

Investigation of stratospheric circulation using longlived tracers with WACCM, BASCOE CTM and a reanalysis of MLS observations

Daniele Minganti 14-05-2019 AGO PhD Day

Supervisor: Emmanuel Mahieu

Introduction: the <u>ACCROSS</u> project

(Atmospheric Composition and Circulation investigated with meteorological Reanalyses, Observational datasets and models for the Study of the Stratosphere and its changes)

Study the *stratospheric dynamics* using long-lived chemical *tracers* with models, reanalyses and observations.

Mahieu et al, Nature, 2014

HCl and age of air (theoretical measure of stratospheric transport) trends.

Chabrillat et al, ACP, 2018

Age of air air (theoretical measure of stratospheric transport) trends.

Introduction: the *Brewer-Dobson Circulation* (BDC)

Methods

Considered period: 2005-2015

 $X \rightarrow N_2O$

residual

- **WACCM** (Whole Atmosphere Community Climate Model version 4) (Marsh et al, JC, 2013).
- <u>ERAI</u> (Belgian Assimilation System for Chemical Observation Chemistry-Transport Model driven by ERA-Interim) (Errera et. al, ACP, 2008; Prignon et al, ACPD, 2019).
- JRA55 (BASCOE CTM driven by JRA-55) (Fujiwara et al, ACP, 2017).
- **MERRA2** (BASCOE CTM driven by MERRA2) (Fujiwara et al, ACP, 2017).
- **MERRA** (BASCOE CTM driven by MERRA) (Fujiwara et al, ACP, 2017).
- **BRAM2** (BASCOE Reanalysis of AURA MLS release 2, driven by ERA-Interim) (Fujiwara et al, ACP, 2017).

TEM (Transformed Eulerian Mean) analysis (Abalos et al, JAS, 2017):

$$\begin{split} & \left(\overline{\chi}_{t} \right) = \left[-\overline{v}^{*} \overline{\chi}_{y} \right] + \left(\rho_{0}^{-1} \cos \phi^{-1} \left(M^{(y)} \cos \phi \right)_{y} \right] + \left(-\overline{w}^{*} \overline{\chi}_{z} \right) + \left(\rho_{0}^{-1} \left(M^{(z)} \right)_{z} \right) + \left(\overline{P} - \overline{L} \right) + \left(\overline{\ell} - \overline{L} \right) + \left($$

TEM budget at 5 hPa

Black lines: zonal mean zonal wind contours from 0 to 50 m/s every 10 m/s.

Seasonal mean DJF

Seasonal mean JJA

Mean Annual cycle at 5 hPa

Standard deviation annual cycle at 5 hPa

Conclusions

- General agreement among the datasets through most of the stratosphere.
- BRAM2 annual cycle lies in the middle of the model spread for both *mixing* and *advection* for the considered regions.
- WACCM annual cycle presents differences with respect to the reanalyses in the mixing term (mostly) in the 80°-60° S latitudinal band at 5 hPa.
- WACCM shows smaller variability in the *advection* term in the Tropical regions at 5 *hPa*.
- Large residual are found in the SH JJA (not shown): probably non-physical reasons (spurious mixing in the reanalyses).
- Future research:
 - Further investigate the residual term.
 - Apply this analysis other datasets (reanalysis and newer version of WACCM).
 - Investigate inter-annual changes (variability).

References:

- Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, *Atmos. Chem. Phys.*, 11, 3937-3948, https://doi.org/10.5194/acp-11-3937-2011, 2011.
- Marsh, D.R., M.J. Mills, D.E. Kinnison, J. Lamarque, N. Calvo, and L.M. Polvani, 2013: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1
- Errera, Q., Daerden, F., Chabrillat, S., Lambert, J. C., Lahoz, W. A., Viscardy, S., Bonjean, S., and Fonteyn, D.: 4D-Var assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses, Atmos. Chem. Phys., 8, 6169-6187, https://doi.org/10.5194/acp-8-6169-2008, 2008.
- Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., ... & Homeyer, C. R. (2017). Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. *Atmospheric Chemistry and Physics*, 17(2), 1417-1452.
- Abalos, M., Randel, W. J., Kinnison, D. E., & Garcia, R. R. (2017). Using the artificial tracer e90 to examine present and future UTLS tracer transport in WACCM. *Journal of the Atmospheric Sciences*, 74(10), 3383-3403.
- Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F., ... & Franco, B. (2014). Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. *Nature*, *515*(7525), 104.
- Chabrillat, S., Vigouroux, C., Christophe, Y., Engel, A., Errera, Q., Minganti, D., ... & Mahieu, E. (2018). Comparison of mean age of air in five reanalyses using the BASCOE transport model. *Atmospheric Chemistry and Physics*, *18*(19), 14715-14735.
- Prignon, M., Chabrillat, S., Minganti, D., O'Doherty, S., Servais, C., Stiller, G., Toon, G. C., Vollmer, M. K., and Mahieu, E.: Improved FTIR retrieval strategy for HCFC-22 (CHCIF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-73, in review, 2019