Which method to measure GFR and in which clinical conditions?

Pierre Delanaye, MD, PhD Nephrology Dialysis and Transplantation University of Liège CHU Sart Tilman Liège BELGIUM

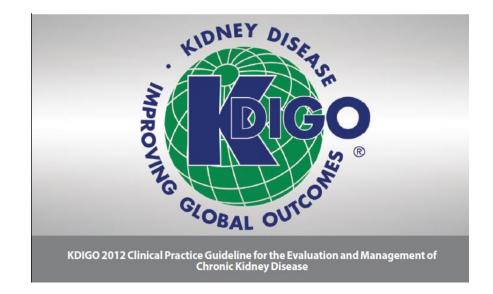
• WHY?

• How?

Limitations of eGFR = creatinine

Specific population: eGFR is not magic!! Keep our clinical feeling!!

Anorexia Nervosa (Delanaye P, Clin Nephrol, 2009, 71, 482) Cirrhotic (Skluzacek PA, Am J Kidney Dis, 2003, 42, 1169) Intensive Care (Delanaye P, BMC Nephrology, 2014, 15, 9) Severely ill (Poggio ED, Am J Kidney Dis, 2005, 46, 242) Heart transplanted (Delanaye P, Clin Transplant, 2006, 20, 596) Kidney transplantation (Masson I, Transplantation, 2013, 95, 1211) Obese (Bouquegneau A, NDT, 2013, 28, iv122) Elderly (Schaeffner E, Ann Intern Med, 2012, 157, 471) Hyperfiltration (Gaspari F, Kidney Int, 2013, 84, 164)


REVIEWS

The applicability of eGFR equations to different populations

Pierre Delanaye and Christophe Mariat

Today the true question is maybe not about which equation is the best but when measured GFR is required

Delanaye P, Nature Rev Nephrol, 2013, 9, 513

1.4.3.3: We recommend that clinicians (1B):

- use a GFR estimating equation to derive GFR from serum creatinine (eGFR_{creat}) rather than relying on the serum creatinine concentration alone.
- understand clinical settings in which eGFR_{creat} is less accurate.

Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Young women
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug
- EMA

Agarwal R, Nephrol Dial Transplant, 2019, in press

17 December 2015 EMA/CHMP/83874/2014 Committee for Medicinal Products for Human use (CHMP)

Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function

5.2. Measures of renal function

In order to have a reference measure of renal function that is independent of clinical practice at the time of conduct of the pharmacokinetic study, it is recommended that a method accurately measuring GFR using an exogenous marker is used to determine renal function in the subjects in the pharmacokinetic study, if possible.

Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Young women
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug
- EMA
- GFR follow-up

Agarwal R, Nephrol Dial Transplant, 2019, in press

Nephrol Dial Transplant (2018) 1–9 doi: 10.1093/ndt/gfy278

Performance of creatinine-based equations for estimating glomerular filtration rate changes over time

Marieke H.C. van Rijn^{1,2}, Marie Metzger², Martin Flamant^{3,4}, Pascal Houillier^{5,6,7}, Jean-Philippe Haymann^{8,9}, Jan A.J.G. van den Brand¹, Marc Froissart¹⁰ and Benedicte Stengel² on behalf of the NephroTest Study Group

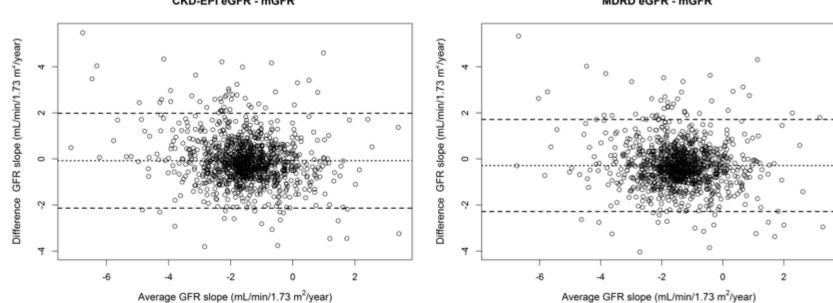
¹Department of Nephrology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ²CESP, INSERM, Université Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif, France, ³AP-HP, Hôpital Bichat, Paris, France, ⁴Centre de Recherche sur l'Inflammation, INSERM, Université Paris-Diderot, Paris, France, ⁵AP-HP, Hôpital Européen Georges Pompidou, Paris, France, ⁶INSERM UMRS, Centre de Recherche des Cordeliers, Paris, France, ⁷Faculté de Médecine, Université Paris Descartes, Paris, France, ⁸AP-HP, Hôpital Tenon, Paris, France, ⁹INSERM UMRS, Université Pierre et Marie-Curie, Paris, France and ¹⁰Clinical Research Center, Education and Research Department, CHUV – Unil, Lausanne, Switzerland

Correspondence and offprint requests to: Benedicte Stengel; E-mail: benedicte.stengel@inserm.fr

- Nephrotest Cohort
- ⁵¹Cr-EDTA
- 5324 mGFR in 1955 patients

	Mean \pm SD, median (IQR) or % (<i>n</i>)	Missing (n)	Range
Age (years)	58.7 ± 15.2		17-88
Women	33.1 (647)		
African origin	13.9 (259)	94	
Primary kidney disease			
DKD	10.0 (195)		
GN	14.1 (275)		
HT	26.0 (508)		
PKD	5.7 (111)		
TIN	9.0 (176)		
Other or undetermined	35.3 (692)		
Diabetes	27.5 (535)	7	
Hypertension	90.9 (1769)		
$BP \ge 140/90 \text{ (mm Hg)}$	36.4 (689)	62	
BSA (m ²)	1.83 ± 0.22		0.94-2.60
BMI (kg/m ²)			
<20	6.8 (132)		13-51
20-24	34.5 (676)		
25-29	37.3 (730)		
\geq 30	21.4 (419)		
ACR (mg/mmol)		55	0.1-879
3–29	33.8 (642)		
\geq 30	30.6 (582)		
mGFR (mL/min/1.73 m^2)	44.0 ± 19.0		15-135
CKD-EPI eGFR (mL/min/1.73 m ²)	46.4 ± 22.2		6.9-155
MDRD eGFR (mL/min/1.73 m ²)	44.5 ± 20.9		6.8-212
Follow-up (years)	3.4 (2.0-5.6)		0-13
Number of visits			1–13
1	40.7 (797)		
2	21.7 (424)		
3	12.7 (248)		
≥ 4	24.9 (488)		

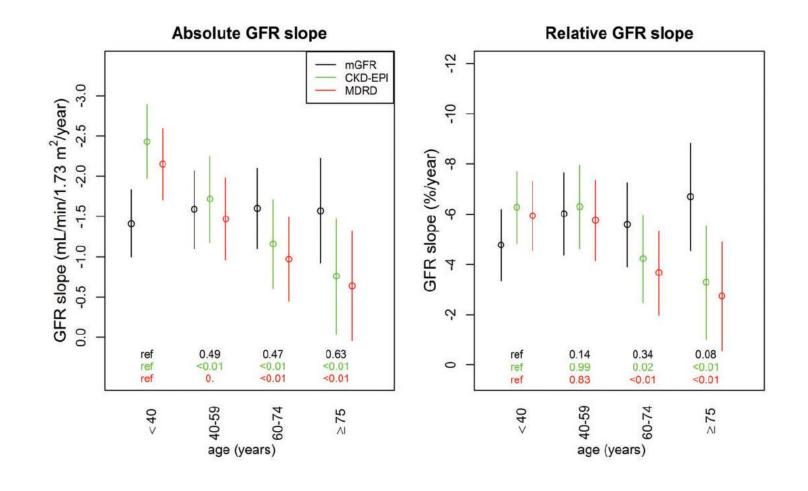
Absolute slope (mL/min/1.73 m²/year)	Mean ± SD	Bias ± SD
mGFR	-1.6 ± 1.2	
CKD-EPI eGFR	-1.5 ± 1.4	-0.1 ± 1.1
MDRD eGFR	-1.3 ± 1.3	-0.3 ± 1.0
FAS eGFR	-1.5 ± 1.0	-0.1 ± 1.0
Relative slope (%/per year)		
mGFR	-5.9 ± 5.3	
CKD-EPI eGFR	-5.3 ± 5.3	-0.5 ± 2.7
MDRD eGFR	-4.8 ± 5.2	-1.0 ± 2.7
FAS eGFR	-4.9 ± 4.3	-0.9 ± 2.7


Table 2. Mean GFR slopes and overall performance of estimating equations

P10, percentage of patients with eGFR slopes within 10% of the mGFR slope; P30, percentage of patients with eGFR slopes within 30% of the mGFR slope.

Table 2. Mean GFR slopes and overall performance of estimating equations

Absolute slope (mL/min/1.73 m ² /year)	Mean ± SD	Bias ± SD	95% LoA	P10 (%)	P30 (%)
mGFR	-1.6 ± 1.2				
CKD-EPI eGFR	-1.5 ± 1.4	-0.1 ± 1.1	-2.1-2.0	20	55
MDRD eGFR	-1.3 ± 1.3	-0.3 ± 1.0	-2.3-1.7	17	52
FAS eGFR	-1.5 ± 1.0	-0.1 ± 1.0	- 1.9 to -1.8	23	62
Relative slope (%/per year)					
mGFR	-5.9 ± 5.3				
CKD-EPI eGFR	-5.3 ± 5.3	-0.5 ± 2.7	-5.8 - 4.7	22	57
MDRD eGFR	-4.8 ± 5.2	-1.0 ± 2.7	-6.3 - 4.2	18	53
FAS eGFR	-4.9 ± 4.3	-0.9 ± 2.7	-6.1-4.3	23	59


P10, percentage of patients with eGFR slopes within 10% of the mGFR slope; P30, percentage of patients with eGFR slopes within 30% of the mGFR slope.

1 Supplementary Figure 2: Bland-Altman difference plots

CKD-EPI eGFR - mGFR

MDRD eGFR - mGFR

Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Young women
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug
- EMA
- GFR follow-up
- Clinical Research

Agarwal R, Nephrol Dial Transplant, 2019, in press

7-years

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Belatacept and Long-Term Outcomes in Kidney Transplantation

Flavio Vincenti, M.D., Lionel Rostaing, M.D., Ph.D., Joseph Grinyo, M.D., Ph.D., Kim Rice, M.D., Steven Steinberg, M.D., Luis Gaite, M.D.,
Marie-Christine Moal, M.D., Guillermo A. Mondragon-Ramirez, M.D.,
Jatin Kothari, M.D., Martin S. Polinsky, M.D., Herwig-Ulf Meier-Kriesche, M.D.,
Stephane Munier, M.Sc., and Christian P. Larsen, M.D., Ph.D.

Belatacept, a fusion protein composed of the Fc fragment of human IgG1 linked to the extracellular domain of cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), selectively inhibits T-cell activation through costimulation blockade.¹³⁻¹⁵ Belatacept was approved by the U.S. N Engl J Med 2016;374:333-43. DOI: 10.1056/NEJMoa1506027

No. at Risk

Belatacept MI	219
Belatacept LI	226
Cyclosporine	221

CONCLUSIONS

Seven years after transplantation, patient and graft survival and the mean eGFR were significantly higher with belatacept (both the more-intensive regimen and the less-intensive regimen) than with cyclosporine. (Funded by Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00256750.)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Costimulation Blockade with Belatacept in Renal Transplantation

Flavio Vincenti, M.D., Christian Larsen, M.D., Ph.D., Antoine Durrbach, M.D., Ph.D., Thomas Wekerle, M.D., Björn Nashan, M.D., Ph.D., Gilles Blancho, M.D., Ph.D., Philippe Lang, M.D., Josep Grinyo, M.D., Philip F. Halloran, M.D., Ph.D., Kim Solez, M.D., David Hagerty, M.D., Elliott Levy, M.D., Wenjiong Zhou, Ph.D., Kannan Natarajan, Ph.D., and Bernard Charpentier, M.D., for the Belatacept Study Group*

N Engl J Med 2005;353:770-81.

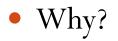

6-months mGFR by iohexol plasma clearance

Table 3. Renal Function and Histologic Findings	5.*		
End Point	Intensive Belatacept	Less-Intensive Belatacept	Cyclosporine
Measured GFR			
No. of patients	32	37	27
Mean GFR — ml/min/1.73 m²†	66.3±20.7	62.1±15.9	53.5±16.4
Difference from cyclosporine group — ml/min/1.73 m² (95% CI)	12.8 (2.9 to 22.7)	8.6 <mark>(</mark> .4 to 16.8)	—
Calculated GFR			
No. of patients	60	59	50
Mean GFR — ml/min/1.73 m²	72.4±22.5	73.2±22.5	68.0±28.1
Difference from cyclosporine group — ml/min/1.73 m² (95% CI)	4.4 <mark>(-5.2 to 14.0)</mark>	5.2 (–4.4 to 14.8)	_

Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, other therapies
- Young women
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug
- EMA
- Clinical Research
- GFR follow-up
- NO DEFINITIVE PROOF

Agarwal R, Nephrol Dial Transplant, 2019, in press

• HOW ?

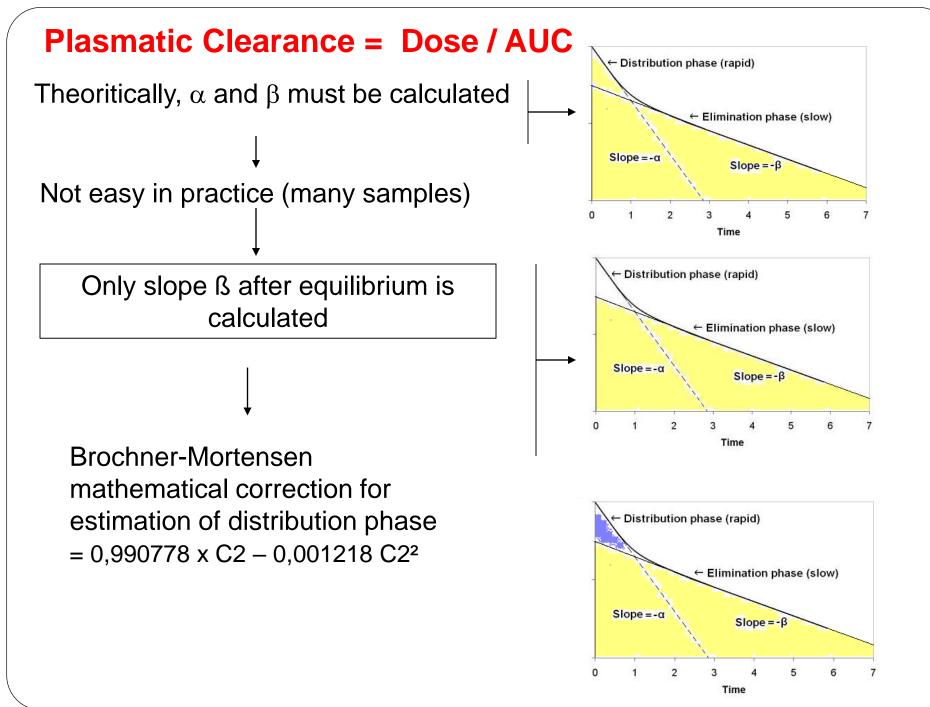
Renal function: concept of clearance

• <u>Clearance of a solute (ml/min)</u>:

volume of plasma cleared (« purified ») of this substance per time $Cl = [U] \ge [V] / [P]$

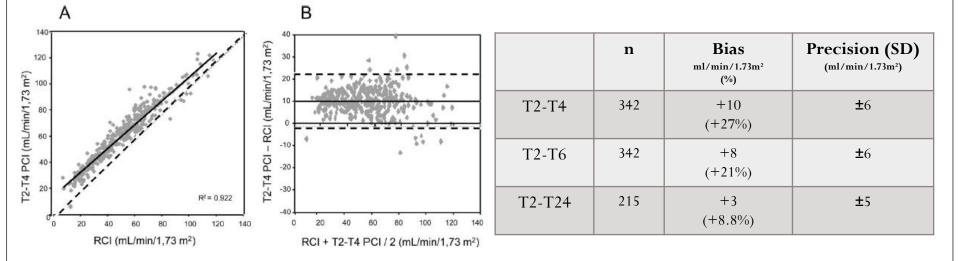
- Ideal marker for GFR:
 - No effect on GFR, non toxic
 - Not bound to protein, freely filtrated through glomerulus
 - No secretion, no absorption in the tubules
 - No extra renal clearance
 - Easy to measure

Markers	Strenghts	Limitations
Inulin		
Iothalamate		
Iohexol	*	
Ε <i>DT</i> A		
DTPA		


Different markers But how to use it??

• Urinary clearance

• Plasma clearance


Urinary clearance

- Constant infusion until equilibrium
- Measurement of plasma and urinary concentrations
- Urine collection (every 30 or 60 minutes) and measuring urinary flow
- To be repeated 3 or 4 times
- $Cl = [U] \times [V] / [P]$ (mean of 3 or 4 collections)

Evaluation of Sample Bias for Measuring Plasma Iohexol Clearance in Kidney Transplantation

Arnaud Stolz,¹ Guillaume Hoizey,² Olivier Toupance,¹ Sylvie Lavaud,¹ Fabien Vitry,³ Jacques Chanard,¹ and Philippe Rieu^{1,4,5}

Stolz A, Transplantation, 2010, 89, 440

Urinary and plasma methods: pro-con

- More physiological
- More costly
- More cumbersome
- Less precision, less repeatability (urine recolt!)
- Differences are systematic (bias)

Nephrol Dial Transplant (2018) 33: 1778–1785 doi: 10.1093/ndt/gfx345 Advance Access publication 8 January 2018

Single- versus multiple-sample method to measure glomerular filtration rate

Pierre Delanaye^{1,*}, Martin Flamant^{2,*}, Laurence Dubourg^{3,4}, Emmanuelle Vidal-Petiot², Sandrine Lemoine³, Etienne Cavalier⁵, Elke Schaeffner⁶, Natalie Ebert^{6,**} and Hans Pottel^{7,**}

¹Department of Nephrology, Dialysis, Transplantation, University of Liège (CHU ULg), Liège, Belgium, ²Department of Renal Physiology, DHU-FIRE, Hôpital Bichat, AP-HP, Inserm U1149, and Paris Diderot University, Sorbonne Paris-Cité, Paris, France, ³Néphrologie, Dialyse, Hypertension artérielle et Exploration fonctionnelle rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France, ⁴Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Lyon, France, ⁵Department of Clinical Chemistry, University of Liège (CHU ULg), Liège, Belgium, ⁶Charité University Hospital, Institute of Public Health, Berlin, Germany and ⁷Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium

Correspondence and offprint requests to: Pierre Delanaye; E-mail: pierre_delanaye@yahoo.fr *These authors equally contributed as first author.

**These authors equally contributed as last senior author.

Table 2. Comparison of concordance within 10% between the multiplesample and the single-sample method (at different time points) according to GFR levels (n = 5106)

GFR range (mL/min)	120 min (%)	180 min (%)	240 min (%)
$\leq 30 (n = 313)$	20.8	29.4	44.1
]30-45] ($n = 889$)	34.5	59.1	83.6
]45-60] ($n = 1205$)	56.5	85.5	96.9
[60-90] ($n = 1828$)	81.9	96.4	98.2
]90-130] ($n = 813$)	96.3	98.4	94.3
>130 (<i>n</i> = 58)	100	98.3	94.8

Table 4. Available procedures to perform iohexol clearance

Methodology	Indication in clinical practice	Indication in clinical research	Bibliographic examples where the procedure is described into details
Urinary clearance	Increased extracellular volume (oedema, ascites, intensive care units, etc.)	Basic (physiologic) studies Specific populations (cirrhotic, intensive care, nephrotic syndrome, oedema, etc.)	[36, 77, 125, 170]
Plasma clearance			
Multiple samples (first or fast, second or slow exponential curves and calculation of area under the curve)	High GFR values ('hyperfiltrating') subjects	Development of equations to estimate GFR Studies in hyperfiltrating patients	[52, 93, 171]
Multiple samples only for second and slow component (2 h after injection, 4 samples over 5 or 6 h, 1 sample/h) + BM correction	High precision determination (see text)	Development of equations to estimate GFR Clinical research with GFR as main endpoint	[126, 172]
Idem + late sample (8 h or 24 h)	Pre-dialysis subjects	Research in pre-dialysis subjects	[52, 77]
Simplified two or three sample method (2 samples: first at 2 or 3 h and second at 4 or 5 h) + BM correction	CKD or healthy population	Development of equations to estimate GFR Clinical research with GFR as a	[69, 116]
		secondary endpoint	
Simplified single-sample method + Jacobsson correction [110]	CKD or healthy population	Development of equations to estimate GFR Clinical research with GFR as a secondary endpoint Epidemiological research	[14, 173]

Suggestions (expert opinion-based) according to the clinical or experimental context.

GFR, glomerular filtration rate; CKD, chronic kidney disease; BM, Brochner-Mortensen correction [116].

Delanaye P, Clin Kidney J, 2016, 9, 700

Markers	Strength	Limitations
Inulin	"Gold standard" (or historical)	Costly No standardized dosage, not available in US Impossible for plasma clearance Anaphylactic shock

Markers	Strength	Limitations
Inulin	"Gold standard" (or historical)	Costly No standardized dosage, not available in US Impossible for plasma clearance Anaphylactic shock
Iothalamate	The most used in US Isotopic or "cold"	Tubular secretion Allergy Iodine

Markers	Strength	Limitations
Inulin	"Gold standard" (or historical)	Costly No standardized dosage, not available in US Impossible for plasma clearance Anaphylactic shock
Iothalamate	The most used in US Isotopic or "cold"	Tubular secretion Allergy Iodine
Iohexol	The most used in Europe Cold	Allergy Iodine

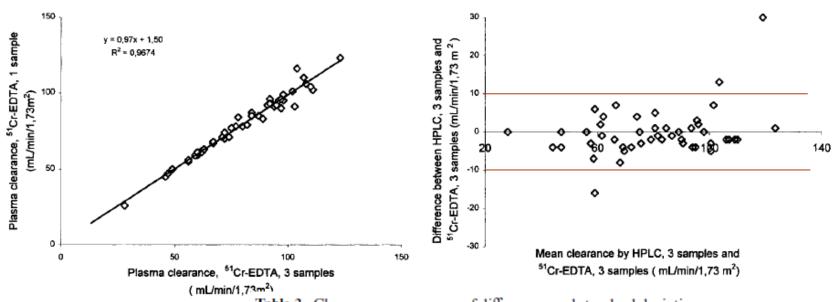
Markers	Strength	Limitations
Inulin	"Gold standard" (or historical)	Costly No standardized dosage, not available in US Impossible for plasma clearance Anaphylactic shock
Iothalamate	The most used in US Isotopic or "cold"	Tubular secretion Allergy Iodine
Iohexol	The most used in Europe Cold	Allergy Iodine
EDTA	Easy to measure	Only isotopic, costly Not available in USand in Europe!!

Markers	Strength	Limitations
Inulin	"Gold standard" (or historical)	Costly No standardized dosage, not available in US Impossible for plasma clearance Anaphylactic shock
Iothalamate	The most used in US Isotopic or "cold"	Tubular secretion Allergy Iodine
Iohexol	The most used in Europe Cold	Allergy Iodine
EDTA	Easy to measure	Only isotopic, costly not available in USand in Europe!!
DTPA	Easy to measure	Only isotopic Binding to proteins Costly

RAPID COMMUNICATION w

www.jasn.org

A Novel Method for Rapid Bedside Measurement of GFR


Dana V. Rizk,¹ Daniel Meier,² Ruben M. Sandoval,^{2,3} Teresa Chacana,¹ Erinn S. Reilly,² Jesse C. Seegmiller,⁴ Emmanuel DeNoia,⁵ James S. Strickland,² Joseph Muldoon,² and Bruce A. Molitoris ^{2,3}

¹Nephrology Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; ²FAST BioMedical, Carmel, Indiana; ³Nephrology Division, Department of Medicine, Indiana University, Indianapolis, Indiana; ⁴Advanced Research and Diagnostics Laboratory, University of Minnesota, Minneapolis, Minnesota; and ⁵ICON Early Phase Services LLC, San Antonio, Texas

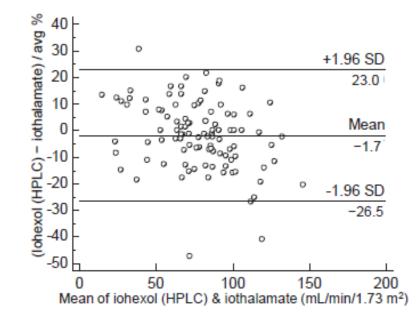
J Am Soc Nephrol 29: 1609–1613, 2018.

Are these markers equivalent?

EDTA versus iohexol

N=49

Table 3. Clearance range, mean of differences and standard deviation for multiple-point clearance and single-point clearance measurements


Clearance range	Differer (ml/min	
(ml/min)	Mean	SD

Multiple-point clearance: 3 samples 51C	r-EDTA vs	3 samples i	ohexol
⁵¹ Cr-EDTA vs HPLC	28-134	-0.16	6.17
⁵¹ Cr-EDTA vs X-ray fluorescence	29-134	0.58	4.95
Single-point clearance: 3 samples 51Cr-	EDTA vs 1	sample	
⁵¹ Cr-EDTA vs ⁵¹ Cr-EDTA	26-123	-0.7	3.59
⁵¹ Cr-EDTA vs HPLC	27-125	-1.7	5.94
⁵¹ Cr-EDTA vs X-ray fluorescence	32-116	-1.32	5.78

Brandstrom E, NDT, 1998, 13, 1176

Iothalamate versus iohexol

N = 102

Accuracy (concordance): within 30%: 98% within 15%: 80%

Delanaye, AJKD, 2016, 68, 329

AJKD Original Investigation

Measuring GFR: A Systematic Review

Inga Soveri, MD, PhD,¹ Ulla B. Berg, MD, PhD,² Jonas Björk, PhD,³ Carl-Gustaf Elinder, MD, PhD,⁴ Anders Grubb, MD, PhD,⁵ Ingegerd Mejare, PhD,⁶ Gunnar Sterner, MD, PhD,⁷ and Sten-Erik Bäck, MSc, PhD,⁵ on behalf of the SBU GFR Review Group*

	No. of Pts/ Studies	Median Bias* (95% CI)	Mean Bias (95 % Cl)	P ₃₀ (95% CI)	P ₁₀ (95% CI)	Sufficient Accuracy	Scientific Evidence	Comments ^b
Criteria for sufficient precision		≤±5%	≤±10%	≥80%	≥50%			
Index method DTPA								
Renal clearance	126/5	-2 (-4 to 2)	-1 (-6 to 5)	87 (81 to 93)	53 (45 to 62)	Yes	@@ OO	Inconsistency, -1; imprecision, -1
Plasma clearance ⁵¹ Cr-EDTA	89/2	20 (18 to 35)	13 (5 to 22)	56 (47 to 68)	19 (13 to 29)	No	⊕⊕00	Study limitations -1; imprecision -1
Renal clearance	198/9	-5 (-7 to -3)	-2 (-8 to 4)	95 (92 to 98)	56 (50 to 64)	Yes	@@@O	Imprecision, -1
Disema also mass	100/5	0 (1 to 0)	0 (1 to 15)	00 (00 to 00)	EQ (40 to EQ)	Vec	0000	Impresision, 1
Iohexol Renal clearance Plasma clearance	47/2 172/5	-7 (-10 to 0) 3 (0 to 6)	-7 (-16 to 2) 2 (-4 to 9)	100° 86 (81 to 91)	53 (41 to 70) 50 (43 to 58)	Yes Yes	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Imprecision, -2 Imprecision, -1
Renal clearance Plasma clearance	548/13 61/1	-1 (-2 to 0) 9 (0 to 15)	6 (1 to 11) 11 (-6 to 29)	97 (95 to 98) 82 (73 to 92)	66 (62 to 70) 33 (23 to 47)	Yes	⊕⊕⊕⊕ ⊕0000	Study limitations, -1; imprecision, -
Inulin Plasma clearance	39/2	2 (-3 to 6)	1 (-9 to 11)	100°	72 (59 to 87)	Yes	⊕⊕00	Imprecision, -1; indirectness, -1

Table 1. Bias and Accuracy of Index Methods Compared to Reference Method When Measuring Glomerular Filtration Rate

Note: Modified with permission of the Swedish Council on Health Technology Assessment.³ Accuracy and bias expressed as percentage. Renal inulin clearance served as reference method. Mean bias, P₁₀, and P₃₀ were estimated using generalized linear mixed models based on normal distribution (mean bias) or Poisson distribution (P₁₀, P₃₀; log-transformed outcome and robust variance estimation), with a random intercept for each study and a fixed effect for each index method ("unadjusted model results"; see Statistical Methods section). All analyses were weighed with respect to number of participants in each study. Estimates were obtained as marginal means.

Abbreviations and definitions: $\oplus \oplus \oplus \oplus$, strong evidence; $\oplus \oplus \oplus \oplus$, moderately strong evidence; $\oplus \oplus \oplus \oplus$, limited evidence; $\oplus \oplus \oplus \oplus \oplus$, insufficient evidence; ^{51}Cr -EDTA, chromium 51 –labeled ethylenediaminetetraacetic acid; DTPA, diethylenetriaminepentaacetic acid; CI, confidence interval; Imprecision, N < 100 in meta-analysis (-1), P₃₀ lower 95% CI \leq 80%, P₁₀ lower 95% CI \leq 50%, or median bias 95% CI \geq ±5% (-1); Inconsistency, inconsistency in study outcomes that cannot be explained by differences in study design (-1); Indirectness, limited generalizability (-1); P₁₀, percentage of measurements by index method that differed no more than 10% from reference method; P₃₀, percentage of measurements by index method that differed no more than 30% from reference method; pts, patients; Study limitations, risk of bias due to shortcomings in individual studies (-1).

^aMedian bias was calculated directly (using the weights) for each index method together with nonparametric CIs.

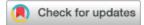
^bStrength of scientific evidence.

"The generalized linear mixed model does not yield valid estimates of confidence limits when estimated proportion (eg, P₃₀) is 100%.

Soveri I, Am J Kidney Dis, 2014, 64, 411

Choice of the marker (personal opinion)

- Only « cold » methods are easy to implement worldwide
- Iohexol is available worldwide
- Perfect stability (central laboratory)
- EQUAS (Equalis, Sweden) is available


Gunnar Nordin, Sara Ekvall, Carolina Kristoffersson, Ann-Sofie Jonsson, Sten-Erik Bäck, Niclas Rollborn and Anders Larsson*

Accuracy of determination of the glomerular filtration marker iohexol by European laboratories as monitored by external quality assessment

Figure 1: Mean interlaboratory CV (y-axis) vs. measured concentration of iohexol (x-axis) for laboratories using either HPLC or UPLC/MS/MS.

Performance of creatinine- or cystatin C-based equations to estimate glomerular filtration rate in sub-Saharan African populations

see commentary on page 1017

Justine B. Bukabau^{1,7}, Eric Yayo^{2,7}, Appolinaire Gnionsahé³, Dagui Monnet², Hans Pottel⁴, Etienne Cavalier⁵, Aliocha Nkodila¹, Jean Robert R. Makulo¹, Vieux M. Mokoli¹, François B. Lepira¹, Nazaire M. Nseka¹, Jean-Marie Krzesinski⁶, Ernest K. Sumaili^{1,7} and Pierre Delanaye^{6,7}

¹Renal Unit, Department of Internal Medicine, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of Congo; ²Département de Biochimie, UFR Sciences Pharmaceutiques et Biologiques, Université Felix Houphouet Boigny, Abidjan, Ivory Coast; ³Département de Néphrologie, UFR Sciences Médicales, Université Felix Houphouet Boigny, Abidjan, Ivory Coast; ⁴Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; ⁵Division of Clinical Chemistry, CHU Sart Tilman (ULg CHU), University of Liège, Liège, Belgium; and ⁶Division of Nephrology-Dialysis-Transplantation, CHU Sart Tilman (ULg CHU), University of Liège, Belgium

Kidney International (2019) 95, 1181–1189;

Choice of the marker (personal opinion)

- Only « cold » methods are easy to implement worldwide
- Iohexol is available worldwide
- Perfect stability (central laboratory)
- EQUAS (Equalis, Sweden) is available
- Cr-EDTA, inulin, iothalamate not (or not easily) available in Europe...

Iohexol, example of protocol

- Iohexol (plasma clearance), 5 mL bolus (Omnipaque, 240 mg I/mL)
- 5 hours
- Samples at 2, 3, 4 and 5 hours (+later if very low GFR)
- Bröchner-Mortensen correction
- ± 100 euros
- Is it so complex?

Clinical Practice: Original Paper

Nephron DOI: 10.1159/000489898 Received: March 7, 2018 Accepted after revision: May 5, 2018 Published online: May 17, 2018

Safety of Iohexol Administration to Measure Glomerular Filtration Rate in Different Patient Populations: A 25-Year Experience

Flavio Gaspari^a Surabhi Thakar^b Fabiola Carrara^a Annalisa Perna^a Matias Trillini^a Maria Carolina Aparicio^a Olimpia Diadei^a Silvia Ferrari^a Antonio Cannata^a Nadia Stucchi^a Piero Ruggenenti^{a, c} Giuseppe Remuzzi^{a, c, d} Norberto Perico^a

^aIRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; ^bDivision of Renal Diseases and Hypertension, University of Minnesota, Minneapolis, MN, USA; ^cNephrology and Dialysis Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; ^dDepartment of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy

Table 2. Immediate adverse reactions associated with radiocontrast agents in the cohort of 2,891 subjects

Events recorded at time of or near iohexol injection	Relation to iohexol injection	Severity	Comments
Flushing, urticaria, itching	Definite	Moderate	Resolution after corticosteroid treatment. Patient did not perform any further iohexol investigation
Itchy skin rash	None	Mild	The event occurred the day after the first iohexol procedure when the patient underwent per-protocol CT with iopamidol. After that, patient tolerated 3 other iohexol GFR measurements without pre-medication
Iodide mumps	None	Mild	The event occurred the day after the first iohexol procedure when the patient underwent per-protocol CT with iopamidol. Spontaneous resolution in few days. The patient well tolerated subsequent iohexol GFR procedures
Atopic dermatitis	None	-	Event already present before iohexol administration
Angiodermatitis	None	_	Event already present before iohexol administration
Head and neck pruritus	None	-	Event already present before iohexol administration
Left forearm phlebitis	None	-	Secondary to thrombosis of arterio-venous fistula 2 days before iohexol administration
Dermatitis (arms and groin)	None	-	Event already present before iohexol administration related to sirolimus treatment
Eczematous dermatitis	None	-	Event already present before iohexol administration related to sirolimus treatment

Conclusions

- Measuring GFR is not so cumbersome (for a reference method)
- Measuring GFR is not so costly (for a reference method)
- Standardization (marker, procedure and measurement) can still be improved
- Iohexol plasma clearance is the best balance between physiology and feasibility
- Iohexol is safe
- Iohexol is the only chance to have a standardized GFR measurement worldwide

Clinical Kidney Journal, 2016, vol. 9, no. 5, 682–699

doi: 10.1093/ckj/sfw070 Advance Access Publication Date: 23 August 2016 CKJ Review

CKJ REVIEW

Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol?

Pierre Delanaye¹, Natalie Ebert², Toralf Melsom^{3,4}, Flavio Gaspari⁵, Christophe Mariat⁶, Etienne Cavalier⁷, Jonas Björk⁸, Anders Christensson⁹, Ulf Nyman¹⁰, Esteban Porrini¹¹, Giuseppe Remuzzi^{12,13}, Piero Ruggenenti^{12,13}, Elke Schaeffner², Inga Soveri¹⁴, Gunnar Sterner¹⁵, Bjørn Odvar Eriksen^{3,4} and Sten-Erik Bäck¹⁶

¹Department of Nephrology, Dialysis and Transplantation, University of Liège Hospital (ULg CHU), Liège, Belgium, ²Charité University Medicine, Institute of Public Health, Berlin, Germany, ³Metabolic and Renal Research Group, UIT The Arctic University of Norway, Tromsø, Norway, 4Section of Nephrology, University Hospital of North Norway, Tromsø, Norway, ⁵IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Ranica, Bergamo, Italy, ⁶Department of Nephrology, Dialysis, Transplantation and Hypertension, CHU Hôpital Nord, University Jean Monnet, PRES Université de LYON, Saint-Etienne, France, ⁷Department of Clinical Chemistry, University of Liège Hospital (ULg CHU), Liège, Belgium, ⁸Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden, ⁹Department of Nephrology, Skåne University Hospital, Lund, Sweden, ¹⁰Department of Translational Medicine, Division of Medical Radiology, Skåne University Hospital, Malmö, Sweden, 11 University of La Laguna, CIBICAN-ITB, Faculty of Medicine, Hospital Universtario de Canarias, La Laguna, Tenerife, Spain, ¹²Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy, ¹³Unit of Nephrology, Azienda Socio Sanitaria Territoriale (ASST) Ospedale Papa Giovanni XXIII, Bergamo, Italy, 14Department of Medical Sciences, Uppsala University, Uppsala, Sweden, 15 Department of Nephrology, Skåne University Hospital, Malmö, Sweden and ¹⁶Department of Clinical Chemistry, Skåne University Hospital, Lund, Sweden

Kj oxford

Clinical Kidney Journal, 2016, vol. 9, no. 5, 700-704

d oi: 10.1093/ckj/sfw071 Advance Access Publication Date: 9 September 2016 CKJ Review

CKJ REVIEW

Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol?

Pierre Delanaye¹, Toralf Melsom², Natalie Ebert³, Sten-Erik Bäck⁴, Christophe Mariat⁵, Etienne Cavalier⁶, Jonas Björk⁷, Anders Christensson⁸, Ulf Nyman⁹, Esteban Porrini¹⁰, Giuseppe Remuzzi^{11,12}, Piero Ruggenenti^{11,12}, Elke Schaeffner³, Inga Soveri¹³, Gunnar Sterner¹⁴, Bjørn Odvar Eriksen² and Flavio Gaspari¹⁵

¹Department of Nephrology, Dialysis and Transplantation, University of Liège Hospital (ULg CHU), 4000 Liège, Belgium, ²Metabolic and Renal Research Group, UiT The Arctic University of Norway and Section of Nephrology, University Hospital of North Norway, Tromsø, Norway, ³Charité University Medicine, Institute of Public Health, Berlin, Germany, ⁴Department of Clinical Chemistry, Skåne University Hospital, Lund, Sweden, ⁵Department of Nephrology, Dialysis, Transplantation and Hypertension, CHU Hôpital Nord, University Jean Monnet, PRES Université de LYON, Saint-Etienne, France, ⁶Department of Clinical Chemistry, University of Liège Hospital (ULg CHU), Liège, Belgium, ⁷Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden, ⁸Department of Nephrology, Skåne University Hospital, Lund, Sweden, ⁹Department of Translational Medicine, Division of Medical Radiology, Skåne University Hospital, Malmö, Sweden, ¹⁰University of La Laguna, CIBICAN-ITB, Faculty of Medicine, Hospital Universtario de Canarias, Tenerife, Spain, ¹¹Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy, ¹²Unit of Nephrology, Azienda Socio Sanitaria Territoriale (ASST) Ospedale Papa Giovanni XXIII, Bergamo, Italy, ¹³Department of Medical Sciences, Uppsala University, Uppsala, Sweden, 14Department of Nephrology, Skåne University Hospital, Malmö, Sweden and 15IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Ranica, Bergamo, Italy

European Kidney Function Consortium (EKFC)

Ξ.

CLINICAL KIDNEY JOURNAL

