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Abstract 
This paper investigates the potential of using positive position feedback control for the mitigation of 

nonlinear vibrations. Closed form expressions for the ℋ∞ optimal control parameters that minimize the 

maximal response of the structure are firstly derived for the linear case and then extended to the nonlinear 

case. The resonant vibration of a Duffing oscillator is considered to illustrate the proposed tuning of the 

optimal control parameters and the harmonic balance method is employed to approximate the analytical 

solutions. Numerical simulations are performed to demonstrate and validate the proposed method. 

1 Introduction 

Controlling nonlinear structural vibrations is becoming increasingly important in a number range of 

engineering applications such as aerospace, medicine and robotics, wherein lightweight materials are 

considered in the construction of systems in order to meet the increasing demand for fuel efficiency or 

smaller actuators [1], [2]. However, this will naturally lead to the fact that the resonances are lightly damped 

and to the presence of some geometric nonlinearities from large deformations. The resulting unwanted 

nonlinear vibrations thus become the main concern, limiting the success of these applications. One key 

characteristic of nonlinear vibrations is their frequency-energy dependence which in other words means that 

the frequency of the nonlinear oscillations depends intrinsically on the motion amplitudes [3]. As a 

consequence, the mature linear damping-enhanced approaches based on the superposition principle such as 

tuned mass dampers and piezoelectric shunting [4]–[6] (passive solutions) or direct velocity feedback, 

integral acceleration, positive position feedback (PPF) and force feedback controllers (active solutions) [7] 

are no longer effective in the presence of strong nonlinearities. In order to recover their control effectiveness 

for a large range of excitation levels, mechanisms that can deliver nonlinear reacting forces should be 

included in these linear approaches. For example, Agnes [8] suggested to integrate a positive or negative 

cubic spring into a linear vibration absorber for compensating the softening (hardening) nonlinear effect of 

the primary systems. Febbo and Machado [9] explored the potential of using a nonlinear absorber with the 

saturation nonlinearity for vibration mitigation of nonlinear primary oscillators. Habib et al. [3] reported 

that the mathematical form of the nonlinear vibration absorber should be the same as that of the primary 

nonlinear system such that the nonlinear vibration absorber behaves as a linear vibration absorber.  

In this study, a nonlinear positive position feedback (NPPF) controller as an extension of the classical PPF 

controller is investigated for the mitigation of Duffing oscillations. According to the similarity principle 

proposed by [10], the NPPF controller introduces a cubic term on top of the original PPF controller. The 

proposed nonlinear PPF controller is implemented by feeding the structural position directly to the nonlinear 

compensator, whose output is fed through a fixed gain positively back to the structure, thus achieving 

damping for a particular mode. In this sense, NPPF as well as PPF controllers would be well suited for the 
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applications where piezoelectric sensors and actuators are employed for vibration damping. This is because 

the voltage from the sensor is proportional to the strain of the attached structure, which can be directly 

measured to drive the strain-based piezoelectric actuators based on the NPPF or PPF controllers. 

Although some numerical and experimental implementations of the proposed NPPF control scheme may be 

found in the literature, limited investigation of the optimization the NPPF controller for the Duffing 

vibrations exists. In this paper, an ℋ∞ optimization criterion is used to optimize the NPPF controller, and 

accordingly the optimal parameters are set to minimize the maximum steady state response of the structure. 

The objective of the study is to understand its working principle and validate the control efficiency through 

a harmonic balance analysis. 

2 Mathematical model and ℋ∞ optimization 

2.1 Modeling 

The system under investigation is shown in Figure 1. The structure is modeled as an undamped single degree 

of freedom (dof) system, defined through a lumped mass 1m , a linear spring 1k  and a cubic spring 3k . It is 

excited by a harmonic force  cosdF F t . A force actuator with its stiffness 2k  is placed in parallel to 

the passive mount. The control loop is implemented by feeding the displacement of the lumped mass 1m

through a nonlinear controller  h x  to drive the actuator. 

The governing equations of the system read: 

  3

1 1 3 2cosd am x k x k x F t F k x       (1) 

  1aF g h x   (2) 

where 
aF  is the actuating force proportional to the driving signal, 1g  represents the feedback gain and 

 h x  is the NPPF controller.  

The NPPF controller is designed based on the principle of similarity, and consequently a cubic term is 

included in the linear PPF controller, yielding: 

 2 32a f a f a au u u u x        (3) 

where  au h x ,  , f  and   are controller parameters. 

In order to come to a more general formulation, the following parameters are introduced to normalize the 

system governing equations:  
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The equations of motion with normalized parameters can then be written as:  

  3

1 1 1 2 cosy y y gy        (5) 

 2 3

2 2 2 2 12 0y y y y y          (6) 

where   is the normalized frequency defined as 1   .  
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It is shown that the forcing amplitude appears only in the expression of the nonlinear coefficients. The ℋ∞ 

optimization criterion is employed to optimize the controller  h x  aiming to minimize the maximum 

magnitude of the frequency response of the system under consideration. In this context, the magnitude of 

the normalized driving point receptance 1y  is taken as the performance index.   
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Figure 1 The scheme of the system under consideration  

2.2 ℋ∞ optimization of linear PPF controller 

The system with a linear PPF controller is considered first. This is done by setting the parameter   in Eq. 

(5) equal to zero. The normalized driving point receptance of the primary structure is then given by: 
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where s j   is the Laplace variable and the magnitude of 1y  is calculated as: 
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From the mathematic point of view, the control effectiveness of a PPF controller according to Eq. (7) would 

be similar to that of a tuned Mass damper, where an additional zero is introduced to interfere with the 

resonance of the primary system aiming to reduce certain vibration metrics in the frequency band of interest. 

Following the ℋ∞ optimization procedure proposed by Den Hartog [4], the parameters of the linear PPF 

controller are optimally tuned such that the responses at the fixed points are minimized. Fixed point refers 

to the frequency location at which the magnitude of the driving point receptance of the primary structure is 

invariant in terms of the damping coefficient of the TMD or the parameter   of the PPF controller.  

The frequencies at which the fixed points occur can be calculated by differentiating Eq. (8) with respect to 

the damping coefficient,  , and equating the derivative to zero, which yields: 
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The optimal   is set to equalize the resulting performance index as defined in Eq. (8) at the two fixed 

points. This can be done by substituting Eqs. (9) and (10) into Eq. (8) and equating the resulting expressions 

for 0  , yields, 

 1opt    (11) 

For the optimal  , it is sought to make the performance index horizontally pass through the fixed points.  

Thus, two optimal damping coefficients associated with the two fixed points are obtained:    
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The optimal   can be taken in practice by calculating the average of Eqs. (12) and (13). It should be noted 

that this approach is an empirical method as the resulting resonance points (the derivative of (8) with respect 

to   is equal to zero) do not necessarily coincide simultaneously with the corresponding fixed points. An 

exact solution for this problem was proposed in [11], with which the two resulting resonance points are 

equally damped. In this study this exact approach is not considered because this would result in very long 

and therefore rather impractical polynomial expressions. 

Up to now, only the parameter g (normalized feedback gain) is left un-optimized for implementing the 

linear PPF controller. The function of the feedback gain g can be assessed by evaluating the magnitude of 

driving point receptance at the fixed points. This is done by substituting Eqs. (9) and (11) into Eq. (8) for 

0  , yields the minimal maximum response 

 1

2
mmy

g
   (14) 

As shown in Eq. (14), the minimal maximum response is inversely proportional to the gain g , indicating 

that the value of the feedback gain g  should be as high as possible without compromising the stability of 

the active system.  

The stability of an active system can be studied by applying the Routh-Hurwitz stability criterion to its 

closed loop characteristic equation [12]. The characteristic equation of the system can be formed as:   

 4 3 2

4 3 2 1 0 0A s As AA s A s      (15) 

where 0A , 1A , 2A , 3A  and 4A  are the corresponding coefficients of Laplace variable in the denominator 

of Eq. (7). 

The Routh-Hurwitz stability criterion states that the roots of the characteristic equation have negative real 

parts if and only if the following conditions are satisfied: 

 0 1 2 3 4, , , , 0A A A A A    (16) 

 2 3 1 4 0A A A A    (17) 

 2 2

1 2 3 1 4 0 3 0A A A A A A A     (18) 

It can be derived that the system is stable if and only if the gain g  is defined:  

 2g    (19) 

In the following, numerical studies are performed to illustrate the control effectiveness of the linear PPF 

controller for the system under consideration. Figure 2 shows the performance index 1y  plotted against 
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frequency for five different damping ratios defined as opt  : 0, 1/4, 1, 4 and  , where the control 

parameters   is set to its optimal value as given in Eq. (11) and the gain is set to 0.2. It can be seen that all 

the curves with different damping values intersect at two frequencies and only with the optimal damping 

the response at the two fixed frequencies become the maximum. One should also note that the system 

becomes dynamically softer with the application of PPF control as the control signal is positively 

proportional to the displacement of the system in the low frequency range whereas the PPF control 

effectiveness is similar to that of a negative spring. However, when the damping value approaches infinity, 

the stiffness softening effect disappears as the control action is lost. Figure 3 depicts the performance index 

1y  plotted against frequency for four different feedback gains namely g : 0, 0.01, 0.05, and 0.5, where the 

control parameters   and   are both set to their optimal values. As can be seen, the performance index 

indeed decreases with an increase in the gain as indicated by Eq. (14). With this respect, the feedback gain 

g  of the PPF controller can be understood to play the same role as the mass ratio between tuned mass 

dampers and host primary structures, where better performance comes with a large value of this quantity. 

However, the approximation errors induced by estimation of the damping parameter   is more pronounced 

with an increase in the feedback gain. In the same fashion, the response in the low frequency range will be 

more amplified because of the negative stiffness effect. Therefore, the maximum feedback gain g  under 

ℋ∞ optimization criterion is not only limited by the stability concern, but also by the amplification of the 

low frequency response.  

 

Figure 2 The driving point receptance under different active damping ratios 
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Figure 3 The driving point receptance under different feedback gains 

2.3 ℋ∞ optimization of nonlinear PPF controller 

In this subsection, ℋ∞ optimization of the nonlinear PPF controller is performed. Due to the cubic terms, no 

explicit solutions can be found for Eqs. (5) and (6). As reported in [13]–[15], harmonic solutions can be 

used to approximate the exact solutions with a good agreement. In the following, a pair of one-term harmonic 

balance approximation    1 1 1cos siny A B      and    2 2 2cos siny A B      is assumed as 

the solutions. Substituting the above ansatz into Eqs. (5) and (6), and applying the approximations 

   3cos 3 4cos     and    3sin 3 4sin    , then balancing cosine and sine terms, yields the 

system of polynomial equations: 

  2 2 2 2

1 1 2 1 1 13 / 4 1A A g A A A B          (20) 

  2 2 2 2

1 1 2 1 1 13 / 4 0B B g B B A B          (21) 

  2 2 2 2

2 2 1 2 2 2 22 3 / 4 0A B A A A A B              (22) 

  2 2 2 2

2 2 1 2 2 2 22 3 / 4 0B A B B B A B              (23) 

Up to now, it is still not possible to find explicit solutions of Eqs. (20)-(23), we thus expand the harmonic 

coefficients iA  and iB  into series with respect to the primary nonlinear coefficient  , i.e. 1 11 12A A A  , 

1 11 12B B B   , 2 21 22A A A   and 2 21 22B B B  .   

Substituting the above ansatz into Eqs. (20)-(23), and collecting the resulting expressions with respect to the 

order of the parameter  , then after omitting the expressions whose orders are higher than 
1 , yields:   

   2

21 11 11 1 0gA A A       (24) 

   2 3 2

22 12 11 11 11 121/ 4 4 4 3 / 4 3 0/ 4gA A A A B A       (25) 
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   2

21 11 11 0gB B B     (26) 

   2 2 3

22 12 11 11 11 121/ 4 4 4 3 / 4 4 03 /gB B A B B B       (27) 

    3 2 2 2

21 21 21 22 22 121/ 4 3 3 1/ 4 4 04 2A A B A B A           (28) 

  2 2

21 21 112 0A B A        (29) 

  2 2

21 21 112 0B A B        (30) 

    2 3 2 2

21 21 21 22 22 121/ 4 3 3 1/ 4 4 04 2A B B B A B           (31) 

Solving for ijA  and ijB  ( 1,2i  , 1,2j  ) from Eqs. (24)-(31), the resulting solutions are found to be in 

terms of the control gains  ,  , g  and the normalized frequency  . Due to the complexity, these 

expressions are not given here. Nevertheless, the absolute value of the normalized frequency response 

 1y  , namely the performance index, can be expressed as:  

      2 2 2 2 2

11 11 11 12 11 12 12 122Q A B A A B B A B          (32) 

Substituting Eqs. (9)-(13) into Eq. (32) and solving for   to maintain the equal peaks at the fixed points, 

yields 

  2 31 2

4 3
g g g      (33) 

In fact, Eq. (33) represents a simpler and more easily interpretable relation which is the Taylor series 

expansion of the exact solution with respect to the feedback gain g  given g  ≪ 1.  

Up to now, the derivation of the explicit expressions for forming the NPPF controller  h   is complete 

wherein the optimal control parameters are given in Eqs. (11), (12)-(13) and (33) respectively. Some 

numerical studies are performed to illustrate the control effectiveness of the NPPF controller for the system 

under consideration, where the feedback gain is set to 0.2 and the primary nonlinear coefficient   is varied 

between 0.0001 and 0.03. Substituting the optimal control parameters into Eqs. (5) and (6), the resulting 

nonlinear equations are computed using a path-following algorithm combining shooting and pseudo-

arclength continuation [12]. This algorithm provides a very accurate numerical solution to the equations of 

motion. Figure 4 (b) illustrates that the frequency response of the Duffing oscillator with the linear PPF 

controller is strongly detuned in the presence of strong nonlinearities i.e. 0.03  . Conversely, Figure 4 (a) 

shows that the nonlinear controller can compensate, to a certain extent, the detuned equal peaks for values 

of   ranging from 0.0001 to 0.03. Although the control effectiveness degrades in terms of the differences 

between the two peaks when   is large, Eq. (33) can be updated using approximated solutions with more 

harmonics. 
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                 (a) (b) 

Figure 4 The performance of the system under consideration where the feedback gain is set to 0.2 and the 

primary nonlinear coefficient   varies between 0.0001 and 0.03: (a) with NPPF controller and (b) with 

linear PPF controller (—:stable solution, --: unstable solution, : fold bifurcation, : Neimark-Sacker 

bifurcation) 

3 Conclusion 

A nonlinear active damping strategy based on positive position feedback is proposed. Closed-form 

expressions are derived using the ℋ∞ optimization criterion wherein the optimal control parameters are 

achieved to minimize the maximal response of the structure. The resonant vibration of a Duffing oscillator 

is considered to illustrate the proposed tuning of the optimal control gains and the harmonic balance method 

is employed to approximate the analytical solutions. With the proposed NPPF controller, it has been shown 

that the response around the resonance does not change substantially when the importance of the 

nonlinearity increases, which means that the response of the coupled system is almost proportional to the 

forcing amplitude, as it would be the case for a linear system.  
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