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Abstract 

In this paper, a nonlinear active damping strategy based on force feedback is proposed, 

where only the modal stiffness ratio of the system when the actuator is installed and removed 

is required to design an effective controller. Closed-form expressions are derived using the ℋ∞ 

optimization criterion wherein the optimal feedback gains are achieved to minimize the maxi-

mal response of the structure. The resonant vibration of a Duffing oscillator is considered to 

illustrate the proposed tuning of the optimal control gain and the harmonic balance method is 

employed to approximate the analytical solutions. It is shown that the amplitude of the reso-

nance peaks does not change substantially when the weight of the nonlinearity increases, which 

means that the response of the coupled system is almost proportional to the forcing amplitude, 

as it would be the case for a linear system. 

Keywords: Force feedback, ℋ∞ optimization, Nonlinear vibrations, Harmonic balance method, 

Closed-form. 

 Motivation  

Controlling nonlinear structural vibrations is becoming increasingly important for a various 

range of engineering applications such as aerospace, medicine and robotics, wherein light-

weight materials are considered in the construction of systems in order to meet the increasing 

demand for fuel efficiency or smaller actuators [1], [2]. However, this will naturally lead to the 

fact that the resonances are lightly damped and to the presence of some geometric nonlinearities 

from large deformations. The resulting unwanted nonlinear vibrations thus become the main 

concern, limiting the success of these applications. One key characteristic of nonlinear vibra-

tions is their frequency-energy dependence which in other words means that the frequency of 

the nonlinear oscillations depends intrinsically on the motion amplitudes [3]. As a consequence, 

the mature linear damping-enhanced approaches based on the superposition principle such as 

tuned mass dampers and piezoelectric shunting [4]–[6] (passive solutions) or direct velocity 

feedback, integral acceleration and force feedback controllers (active solutions) [7] are no 

longer remaining effective in the presence of strong nonlinearities.  

This paper investigates the potential of a nonlinear enhanced force feedback (EFF) control-

ler for the mitigation of nonlinear vibrations. One important issue with such a control system is 

how the physical properties of the actuator, for example its stiffness and the gain of the feedback 

loop, should be set to optimally control the vibrations of the host structure. An ℋ∞ optimization 

criterion is used to derive the optimal feedback gains of the EFF controller, and accordingly the 



optimal gain is set to minimize the maximum steady state response of the structure. The objec-

tive of the study is to understand its working principle and validate the control efficiency 

through a harmonic balance analysis. 

 Mathematical model and ℋ∞ optimization 

The system under investigation is shown in Figure 1. The structure is modeled as an un-

damped single degree of freedom (dof) system, defined through a lumped mass 
1m , a linear 

spring 1k  and a cubic spring 3k . It is excited by a harmonic force  cosdF F t . A force 

actuator with its stiffness 2k  is placed in parallel to the passive mount and a force sensor is 

mounted between the actuator and the structure to capture the force delivered by the actuator to 

the mass. The control loop is implemented by feeding the force sensor output through a novel 

nonlinear controller  sC F  to drive the actuator. 

The governing equations of the system read: 

  3

1 1 3 cosd sm x k x k x F t F      (1) 

   2s sF C F k x     (2) 

In a manner analogous to the nonlinear tuned mass damper proposed in [3], the nonlinear 

controller  C   is formed as         
3

1 2 3C g dt g dt g dt          in order to realize a virtual 

nonlinear tuned mass damper using force sensors. The ℋ∞ optimization criterion is employed 

to optimize the controller  C   aiming to minimize the maximum magnitude of the frequency 

response of the system under consideration. In this context, the magnitude of the driving point 

receptance x F  is taken as the performance index.   
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Figure 1 The scheme of the system under consideration 

Substituting the proposed form of  C   into Eqs. (1) and (2), and normalizing the resulting 

equations, yields: 

  3

1 1 1 2 cosy y y y         (3) 

 3

2 11 2 22 2 2 1 0y g y g y y y         (4) 
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where 
11 1 1

g g  , 2

22 2 1g g  , 
32

3 1dk F k  , 
3 3g k  , 

1 1 d
y x F , 2 1s dy F dt m F  , 

2 1k k  , 2

1 1 1k m  , 
1t   and 

1   . It is shown that the forcing amplitude appears 

only in the expression of the nonlinear coefficients.  

The next objective is to determine the optimal control parameters namely 
11g , 

22g  and   

in terms of the stiffness ratio   and the primary nonlinear coefficient  . Due to the cubic terms, 

no explicit solutions can be found for Eqs. (3) and (4). As reported in [8]–[10], harmonic solu-

tions can be used to approximate the exact solutions in a good agreement. In the following, a 

one-term harmonic balance approximation    1 1 1cos siny A B      and 

   2 2 2cos siny A B      is assumed as the solutions. Substituting the above ansatz into Eqs. 

(3) and (4), and applying the approximations    3cos 3 4cos     and 

   3sin 3 4sin    , then balancing cosine and sine terms, yields the system of polynomial 

equations: 

  2 2 2 2

1 1 2 1 1 13 / 4 1A A A A A B          (5) 

  2 2 2 2

1 1 2 1 1 13 / 4 0B B B B A B          (6) 

  2 2 2

2 11 2 1 22 2 2 2 23 / 4 0A g B A g A A A B            (7) 

  2 2 2

2 11 2 1 22 2 2 2 23 / 4 0B g A B g B B A B            (8) 

Up to now, it is still not possible to find explicit solutions of Eqs. (5)-(8), we thus expand 

the harmonic coefficients iA  and iB  into series with respect to the primary nonlinear coefficient 

 , i.e. 1 11 12A A A  , 1 11 12B B B   , 2 21 22A A A   and 2 21 22B B B  .   

Substituting the above ansatz into Eqs. (5)-(8), and collecting the resulting expressions with 

respect to the order of the parameter  , then after omitting the expressions whose orders are 

higher than 1 , yields:   

   2

11 21 11 1 0A A A        (9) 

   2 3 2

12 22 11 11 11 121/ 4 4 4 3 / 4 3 0/ 4A A A A B A        (10) 

   2

11 21 11 0B B B      (11) 

   2 2 3

12 22 11 11 11 121/ 4 04 4 3 / 4 3 / 4B B A B B B         (12) 

  2 3 2

22 11 22 21 21 21 12 22 221/ 4 3 3 0A g B A A B A g A           (13) 

  2

22 21 11 21 11 0g A g B A       (14) 

  2

22 21 11 21 11 0g B g A B       (15) 

  2 2 3

22 11 22 21 21 21 12 22 221 0/ 4 3 3B g A A B B B g B           (16) 

Solving for ijA  and ijB  ( 1,2i  , 1,2j  ) from Eqs. (9)-(16), the resulting solutions are found 

to be in terms of the control gains 11g , 22g ,   and the normalized frequency  . Due to the 



complexity, these expressions are not given here. Nevertheless, the absolute value of the nor-

malized frequency response  Q    between the response  x   and the applied force 

 cosdF   can be expressed as:  

      2 2 2 2 2

11 11 11 12 11 12 12 122Q A B A A B B A B          (17) 

It can be derived that there exists two fixed points for the linear system with the linear 

controller ( 0   and 0  ), meaning that the frequency response of the driving point re-

ceptance with different feedback gains intersects at two invariable frequency locations. The 

linear version of the proposed controller  C   ( 0  ) can be found in more details in [11]. 

With the ℋ∞ optimization criterion, the responses at the two fixed points are sought to be equal 

and maximized. The following optimal control gains have thus been obtained: 
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    (21) 

where 3/2 21 4 2 8 2 12 4P           and 3/2 22 4 2 8 2 12 4P          . 

Substituting Eqs. (18)-(21) into Eq. (17) and solving for   to remain the equal peaks at the 

fixed points, yields 

  3 22 3 99

2 256
  


      (22) 

In fact, Eq. (22) represents a simpler and more easily interpretable relation which is the 

Taylor series expansion of the exact solution with respect to the stiffness ratio   given   ≪ 1.  

Up to now, the derivation of the explicit expressions for forming the novel controller  C   

is complete wherein the optimal feedback gains are given in Eqs. (18), (19) and (22) respec-

tively. The control effectiveness of the proposed control strategy is checked for an example 

system where the stiffness ratio   is set to 0.1 and the primary nonlinear coefficient   is varied 

between 0.0001 and 0.008. Substituting Eqs. (18), (19) and (22) into Eqs. (3) and (4) for the 

different combinations of   and  , the resulting nonlinear equations are computed using a 

path-following algorithm combining shooting and pseudo-arclength continuation [12]. This al-

gorithm provides a very accurate numerical solution to the equations of motion. Figure 2 (b) 

illustrates that the frequency response of the Duffing oscillator with the linear controller is 

strongly detuned in the presence of strong nonlinearities i.e. 0.008  . Conversely, Figure 2 (a) 

shows that the nonlinear controller can compensate, to a large extend, the detuned equal peaks 

for values of   ranging from 0.0001 to 0.008. Although the control effectiveness degrades in 

terms of the differences between the two peaks when   is large, Eq. (22) can be updated using 
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approximated solutions with more harmonics. Another interesting observation is that the am-

plitude of the resonance peaks does not change substantially when   increases, which means 

that the response of the coupled system is almost proportional to the forcing amplitude, as it 

would be the case for a linear system. 

 

Figure 2 Frequency response of an example system where 0.1   and the primary nonlinear coefficient  var-

ies between 0.0001 and 0.008  

 Conclusions 

A nonlinear active damping strategy based on force feedback is proposed, where only the 

modal stiffness ratio of the system when the actuator is installed and removed is required to 

design an effective controller. Closed-form expressions are derived using the ℋ∞ optimization 

criterion wherein the optimal feedback gains are achieved to minimize the maximal response 

of the structure. The resonant vibration of a Duffing oscillator is considered to illustrate the 

proposed tuning of the optimal control gains and the harmonic balance method is employed to 

approximate the analytical solutions. It is shown that the amplitude of the resonance peaks does 

not change substantially when the weight of the nonlinearity increases, which means that the 

response of the coupled system is almost proportional to the forcing amplitude, as it would be 

the case for a linear system. 
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