under the optimal feedback gains: unit gain 

crossover points (below the first anti-resonance frequency) are represented by circle points. 

In the following, numerical studies are performed to illustrate the control effectiveness of the ATID 

for the system. Fig. 5 shows the performance index 1 dx x  plotted against frequency for five 

different damping ratios defined as sn sn

optg g : 0, 1/4, 1, 4 and  , where the normalised gain for the 

double integrator dng  is set to its optimal value given in Eq.(17) and the stiffness ratio   is set to 

0.2. It can be seen that all the curves with different damping values intersect at two frequencies and 

only with the optimal damping the response at the two fixed frequencies becomes maximum.  
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Fig. 5 The normalised driving point receptance for different values of the feedback gain 
sng  where 

dng  is set to its optimal value given in Eq. (17) and   to be 0.2. 

 

Fig. 6 The normalised driving point receptance for different values of   where 
dng  is set to its 

optimal value given in Eq. (17) and 
sng to Eq. (20), as well as two benchmarks where sng  , 

0dng   and 1  , and 0sng  , 0dng   and 1  , respectively. 
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Fig. 6 compares the performance index 1 dx x  for five additional cases. In the first three cases, the 

stiffness ratio   is set to 0.01, 0.1 and 1, respectively and the control parameters dng  and sng  are 

updated for each case with their optimal values given by Eq. (17) and Eq. (20). As can be seen, the 

performance index 1 dx x  indeed decreases with an increase in the stiffness ratio as indicated by 

Eq. (21). With this respect, the parameter   can be understood to play the same role as the mass 

ratio of tuned mass dampers, where better performance comes with a greater value of this quantity. 

For the fourth case 3  , the control parameters dng  is set to 0 and sng  is tuned according to Eq. 

(18). It is seen that the global minimal maximum is located at zero frequency instead of that at the 

fixed point given in Eq. (14) as discussed earlier in the paper. For the cases where   is greater than 

2, the minimal maximum at the fixed point degrades to a local maximum. Two other benchmarks 

are also included where the performance index 1 dx x  is plotted for the following parameters: (i) 
sng  , 0dng   and 1  , and (ii) 0sng  , 0dng   and 1  , respectively. It is shown that the 

original undamped system with no control ( 0sng   and 0dng  ) becomes undamped again when 

the feedback gain sng  is set to infinity but with a shift of the resonance frequency. This is because 

for case (i) the impedance of the ATID is equal to zero such that no force will pass through the 

ATID as if it is removed from the system, while for case (ii) the ATID degrades to a spring causing 

the increase in the resonance frequency. In addition, one should also notice that the system becomes 

dynamically softer with the use of the ATID when at least one of the feedback gains is set to non-

zero values. This is caused by the fact that the installation of the ATID does not contribute to the 

static stiffness of the system. Chesné et.al. [18] proposed to include a high pass filter to the 

controller to compensate for the loss of the static stiffness. By doing so, it also facilitates the 

practical implementation of the ATID as over-amplifications of low frequency signals due to the 

use of the integrators could be avoided. However, its unconditional stability property is 

compromised as illustrated in [18]. 

Finally, the possible applications for the proposed device—Active Tuned Inerter-Damper should 

be stressed, which are mainly twofold: 1) for the inerter community: providing an alternative 

approach for the implementation of inerter-damper device, which were mainly realised passively; 

2) for the active damping community: promoting the employment of the proposed active controller 

over the classical IFF controller. The difference between the IFF controller and the proposed 

controller can be better illustrated with Fig. 2, where a relaxation damper is realised if IFF control 

(one single integrator) is applied while an inerter-damper (one single integrator and one double 

integrator) is realised if the apposed controller is applied. With the introduction of the inerter 

(double integrator), the control performance is improved in terms of suppression of vibration 

resonances compared to that with IFF controllers as it introduces an anti-resonance to the primary 

structure allowing a better interaction between the actuator and the primary structure as shown in 

Fig. 1. Moreover, the outperformance of the proposed controller is more pronounced for cases 

when soft actuators are used (the ratio between the actuator stiffness and the structure stiffness in 

the modal sense for a specific structural mode is low). This is in fact in a manner analogous to 
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tuned mass dampers and relaxation dampers, or resistance-inductance shunts and resistance shunts 

for piezoelectric structures. 

4. Conclusion 

This paper discusses an active inerter-damper system which can be realised using a pair of 

collocated reactive actuator and force sensor.  The corresponding controller consists of a single 

integrator and a double integrator. The equivalent mechanical models of the controller’s 

components are derived in order to better illustrate the coupling of the electrical controller with the 

mechanical system. Closed-form expressions are derived using the ℋ∞ optimisation criterion 

wherein the optimal feedback gains are achieved to minimise the maximal response of the driving 

point receptance of the system under consideration. It is shown that the control effectiveness of the 

ATID is similar to that of a TMD. The performance of TMDs is mainly limited by their proof mass 

while the performance of ATIDs is governed by their stiffness. For practical implements, a stiffer 

ATID is preferred also for the robustness considerations in terms of the phase margins. For the 

cases when the stiffness of the ATID is greater than two times of the passive spring of the host 

structure in the modal sense, it might not be necessary to include a double integrator into the active 

controller  sC F  as a single integrator is already enough to achieve the same control performance 

in terms of the ℋ∞ norm. Also, it would be feasible in practice to develop a collocated actuator-

force sensor pair together with the corresponding analogue electronic system in a compact fashion 

oriented for smart structure applications. 
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