Kinematics-Based Modelling of Deep Transfer Girders in Reinforced Concrete Frame Structures

Jian LIU

Liège, Belgium 14-06-2019

Outline

- 1. Background and objectives
- 2. Comparative study on models for deep beams
- 3. Macroelement for complete shear behaviour of deep beams
- 4. Mixed-type modelling with slender and deep beam elements
- 5. Shear strength of deep beams with openings
- 6. Conclusions and future work

Background and Objectives

Characteristics of deep transfer girders

(Photo by J. G. MacGregor.)

- Transfer heavy loads from discontinuous columns/ walls
- Small aspect ratio: $a/d \le 2.5$
- Crucial to structural safety

•

Deep transfer girders in structures

(By Evan Bentz, Toronto, 2008)

(Grand Chancellor Hotel, New Zealand. By Kam et al., 2011)

(Train station of Leuven)

(Brunswick building, Chicago: J. G. MacGregor)

Other application of deep beams

(https://civildigital.com/the-five-major-parts-of-bridges-concrete-span-bridge/)

(https://www.kore-system.com/blog_list/insulation-series-what-type-offoundation-is-right-for-me/)

(https://iarjset.com/upload/2017/march-17/IARJSET%2024.pdf)

(https://photo.xuite.net/hspsj60440/4103822/1.jpg)

Jian Liu

Difference between slender and deep beams

(tests by Kani in 1979, adapted from Collins and Mitchell, 1997)

Shear behaviour of deep transfer girders

P = 2162 kN

Δ, mm

Difficulty in predicting shear strength of deep transfer girders

Objective 1): To evaluate the accuracy of existing models for shear resistance of deep beams by using a large database of laboratory tests.

Complete shear response of deep transfer girders

Objective 2): To develop 1D element for deep beams combining accuracy and efficiency. Complete shear response

- Serviceability
- Ductility
- Resilience
- Structure-soil interaction
- ...

Large frame structure with deep transfer girders

Modelling of frame structures with deep transfer girders

Model with 1D frame elements

- computationally efficient
- inaccurate for deep beams

Model with 2D elements

- complex for large structures
- suitable for deep beams

Modelling of large structures with deep beams

Large frame structure with

deep transfer girder

Model with 1D slender and

deep elements

Objective 3): To integrate the new model into a framework of frame structures with both slender and deep elements.

Deep transfer girder with web openings

Objective 4): To propose a model to predict the shear capacity of RC deep beams with web openings.

Comparative Study on Models for Shear Strength of RC Deep Beams

73 existing models published between 1987 and 2014:

Comparative study procedure

#	Ref.	Year	Beam	a/d	b,	d,	h,	a: M/V	l _{b1} ,	l _{b2} ,	V/P	ρι,	#	f _y ,	a _g ,	f _c ,	ρ _v ,	d _{bv} ,	s _v ,	f _{yv} ,	ρ_h ,	d _{bh} ,	s _h ,	fyh, Rep.	M _{max} /	V_u ,	2PKT 33	Russo et al. 34
	#		Name		mm	mm	mm	mm	mm	mm		%	bars	MPa	mm	MPa	%	mm	mm	MPa	%	mm	mm	MPa mode	M _n	kN	Exp/Pred	Exp/Pred
1	1	1951	A1-1	2.35	203	389	457	914	89	89	0.5	3.10	3	321	10	24.6	0.38	9.5	183	331	0	9.5		S	0.87	222.5	0.95	0.82
2			A1-2	2.35	203	389	457	914	89	89	0.5	3.10	3	321	10	23.6	0.38	9.5	183	331	0	9.5		S	0.83	209.1	0.91	0.79
3			A1-3	2.35	203	389	457	914	89	89	0.5	3.10	3	321	10	23.4	0.38	9.5	183	331	0	9.5		S	0.89	222.5	0.97	0.84
4			A1-4	2.35	203	389	457	914	89	89	0.5	3.10	3	321	10	24.8	0.38	9.5	183	331	0	9.5		S	0.96	244.7	1.05	0.89
5			B1-1	1.96	203	389	457	762	89	89	1	3.10	3	321	10	23.4	0.37	9.5	191	331	0	9.5		S	0.93	278.8	1.08	0.97
6			B1-2	1.96	203	389	457	762	89	89	1	3.10	3	321	10	25.4	0.37	9.5	191	331	0	9.5		S	0.83	256.6	0.97	0.84
7			B1-3	1.96	203	389	457	762	89	89	1	3.10	3	321	10	23.7	0.37	9.5	191	331	0	9.5		S	0.94	284.8	1.10	0.98
8			B1-4	1.96	203	389	457	762	89	89	1	3.10	3	321	10	23.3	0.37	9.5	191	331	0	9.5		S	0.89	268.1	1.04	0.93
9			B1-5	1.96	203	389	457	762	89	89	1	3.10	3	321	10	24.6	0.37	9.5	191	331	0	9.5		S	0.79	241.4	0.92	0.81
10			B2-1	1.96	203	389	457	762	89	89	1	3.10	3	321	10	23.2	0.73	9.5	95	331	0	9.5		S	1.00	301.1	0.92	0.90
11			B2-2	1.96	203	389	457	762	89	89	1	3.10	3	321	10	26.3	0.73	9.5	95	331	0	9.5		S	1.03	322.2	0.95	0.90
12			B2-3	1.96	203	389	457	762	89	89	1	3.10	3	321	10	24.9	0.73	9.5	95	331	0	9.5		S	1.09	334.8	1.01	0.96
13			B6-1	1.96	203	389	457	762	89	89	1	3.10	3	321	10	42.1	0.37	9.5	191	331	0	9.5		S	1.10	379.3	1.21	0.91
14			C1-1	1.57	203	389	457	610	89	89	1	2.07	2	321	10	25.6	0.34	9.5	203	331	0	9.5		S	0.98	277.7	1.13	0.90
15			C1-2	1.57	203	389	457	610	89	89	1	2.07	2	321	10	26.3	0.34	9.5	203	331	0	9.5		S	1.09	311.1	1.25	0.99
16			C1-3	1.57	203	389	457	610	89	89	1	2.07	2	321	10	24.0	0.34	9.5	203	331	0	9.5		S	0.88	245.9	1.03	0.83
17			C1-4	1.57	203	389	457	610	89	89	1	2.07	2	321	10	29.0	0.34	9.5	203	331	0	9.5		S	0.99	285.9	1.10	0.85
18			C2-1	1.57	203	389	457	610	89	89	1	2.07	2	321	10	23.6	0.69	9.5	102	331	0	9.5		S	1.04	289.9		0.88
19			C2-2	1.57	203	389	457	610	89	89	1	2.07	2	321	10	25.0	0.69	9.5	102	331	0	9.5		S	1.07	301.1		0.88
20			C2-4	1.57	203	389	457	610	89	89	1	2.07	2	321	10	27.0	0.69	9.5	102	331	0	9.5		S	1.01	288.1		0.81
21			C3-1	1.57	203	389	457	610	89	89	1	2.07	2	321	10	14.1	0.34	9.5	203	331	0	9.5		S	0.93	223.6	1.17	1.09
22			C3-2	1.57	203	389	457	610	89	89	1	2.07	2	321	10	13.8	0.34	9.5	203	331	0	9.5		S	0.84	200.3	1.06	0.99
23			C3-3	1.57	203	389	457	610	89	89	1	2.07	2	321	10	13.9	0.34	9.5	203	331	0	9.5		S	0.79	188.1	0.99	0.93
24			C4-1	1.57	203	389	457	610	89	89	1	3.10	3	321	10	24.5	0.34	9.5	203	331	0	9.5		S	0.81	309.3	1.06	0.93
25			C6-2	1.57	203	389	457	610	89	89	1	3.10	3	321	10	45.2	0.34	9.5	203	331	0	9.5		S	0.97	423.8	1.14	0.85
26			C6-3	1.57	203	389	457	610	89	89	1	3.10	3	321	10	44.7	0.34	9.5	203	331	0	9.5		S	1.00	434.9	1.17	0.88
27			C6-4	1.57	203	389	457	610	89	89	1	3.10	3	321	10	47.6	0.34	9.5	203	331	0	9.5		S	0.98	428.6	1.12	0.84
28			D1-1	1.16	203	395	457	457	89	89	1	1.63	2	335	10	26.2	0.46	9.5	152	331	0	9.5		S	0.91	301.1	1.06	0.83
29			D1-3	1.16	203	395	457	457	89	89	1	1.63	2	335	10	24.5	0.46	9.5	152	331	0	9.5		S	0.78	256.6	0.94	0.74
30			D2-1	1.16	203	395	457	457	89	89	1	1.63	2	335	10	24.0	0.61	9.5	114	331	0	9.5		S	0.88	289.9	1.05	0.82
31			D2-2	1.16	203	395	457	457	89	89	1	1.63	2	335	10	25.9	0.61	9.5	114	331	0	9.5		S	0.94	312.2	1.08	0.84
32			D3-1	1.16	203	395	457	457	89	89	1	2.44	3	335	10	28.2	0.92	9.5	76	331	0	9.5		S	0.84	394.9	1.02	0.85
33			D4-1	1.16	203	395	457	457	89	89	1	1.63	2	335	10	23.1	1.22	9.5	57	331	0	9.5		S	0.96	312.2		0.80
34			D1-6	1.95	152	313	381	610	89	89	1	3.42	2	335	10	27.6	0.46	9.5	203	331	0	9.5		S	0.83	174.7	0.95	0.85

Ten implemented models

Jian Liu

Shear strength predictions

16/61

Strut-and-tie model by Russo et al., 2005

(3) — Horizontal web reinforcement

Two-parameter kinematic theory (2PKT) by Mihaylov et al., 2013

Shear components and solution procedure in 2PKT

Solution procedure for 2PKT

Size effect in shear

Predicting size effect in shear

2PKT by Mihaylov et al. (2013) provides adequate predictions.

Jian Liu

Deformation prediction of 2PKT

• Displacement at (x, z)

Above the crack: $\delta_x(x,z) = \frac{\epsilon_{t,avg}}{(h-z)cot\alpha}$

 $\delta_{z}(x, z) = \varepsilon_{t,avg} x \cot \alpha + \Delta_{c}$

Below the crack:

$$\delta_{x}(x, z) = \frac{\varepsilon_{t,avg} x}{\delta_{z}(x, z)} = \frac{\varepsilon_{t,avg} x^{2}}{h - z}$$

• Crack width and slip: $w = \frac{l_k}{2\sin\alpha_1} + \Delta_c \cos\alpha_1$

 $s = \Delta_c sin \alpha_1$

• Deflection:

 $\Delta = \Delta_{\rm c} + \varepsilon_{\rm t,avg} {\rm acot} \alpha$

Predicted displacement capacity, 53 tests

Predicted deformed shapes

• a/d = 1.55

P/P_u= 78%

P/P_u= 91%

• a/d = 2.29

P/P_u= 93%

P/P_u= 97%

P/P_u= 100%

Three-parameter kinematic theory (3PKT) by Mihaylov et al., 2015

Macroelement for Complete Shear Behaviour of Deep Beams

Shear behaviour of deep beams

(tested by Mihaylov et al., 2015)

Shear behaviour of deep beams

Shear behaviour of deep beams

Three-parameter kinematic model for deep beams

DOFs ε_{t1} and ε_{t2} (or θ_1 and θ_2)

Macroelement for deep beams

 $\begin{aligned} \theta_1 &= \epsilon_{t1} \text{ a / d} \\ \theta_2 &= \epsilon_{t2} \text{ a / d} \end{aligned}$ $\mathbf{M}_1(\theta_1) + \mathbf{M}_2(\theta_2) &= \mathbf{V} \left(\Delta_c, \theta_1, \theta_2 \right) \text{ a} \end{aligned}$

 $\mathbf{k}_{1} \mathbf{\theta}_{1} + \mathbf{k}_{2} \mathbf{\theta}_{2} = \mathbf{k}_{3} \Delta_{c} \mathbf{a}$ $\mathbf{k}_{1} = \mathbf{M}_{1} / \mathbf{\theta}_{1}$ $\mathbf{k}_{2} = \mathbf{M}_{2} / \mathbf{\theta}_{2}$ $\mathbf{k}_{3} = \mathbf{V} / \Delta_{c}$

ſļ

Transverse springs (shear behaviour)

Shear components from:

- V_{CLZ} critical loading zone
 - V_{ci} aggregate interlock
 - V_s stirrups
 - V_d dowel action

Springs of the four shear mechanisms

Critical loading zone ٠ 600 500 $- \epsilon_{t2,avg} = 0$ ⁻ ε_{t2,avg}=1x10⁻³ V_{CLZ}, kN V_{ci}, kN 300 250 0 0 0.0 5.0 10.0 0.0 $\Delta_{\rm c}$, mm **Stirrups** 250 100 V_s, kN V_d, kN 50 125 $\epsilon_{t1,avg}=0$ $\epsilon_{t1,avg}=1 \times 10^{-3}$ 0 0 5.0 0.0 0.0 10.0 $\Delta_{\rm c}$, mm (beam S1M tested by Mihaylov et al. 2013)

Aggregate interlock

Solution procedure of macroelement

Solution procedure of macroelement

Solution procedure of macroelement

Complete shear response predicted with macroelement

(S1M tested by Mihaylov et al. 2013)

Jian Liu

Complete shear response predicted with macroelement

Simply-supported deep beam

Complete shear response predicted with macroelement

Crack widths predicted with macroelement

Simply-supported deep beam

Continuous deep beam

Mixed-type Modelling of Structures with Slender and Deep Beam Elements

Modelling of large structures with deep beams

Model with 1D slender and deep elements

Existing FE program: VecTor5

(http://vectoranalysisgroup.com/vector5.html)

- 1D fiber-based element for slender beams
- Distributed plasticity approach for shear behavior
- Excellent predictions for plane frames reported

Solution procedure of VecTor5

Unbalanced forces = Global forces - Sectional forces

Solution procedure of modified VecTor5

Unbalanced forces = Global forces - Sectional forces

Application to simply-supported deep beams

Convergence factor (CF):

$$CF = 1 + \sqrt{\frac{1}{3 \times n} \times \sum_{i=1}^{n} \left(\left(\frac{N_{ui}}{N_i} \right)^2 + \left(\frac{V_{ui}}{V_i} \right)^2 + \left(\frac{M_{ui}}{M_i} \right)^2 \right)}$$

Jian Liu

Prediction of entire shear response

44/61

Prediction of entire shear response

Jian Liu

45/61

Modelling a 20-storey frame

Three modelling strategies

Prediction of loading response

Load-disp. relationship

Response in each storey
of 20-storey frame

Efficiency of studied modelling strategies

- 40 load steps
- Office desktop

3.4 GHz quad-core processor16 GB of RAM

Shear Strength of RC Deep Beams with Web Openings

Tests of deep beams with web openings (EI-Maaddawy and Sherif, 2005)

٠

Opening at centre

f_c = 21.0 MPa f_y = 420 MPa f_{yv} = 300 MPa Opening at top near support

Opening at bottom near load

Two typical failure modes

Deep beams with web openings studied by FEM

• FEM model of beam NS-150-C

(With programme VecTor2)

• Deformation (×10) and crack pattern

Principle compressive stress

Jian Liu

Deep beams with web openings studied by FEM

Crack pattern of solid deep beams

•

- NS-250-C NS-150-C **Principle compressive stress** $\sigma_{2,max}$ NS-250 NS-150-Similar to solid deep beams $\sigma_{2,\min}$
- Deformation (×10) and crack pattern

Kinematics of deep beams with openings

- DOF ϵ_{tb} and ϵ_{tt}

[•] DOF Δ_{cb} and Δ_{ct}

Equilibrium of forces in deep beams with openings

Solution procedure for 2PKT in other load cases

Failure along a crack

Need to consider the horizontal crack

- Section A under M-N interaction
- $V_t e \le M_u$ of section A

Calculation procedure

Jian Liu

Parametric study: opening size

(tested by EI-Maaddawy and Sherif, 2005)

Jian Liu

Parametric study: a/d ratio

Conclusions and Future work

Summary and Conclusions

- Adequate models for shear strength of deep beams identified
- Efficient 1D macroelement formulated
- Complete shear response well predicted
- **Mixed-type modelling** framework proposed
- Complex structures under extreme loading analysed
- Kinematic model proposed for deep beams with openings

- Shear failures after flexural yielding \rightarrow ductility
- Effect of axial force in macroelement \rightarrow columns and shear walls
- Entire behaviour of RC deep beams with web openings
- Extend applicability of 3PKT, e.g. under cyclic loading
- Simplified 3PKT for design codes

Thank you for your attention.