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a b s t r a c t

For numerous applications, it is of interest to provide full probabilistic forecasts, which
are able to assign plausibilities to each predicted outcome. Therefore, attention is
shifting constantly from conditional mean models to probabilistic distributional models
capturing location, scale, shape and other aspects of the response distribution. One of the
most established models for distributional regression is the generalized additive model
for location, scale and shape (GAMLSS). In high-dimensional data set-ups, classical fitting
procedures for GAMLSS often become rather unstable and methods for variable selection
are desirable. Therefore, a regularization approach for high-dimensional data set-ups in
the framework of GAMLSS is proposed. It is designed for linear covariate effects and
is based on L1-type penalties. The following three penalization options are provided:
the conventional least absolute shrinkage and selection operator (LASSO) for metric
covariates, and both group and fused LASSO for categorical predictors. The methods are
investigated both for simulated data and for two real data examples, namely Munich
rent data and data on extreme operational losses from the Italian bank UniCredit.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A model class that has gained increasing attention in recent years is the class of generalized additive models for
location, scale and shape (GAMLSS), introduced by Rigby and Stasinopoulos (2005). In contrast to conventional regression
approaches where the mean is regressed, the GAMLSS framework allows to simultaneously model all distribution
parameters (as, for example, the location, scale and shape) in terms of covariates. Within the corresponding predictors,
parametric and/or additive nonparametric (smooth) functions of the explanatory variables and/or random-effects terms
can be included. In general, the (non)parametric models are fitted via maximum (penalized) likelihood estimation. In
particular, Newton–Raphson or Fisher scoring algorithms can be used to maximize the (penalized) likelihood.

GAMLSS represent a very general regression-type model in which both the systematic and random parts of the model
are highly flexible: the distribution of the response variable does not have to belong to the exponential family, can be
continuous or discrete, as well as highly skewed or feature excess kurtosis (Stasinopoulos and Rigby, 2007). However, in
high-dimensional data set-ups classical fitting procedures for the GAMLSS often become rather unstable and methods for
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variable selection are desirable. In addition, the more distributional parameters are related to covariates, the further the
model’s complexity is increased.

The first ones who systematically addressed the issue of variable selection, i.e. the selection of a reasonably small
subset of informative covariates to be included in a particular GAMLSS, were Mayr et al. (2012). They extended
boosting techniques, which originated in the machine learning field, to the GAMLSS framework. The approach is called
gamboostLSS and is based on classical gradient boosting, which they successfully adapted to the GAMLSS characteristics.
Both variable selection and model choice are naturally available within their regularized regression framework. For an
implementation into the statistical software R (R Core Team, 2018), see Hofner et al. (2016).

An alternative strategy for variable selection, which is mainly designed for linear covariate effects, uses L1-type penal-
ties. A first attempt for such a penalization-based, regularized estimation in the high-dimensional GAMLSS framework is
proposed in Hambuckers et al. (2018). There, only linear effects are considered, so in fact a generalized linear model for
location, scale and shape is regarded. The conventional least absolute shrinkage and selection operator (LASSO; Tibshirani,
1996) for metric covariates is then applied on Generalized Pareto distributed extreme operational loss data from the Italian
bank UniCredit. For the implementation of the estimation procedure, Hambuckers et al. (2018) follow Zou and Li (2008)
and Oelker and Tutz (2017) and use local quadratic approximations of the penalty terms. Relying on this approximation,
the maximization problem can be linearized and solved with usual Newton methods.

If, however, some of the independent variables are categorical, some modifications to usual shrinking procedures are
necessary. The present work describes a regularization approach, which is also mainly designed for linear covariate effects
and is also based on L1-type penalties, but which extends the previous approaches by including penalization strategies
that are specifically designed for nominal or ordinal categorical predictors. Using adequate penalties, not only the cases of
the conventional LASSO for metric covariates, but also of both the group (Meier et al., 2008) and fused LASSO (Gertheiss
and Tutz, 2010) for categorical predictors are covered. The implementation of the methods is incorporated into the
unified modeling architecture for distributional regression models established in Umlauf et al. (2018a), which exploits the
general structure of classical generalized additive models (GAMs) and encompasses many different response distributions,
estimation techniques, model terms etc. The corresponding R-package bamlss (Umlauf et al., 2018b) embeds many
different approaches suggested in literature and software and serves as a unified conceptional ‘‘Lego toolbox" for complex
regression models. Furthermore, within its framework both the implementation of algorithms for complex regression
problems and the integration of already existing software are substantially facilitated.

The performances of these new methods are investigated in two extensive simulation studies and are compared to
different other approaches. In the applications considered later in this work, we consider both Gaussian and generalized
Pareto distributed responses. We focus on the fusion of factor levels of either nominal or ordinal factors. Different
performance aspects are investigated, in particular, mean squared errors of the fitted coefficients, but also the performance
with regard to factor fusion and variable selection in the presence of noise variables.

For illustration purposes, the proposed methods are also applied to two different real data sets. The first data set
contains Munich rent data from the year 2007, which are used as a reference for the average rent of a flat depending
on its characteristics and spatial features. We model and select the predictor effects of nine covariates describing the
apartments in terms of their size, age and other characteristics related to the net rent per square meter. These data have
already been analyzed in Kneib et al. (2011) and in Mayr et al. (2012), where also a more detailed description of the data
can be found. The second data set is a database of 10,217 extreme operational losses from the Italian bank UniCredit,
covering a period of 10 years and 7 different event types. These data have recently been analyzed in Hambuckers et al.
(2018).

The article is set out as follows. In the next section, we specify the underlying fully parametric regression model
framework. We then introduce different L1-type penalties in Section 3, which are designed for different kinds of
regularization. The algorithmic details related to the fitting procedures of the penalized models are presented in Section 4.
Next, the performance of the different methods is investigated in simulation studies in Section 5. Then, we illustrate their
applicability in the two aforementioned real data examples in Section 6. Finally, we summarize the main findings and
conclude in Section 7.

2. Model specification

Along the lines of Rigby and Stasinopoulos (2005), who regard GAMLSS as a semiparametric regression-type model with
both linear and smooth covariate effects, in the following we focus on the fully parametric model with solely linear effects.
Let y = (y1, . . . , yn)T be the response vector with single observations yi, i = 1, . . . , n, being conditionally independent
given a set of covariates. The corresponding conditional density f (yi|θi) usually depends on several distribution parameters
θi = (θi1, . . . , θid)T that commonly represent distribution characteristics like location, scale, shape and/or kurtosis, but
generally may be any of the distribution’s parameters. The key feature of a GAMLSS is that each of these distribution
parameters θk can be modeled by its own predictor ηθk for k = 1, . . . , d, which, in our case, depends linearly on a set
of pk covariates together with an intercept β0k. Following Mayr et al. (2012), we denote by gk(·) known monotonic link
functions, relating the linear predictors to their corresponding parameters θk. Then, a generalized linear model for location,
scale and shape is given by the following set of equations

gk(θk) = β0k +

pk∑
j=1

xTjkβjk = ηθk . (1)
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As the covariates can be metric and/or categorical, we use the general notation xTjkβjk for a single predictor term. If the
covariate is categorical, this term collects all covariate dummies and regression coefficients corresponding to the jk-th
group of variables. If the covariate is metric, it reduces to a product of scalar values, i.e. xjkβjk. These effects are collected in
the coefficient vectors βk = (β0k, β1k, . . . , βpk,k)

T , k = 1, . . . , d corresponding to the d submodels. Estimation of regression
parameters can be obtained via maximization of the model’s log-likelihood, given by

ℓ(β) =

n∑
i=1

log f (yi|θi) , (2)

with vector β = (βT
1, . . . ,β

T
d )

T collecting the effects of all linear predictors ηθk , k = 1, . . . , d. Note that the log-
likelihood (2) depends on the parameters βjk through the relations θik = g−1

k (ηθik ).
In principle, the maximization of (2) can be carried out using Newton–Raphson or Fisher scoring algorithms. Suitable

fitting schemes are implemented in the R-package gamlss (Stasinopoulos and Rigby, 2007) and rely on the following
principle: at each iteration, backfitting steps are successively applied to all distribution parameters, using the submodel
fits of previous iterations as offset values for those parameters that are not involved in the current step. However, in
high-dimensional situations these fitting procedures often become highly unstable and methods for regularization variable
selection are needed.

3. L1-type penalization

In the following, different L1-type penalties are introduced, which are designed for linear covariate effects: the
conventional LASSO for metric covariates, and both group and fused LASSO for categorical covariates. The different
penalization terms impose different kinds of shrinkage depending on the covariates’ structure and the intentions of the
modeler. In particular, the group and fused LASSO penalties are designed for nominal and ordinal categorical predictors,
addressing specific characteristics of those. Altogether, a term λJ(β) is subtracted from the log-likelihood (2). Here, J(β)
is a combination of (parts of) the four penalty terms introduced in this section, whereas λ is a tuning parameter that
controls the overall strength of the penalties.

Classical LASSO

For (standardized) metric covariates xjk, following Tibshirani (1996), the absolute value of the corresponding data
(scalar) regression coefficient βjk is penalized by the conventional LASSO penalty, i.e. the penalty terms have the following
form

Jc(βjk) = |βjk| . (3)

This penalty structure shrinks the regression coefficient towards zero. If the effect is sufficiently small, the regression
coefficient can even be set exactly to zero, therefore excluding the corresponding covariate from the linear predictor ηθk .
The strength of the penalization is controlled by the global penalty parameter λ: for large values of λ, only the most
influential covariates are retained and all other effects are shrunken to zero. On the contrary, for lower values of λ,
shrinkage is smaller and fewer coefficients are excluded from the different linear predictors ηθk , k = 1, . . . , d. Hence, the
penalty parameter λ plays the role of a tuning parameter: it controls the number of LASSO-penalized metric covariates
that are related with the distribution parameters θk of the response variable.

Group LASSO

For a (dummy-encoded) categorical covariate with corresponding group of dummies collected in covariate vector
xjk and vector βjk of corresponding regression coefficients, the L2-norm of βjk is penalized by the group LASSO penalty
(compare, e.g., Meier et al., 2008), i.e. the single penalty terms yield

Jg(βjk) =
√
dfjk · ∥βjk∥2 , (4)

where dfjk is the size of the jk-th group of dummy variables. The factors
√
dfjk are used to rescale the penalty terms with

respect to the dimensionality of the parameter vectors βjk, see also Yuan and Lin (2006). They ensure that the penalty
terms are of the order of the number of parameters and, hence, are comparable to the conventional LASSO-penalty (3).
Consequently, if J(β) is a combination of penalties for both metric covariates from (3) and penalties for (dummy-encoded)
categorical covariates from (4), still a single overall penalty parameter λ can be used.

The effect of jointly penalizing the whole group of dummies corresponding to a categorical covariate via ∥βjk∥2 is
similar to the one of the conventional LASSO penalty and we either obtain β̂jk = 0 or β̂jkl ̸= 0 for all l = 1, . . . , dfjk.
Consequently, a categorical predictor is either included (with all its dummies) or excluded completely from its respective
linear predictor ηθk .
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Fused LASSO

Alternatively, for categorical covariates, clustering of categories with implicit factor selection is desirable. Again, let xjk
be a (dummy-encoded) categorical covariate with categories l = 0, 1, . . . , dfjk and corresponding coefficient vector βjk. By
choosing l = 0 as the reference category, we fix βjk0 = 0. Depending on the nominal or ordinal scale level of the covariate,
one of the following two penalties can be used (compare Gertheiss and Tutz, 2010). For nominally scaled covariates, all
possible pairwise differences of the regression effects are penalized by the fused LASSO penalty, for which the individual
penalty terms are given by

Jfn (βjk) =

∑
l>m

l,m≤dfjk

w
(jk)
lm |βjkl − βjkm|. (5)

For ordinally scaled covariates, only the differences of neighboring regression effects are penalized. In this case, the penalty
terms can be specified by

Jfo (βjk) =

dfjk∑
l=1

w
(jk)
l |βjkl − βjk,l−1| , (6)

where dfjk is the number of (free) dummy coefficients of the categorical predictor xjk, i.e. the number of levels minus one.
Both w

(jk)
lm and w

(jk)
l denote suitable weights that are suggested in Bondell and Reich (2009). In principle, the use of these

weights can be motivated through standardization of the corresponding design matrix part, in analogy to standardization
of metric predictors. For nominal covariates we use

w
(jk)
lm = 2(dfjk + 1)−1

√
n(jk)
l + n(jk)

m

n
,

where dfjk +1 is again the number of levels of the corresponding categorical predictor xjk and n(jk)
l denotes the number of

observations on level l. Hence, the weights account for different numbers of levels of different predictors and for different
numbers of observations on different levels.

Furthermore, notice also that an adaptive version of the weights can be used. Then, they contain additionally the factors
|β̂

(ML)
jkl − β̂

(ML)
jkm |

−1
, where β̂

(ML)
jk denotes the unconstrained maximum likelihood (ML) estimate. The factor (dfjk+1)−1 ensures

that the penalties from (5) are comparable to the ordinal penalty terms from (6). For ordinal predictors, since the penalty
terms (6) are already of order cjk, the corresponding weights w

(jk)
l can be chosen as

w
(jk)
l =

√
n(jk)
l + n(jk)

l+1

n
.

Similarly to the nominal case, adaptive versions of the weights are obtained by adding the factors |β̂
(ML)
jkl − β̂

(ML)
jk,l−1|

−1
. Due

to the adequately chosen weights w
(jk)
lm and w

(jk)
l , we can combine the penalties from (5) and (6) and still use a single

penalty parameter. However, if a single penalty parameter is used, these penalties cannot be combined with those given
by (3) and (4), due to differences in orders and scaling procedures. If instead different tuning parameters are used for
each of the four penalty types introduced above, they all can be combined. This way, also combinations of fusion and
selection are possible. Notice also that for the fusion of effects, alternative weighting schemes are used in the literature,
see, for example, Chiquet et al. (2017).

Finally, note that the classical and group LASSO penalties given by (3) and (4) could be extended in a similar way by
choosing suitable adaptive weights.

Some technical details

All proposed penalties have the attractive property to be able to set the coefficients of single (groups of) covariates
to zero and, hence, to perform variable selection. Within the estimation procedures implemented in bamlss, e.g. the
corresponding backfitting algorithm, local quadratic approximations of all presented penalty terms are used (see Oelker
and Tutz, 2017). Furthermore, note that bamlss also allows to assign to each linear predictor ηθk , k = 1, . . . , d, its own
penalty term, i.e. a term λkJ (k)(βk), where J (k)(βk) denotes the penalty term corresponding to linear predictor ηθk only.
This framework allows to specify highly flexible models, although it has the drawback that the grid search for the optimal
tuning parameters λk has to be carried out on d dimensions and, hence, becomes computationally more demanding.

Moreover, it is even possible in bamlss to assign to each single predictor component βjk (or βjk if xjk is metric) its own
penalty parameter λjk. In this case, instead of searching the tuning parameters over a multi-dimensional grid, they are
implicitly determined and optimized in a stepwise manner in the backfitting procedure, as explained in the next section. If
this strategy is chosen, all different penalty terms from (3)–(6) can be combined, as each term is assigned to an individual
amount of penalization, and no issues regarding comparability arise.
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4. Estimation

To conveniently combine the penalized estimation of GAMLSS with the LASSO-type penalties introduced in the previous
section, we write the kth linear predictor of Eq. (1) for n observations in matrix notation as

ηθk
= β0k + Xkβk = β0k +

pk∑
j=1

Xjkβjk,

with regression coefficients βk = (β⊤

1k, . . . ,β
⊤

pk,k)
⊤ and design matrices Xk = [X1k, . . . ,Xpkk], where the ith row of Xjk is

represented by xijk, i = 1, . . . , n. Note that the intercepts are treated separately from the rest of the parameters, since
they are not suspect to shrinkage. Moreover, the presentation of the kth linear predictor is split into its pk covariates
to emphasize that these can in principle have their own shrinkage parameters. More precisely, there are three possible
options which will be explained in more detail in the following: First, the use of one global shrinkage parameter λ for
all distribution parameters and model terms Xjkβjk. Second, different shrinkage parameters λk, one for each distribution
parameter, as used in the next paragraph. Third, different shrinkage parameters λjk, one for each parameter of the
distribution and each model term Xjkβjk.

For the estimation of the coefficients βk we apply a partitioned updating scheme as presented in Umlauf et al. (2018a),
which maximizes the penalized log-likelihood

ℓpen(β) =

n∑
i=1

log f (yi|θi) −

d∑
k=1

λkJ (k)(βk)

= ℓ(β) −

d∑
k=1

λkβ
⊤

k Jk(βk)βk .

(7)

For clarity, J (k)(βk) can be rewritten as
∑pk

j=1 J
(jk)(βjk), with J (jk)(·) being one of the penalties given by Eqs. (3)–(6). Because

we follow Oelker and Tutz (2017) and use local quadratic approximations in J (jk)(·), the LASSO penalty can be written as
a quadratic form with a block-diagonal penalty matrix:

Jk(βk) = diag(J1k(β1k), . . . , Jpkk(βpkk)).

The Jjk(·) are penalty matrices determined by (the approximations of) the penalties from Eqs. (3)–(6). In this setting, for
each distribution parameter θk we begin by penalizing the contribution of the jk-th covariate with the corresponding
shrinkage parameter λk (note again that this is possible if the various LASSO-type penalties are appropriately scaled.
Applying d different penalties instead of a single one for all distribution parameters is reasonable, since different
parameters θk are associated with different scalings with respect to the response, and may be dependent on (possibly)
different sets of covariates and/or fused categories).

Then, for fixed values of λk, the algorithm cycles over each model component with a Newton–Raphson-type updating
step. For iteration t + 1, the updating step for the penalized coefficients is given by

β
(t+1)
k = (X⊤

k WkXk + λkJk(βk))
−1X⊤

k Wk(zk − η̃θk
), (8)

with working observations zk = η
(t)
θk

+ W−1
k u(t)

k , derivatives uk = ∂ℓpen(β)/∂ηθk
, weights Wk = −diag(∂2ℓpen(β)/∂ηθk

∂η⊤

θk
)

and partial predictor η̃θk
= η

(t+1)
θk

− β
(t+1)
0k (see Umlauf et al., 2018a for a detailed description of the algorithm). The

intercepts β0k are updated similarly, but without the penalty terms λkJk in (8) and η̃θk
= η

(t+1)
θk

− Xkβ
(t+1)
k . To estimate

the optimal values for each λk, a simple grid search based on minimizing an information criterion (e.g., the BIC) is carried
out, where the model complexity (i.e. the amount of shrinkage) is measured by the effective degrees of freedom for each
model term. Effective degrees of freedom (edfs) can be approximated by

edfk(λk) := trace
[
X⊤

k WkXk(X⊤

k WkXk + λkJk(βk))
−1] ,

such that the total effective degrees of freedom can be approximated by d+
∑d

k=1 edfk(λk). In practice, the algorithm starts
by initializing the intercepts and setting λk to very large values, such that βk ≈ 0, k = 1, . . . , d. Then, the coefficients
βk, as well as β0k, are re-estimated by slightly decreasing λk and using β̂k from the previous λk as starting values. This
procedure is usually relatively fast and numerically stable, even for complicated GAMLSS models.

However, this approach has two drawbacks. First, grid search estimation for λk when d > 2 can still be time and
computer memory intensive. Second, for complex combinations of penalty terms (3)–(6), a single λk for each distributional
parameter is most likely not sufficient or even improper, since the order and scaling procedures of the different penalty
terms are not comparable. In such cases we extend the penalty in (7) for the kth distribution parameter to

∑pk
j=1 λjkJ (jk)(βjk)

and estimate each λjk using a stepwise procedure in each updating iteration (8), see (Umlauf et al., 2018a; Algorithm A2).
Besides, by further partitioning the updating scheme (8) for each model component Xjkβjk, sparse matrix structures are
exploited within (8), which lead to significant runtime improvements for large data sets (see also Lang et al., 2014 for
more details on highly efficient updating schemes).
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Table 1
True nonzero dummy coefficient vectors used in the simulations.
Distribution Parameter Type of factor Values

Gaussian

µ

Nominal (1) (0, 0.5, 0.5, 0.5, 0.5, −0.2, −0.2)⊤

Nominal (2) (0, 1, 1)⊤

Ordinal (1) (0, 0.5, 0.5, 1, 1, 2, 2)⊤

Ordinal (2) (0, −0.3, −0.3)⊤

σ

Nominal (1) (0, −0.5, 0.4, 0, −0.5, 0.4, 0)⊤

Nominal (2) (0.4, 0, 0.4)⊤

Ordinal (1) (0, 0, 0.4, 0.4, 0.4, 0.8, 0.8)⊤

Ordinal (2) (0, −0.5, −0.5)⊤

Generalized
Pareto

ξ

Nominal (1) (0, 0.3, 0.3, 0.3, 0.3, −0.5, −0.5)⊤

Nominal (2) (0, −0.4, −0.4)⊤

Ordinal (1) (0, −0.4, −0.4, −0.8, −0.8, −1.1, −1.1)⊤

Ordinal (2) (0, −0.5, −0.5)⊤

σ

Nominal (1) (0, −0.6, 0.3, 0, −0.6, 0.3, 0)⊤

Nominal (2) (0.4, 0, 0.4)⊤

Ordinal (1) (0, 0, −0.4, −0.4, −0.4, −0.9, −0.9)⊤

Ordinal (2) (0, −0.3, −0.3)⊤

Note that updating scheme (8) can also be used as a weak base learner to build a component-wise gradient boosting
algorithm (Mayr et al., 2012; Thomas et al., 2018) for the fusion penalties presented in Section 3. This technique has the
advantage that each model term Xjkβjk can have a different amount of shrinkage and that gradient boosting does not need
to compute the weights Wk, since linear models are only fitted on the negative gradient −∂ℓpen(β)/∂ηθk

. Therefore, such
an approach works even faster when the choice of the optimal stopping iteration is based on, e.g., the BIC with the total
edfs computed from the active set (Zou et al., 2007), i.e. the number of non-zero coefficients.

Eventually, a last practical issue can arise when computing the adaptive weights in J (jk)(·). Indeed, in a high-dimensional
GAMLSS setting, the unregularized maximum likelihood (ML) estimator might simply not exist. In this situation, we
suggest to use gradient boosting with ridge-type penalties Jjk(βjk) = ∥βjk∥

2
2 to obtain β̂

(ML)
jk , since gradient boosting is

one of the most stable algorithms in complex modeling problems.
Altogether, we focus on the following four approaches and compare them in the simulation study of the next section:

1. MaxLik: Unpenalized maximum likelihood estimation.
2. Lasso-S: Backfitting algorithm with LASSO penalties (see Section 4) with one single shrinkage parameter λ for all

parameters of the distribution.
3. Lasso-M: Backfitting algorithm with LASSO penalties (see Section 4) with two shrinkage parameters λk, one for

each parameter of the distribution. Optimal λk-s are selected using a two-dimensional grid search.
4. Lasso-MS: Backfitting algorithm with LASSO penalties (see Section 4) with single shrinkage parameters λjk, one

for each model term. Optimal λjk-s are selected using a stepwise selection algorithm (see Umlauf et al., 2018a).

5. Simulation

For the investigation of the fusion LASSO penalties within the framework of GAMLSS we follow the application data
from Section 6 and consider two scenarios: The first simulation setting is based on simulated Gaussian responses, the
second on the generalized Pareto distribution. For both settings we model different covariate effects on all distributional
parameters, i.e. for µ and σ in the Gaussian setting and for ξ (shape parameter) and σ (scale parameter) in the generalized
Pareto setting. In total 150 replications for each distribution are simulated.

Similar to Gertheiss and Tutz (2010), for each setting, we use 4 informative covariates and 4 non-informative covariates
for each distributional parameter θk, i.e., in total 16 covariates for parameters µ and σ in the Gaussian case, and the same
for parameters ξ and σ in the generalized Pareto simulation. For each parameter θk the informative variables are split
into 2 nominal and 2 ordinal factor variables. The same setting is used for the noise variables. Table 1 summarizes the
true nonzero dummy coefficients used in the simulations. Here, all predictors have several levels with equal effects that
actually could be fused. The performance of the proposed LASSO-type estimation method is now compared to several
competing methods, which were introduced in Section 4.

For the estimation of the optimal tuning parameters we use the Akaike information criterion (AIC; Sakamoto et al.,
1986) and the Bayesian information criterion (BIC; Schwarz, 1978). We additionally compare the LASSO models with
several gradient boosting methods (Mayr et al., 2012; Thomas et al., 2018), using either the original categorical variables
including all levels, only, or together with the true fused categories to see whether boosting algorithms can select the
true fused effects. The performance of the boosting algorithms is generally inferior compared to the LASSO in this setting,
therefore the results are not shown. However, we also implemented the fusion penalty with adaptive weights for boosting
which in principle showed good performance, but selecting the stopping iteration turned out to be problematic. Selecting
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Fig. 1. Gaussian simulation study, performance of the applied algorithms in terms of
√
MSE and out-of-sample CRPS. The first three plots (from

left to right) show the
√
MSE of the linear predictor, the non-noise coefficients and the noise coefficients, respectively. The right plot shows the

out-of-sample CRPS.

the stopping iteration from out-of-sample data (e.g., using proper scoring rules, Gneiting et al., 2007) seems to be inferior
compared to selecting the stopping iteration using, e.g., the BIC. Since the computation of the BIC involves calculation of
the equivalent degrees of freedom, one can rely on the active set (the number of non-zero coefficients, as proposed by Zou
et al., 2007) or approximate these using the trace of recursively defined Hessians. The active set leads to very sparse models
with poor performance in the distributional regression setting, the second option indicates quite good model performance,
but the computation time is extremely long and therefore unfeasible in most applications (already with 2000 observations
computations are cumbersome). In summary, although gradient boosting is a quite stable optimization algorithm, in our
findings the estimation of the stopping criterion for high-dimensional data sets in a distributional regression setting
remains difficult and needs to be investigated more thoroughly in future research. For reproducibility we provide all
R-scripts within the supplemental materials.

For the Gaussian simulation, we use 500 observations for training the models. In the generalized Pareto simulation, we
use 1500, 3000, 6000 and 15,000 observations for estimation. The second setting uses different numbers of observations
since the generalized Pareto is not an easy distribution to model. For example, Hambuckers et al. (2018) encountered
problems if the number of observations is small. We chose this setup in order to investigate how sensible the estimation
of the generalized Pareto model is, if the sample size becomes small. We evaluate performance of the different settings
using the root mean squared error (

√
MSE) of the true and estimated linear predictors ηk. The out-of-sample predictive

performance is evaluated using the continuous rank probability score (CRPS; Gneiting et al., 2007), a score especially suited
for evaluating probabilistic forecasts accounting for calibration and sharpness simultaneously. In addition, to compare the
performance of the different fused LASSO penalties, we compute false positive rates of true zero differences between
coefficients βjk, i.e., for true fused categories we calculate the percentage rate of nonzero differences over all replications.
To investigate the variable selection performance, we calculate false positive rates of the noise variable coefficients.
Similarly, we calculate false negative rates of true non-noise coefficients.

The results for the Gaussian simulation generally show the best performance for the fused LASSO penalties using the
BIC for tuning parameter selection. According to the

√
MSE displayed in Fig. 1 in the first two panels, especially for the

scale parameter σ the LASSO with single tuning parameters for each model term (Lasso-MS-BIC) seems to be the best
method. In the third panel, the

√
MSE of the noise coefficients is clearly the smallest for all BIC-tuned models. The out-

of-sample CRPS in the right panel also indicates better performance for the LASSO models. However, the improvement
compared to ML estimation is relatively small in this simulation setting.

False positive rates of truly zero differences are shown in Fig. 2 top row. Clearly, unpenalized ML (MaxLik) cannot
anticipate the fused categories, but also LASSO using the AIC seems to approximate the true fused categories inferiorly.
Similarly, concerning false positive rates of true noise coefficients, Fig. 2 in the second row shows that MaxLik and AIC-
based LASSO are not performing as good as the LASSO with BIC tuning. In the bottom row of Fig. 2, false negative rates
of non-noise coefficients show relatively equal results for all methods with slight indication of higher shrinkage of the
LASSO when looking at the first nominal fused covariate for µ.

The results of the simulation with the generalized Pareto are in principle similar. Fig. 3, top row, shows that the LASSO
using the BIC for tuning parameter selection has the smallest

√
MSE according to the predictors for ξ and σ . Except

for models using more than 3000 observations, here the differences in
√
MSE are not that prominent for all methods

and distributional parameters. The
√
MSE’s of non-noise and noise coefficients in Fig. 3, middle and bottom row, are

principally similar to the ones observed in the Gaussian simulation. Moreover, results are rather similar for all numbers
of observations, except that for large sample sizes (n = 6000, n = 15,000) also MaxLik yields satisfactory results for the
non-noise coefficients. Concerning the out-of-sample predictive performance evaluated using the CRPS shown in Fig. 4,
the LASSO methods using BIC tuning clearly outperform the other methods.

The false positive rates in Fig. 5, top row, are again the lowest for all LASSO-type penalties using the BIC, although
it seems that in the generalized Pareto case it is more difficult to fuse categories, especially for nominal variables with
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Fig. 2. Gaussian simulation study. The top row presents false positive (FP) rates of truly zero differences, the middle row false positive rates of pure
noise coefficients, the bottom row false negative (FN) rates of non-noise coefficients.

many (fused) levels. The false positive rates of pure noise coefficients in Fig. 5, middle row, again show that all shrinkage
methods using BIC tuning detect correctly the fused categories, whereas for parameter σ shrinkage seems to be more
difficult in this setting.

In Fig. 5, bottom row, the false negative rates of non-noise coefficients indicate that in the generalized Pareto model
all shrinkage methods show a good performance despite being more conservative for parameter ξ .

To sum up, for both regarded response scenarios the BIC-based LASSO outperforms the other approaches with respect
to all performance criteria except that it is more conservative.

6. Applications

In this section we apply the proposed penalization approaches to two different real data sets, namely to Munich rental
guide data and to data on extreme operational losses of the Italian bank UniCredit. Due to the categorical covariate
structure of both data sets, we focus on the approach that turned out to be the most suitable one for this setting
in the simulation studies from the previous section (in particular in terms of

√
MSE and the out-of-sample predictive

performance using the CRPS, see Figs. 3 and 4), which is the fused LASSO penalty approach using the BIC for selection of
optimal tuning parameters.

6.1. Munich rental guide data

We now apply the proposed penalization approaches to the Munich rent data, which stem from 3015 households
interviewed for the Munich rent standard 2007. The response is the monthly rent per square meter in Euro. From a
large set of covariates, we incorporate a selection of nine factors describing certain characteristics of the flats, such as
e.g. the quality of the bathroom equipment or the number of rooms, similar to Gertheiss and Tutz (2010). All of those
covariates are considered in the form of categorical factors, which are both ordered and nominal, as well as binary, and are
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Fig. 3. Generalized Pareto simulation study, performance of the applied algorithms in terms of
√
MSE. The top row shows the

√
MSE of the linear

predictor, the middle row of the non-noise coefficients and the bottom row of the noise coefficients, respectively. The columns show results for the
different numbers of observations (#nobs).

Fig. 4. Generalized Pareto simulation study, performance of the applied algorithms in terms of the out-of-sample CRPS for different numbers of
observations (#nobs).

standardized as explained in Section 3. The two continuous covariates size of the flat and year of the building’s construction
were categorized. A short overview of the data set is found in Table 2, while a more detailed description can be found
in Kneib et al. (2011) and Mayr et al. (2012).

We fit a Gaussian GAMLSS and use for both distribution parameters, i.e. µ and σ , a combination of the two different
fused LASSO penalties introduced above. In particular, the use of the Lasso-M approach allows for a flexible fit, as
the penalty terms of both corresponding linear predictors are assigned with separate tuning parameters λµ and λσ ,
respectively.
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Fig. 5. Generalized Pareto simulation study, aggregating over all sample sizes n ∈ {1500, 3000, 6000, 15,000}. The top row presents false positive (FP)
rates of truly zero differences, the middle row false positive rates of pure noise coefficients, the bottom row false negative (FN) rates of non-noise
coefficients.

Table 2
Response variable and selection of covariates from the Munich rental guide data.
Variable Description

rentsqm Rent per square meters (continuous; response variable)
district Id number of district (categorical; 25 levels)
yoc Building’s construction year (categorical; ∈ {[1920, 1930), . . . , [2000, 2010)})
rooms Number of rooms of the flat (categorical; ∈ {1, . . . , 7})
rarea Rent area (categorical; ∈ {fair, good, excellent})
fspace Flat size in m2 (categorical; ∈ {[0, 30), [30, 40), . . . , [130, 140), [140, inf)})
water Warm water supply (binary; ∈ {yes, no})
cheating Central heating (binary; ∈ {yes, no})
tbath Separate bathroom (binary; ∈ {yes, no})
kitchen Quality of kitchen (binary; ∈ {normal, good})

The optimal tuning parameters are selected by BIC on a 2-dimensional grid. The left panel of Fig. 6 shows the
corresponding marginal BIC curves for both µ and σ , in each case holding the other tuning parameter fixed at the
respective minimum of the BIC. For the final model, the middle and right panels indicate a relatively good model fit
according to the resulting randomized quantile residuals (Dunn and Smyth, 1996). Only for rents below the 1% and above
the 99% quantile the model seems to be less appropriate and could possibly be further improved, e.g., by selecting other
categories or response distributions (this would go beyond the scope and is therefore not presented). Figs. 7 and 8 show
the paths of the dummy coefficients of both the ordinal covariate year of construction and the nominal district, which are
penalized by the two different fused LASSO penalties from above. It is seen that with increasing tuning parameters λµ

and λσ , respectively, categories are successively fused, i.e. the coefficients are set equal. In addition, it can be seen that
for the ordinal covariate year of construction in Fig. 7 only neighboring coefficients are fused, while for the nominal factor
district in Fig. 8 any groups of coefficients can be aggregated.
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Fig. 6. The left panel shows marginal BIC curves for parameters µ and σ , holding the other tuning parameter fixed at the respective minimum of
the BIC. The middle panel shows a histogram together with a kernel density estimate of the resulting randomized quantile residuals, the right panel
the corresponding quantile–quantile plot.

Fig. 7. Ordinal fused coefficient paths for the year of construction for parameters µ (left) and σ (right); vertical dashed lines: optimal tuning
parameters.

At the optimal values of the tuning parameters, both several (neighboring) years of construction and several districts
are fused and a much less complex model is obtained compared to the (unregularized) ML estimator. Similar fusion could
also be observed on the seven remaining categorical predictors (not shown here). Altogether, the fused LASSO approach
detects the decisive number of different categories per predictor and yields a sparse model that is much easier to interpret
in comparison to the unrestricted model. Potentially, it can even exclude irrelevant factors completely from the model.

6.2. UniCredit loss data

Here, we study the same data as in Hambuckers et al. (2018). This data set consists of 10,217 extreme operational
losses registered by the Italian bank UniCredit, between January 2005 and June 2014. Operational losses in the banking
industry are defined as ‘‘losses resulting from inadequate or failed internal processes, people and systems or from
external events" (Basel Committee on Banking Supervision (BCBS), 2004). Examples include losses related to unauthorized
trading, legal disputes with employees, sales malpractices or cyber attacks. For regulatory and risk management purposes,
banks have an interest in adequately modeling the density of these losses, so that they can compute appropriate risk
indicators (e.g. quantiles or moments). These risk indicators are used later on to determine the requested operational
risk capital (Basel Committee on Banking Supervision (BCBS), 2004). To reflect properly the probability of tail events, a
generalized Pareto distribution is usually assumed, in the framework of Extreme Value Theory (EVT, see, e.g., Embrechts
et al., 1997; Chapelle et al., 2008; Chavez-Demoulin et al., 2016 and Hambuckers et al., 2018). Recently, researchers have
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Fig. 8. Nominal fused coefficient paths for the district effect for parameters µ (left) and σ (right); vertical dashed lines: optimal tuning parameters.

Table 3
Levels of nominal factor event type (event).
Event type Description

dpa Damages to physical assets (DPA)
ifraud Internal frauds (IFRAUD)
efraud External frauds, related to payments and others (EFRAUD)
epws Employment practices and workplace safety (EPWS)
cpbp Clients, products and business practices (CPBP)
bdfs Business disruptions and system failures (BDFS)
edpm Execution, delivery and process management (EDPM)

started to investigate the effect of changing economic conditions on the distribution of these losses (see Cope et al., 2012
and Chernobai et al., 2011). In particular, Hambuckers et al. (2018) used a generalized Pareto regression model similar
to the one considered in Section 5, with up to 292 explanatory variables. Regressors consisted of a nominal categorical
variable with seven levels (called event types, referring to the physical process of the losses) and 20 lagged economic
indicators related to the macroeconomic, financial and internal contexts of UniCredit (see Tables 3 and 4 for additional
details). The model was estimated using a traditional LASSO estimator and a narrow set of variables was identified as
relevant predictors.

However, this approach suffers from two drawbacks: on the one hand, Hambuckers et al. (2018) only used L1-penalties,
neglecting potential fusion effects among event types (see, e.g., Tables 10 and 11 of their article, where several regression
coefficients are quite similar). On the other hand, they treated the various economic factors as continuous. Practically
speaking, this assumption (however correct) implies that any change in one of the explanatory variables is associated
with a change in ξ (shape parameter) or/and σ (scale parameter). From the point of view of a risk manager, such changes
might lead to frequent updates of the requested capital. This additional variability is particularly inconvenient since it
creates additional liquidity risks (see, e.g., the discussion in Distinguin et al., 2013).

In light of these considerations, we reconsider the data analysis performed in Hambuckers et al. (2018). To overcome
the variability issue, each economic factor is categorized into ordered categories, defined ex ante by a range of values. We
use both basic economic reasoning (e.g., implication of the sign of the covariate) and descriptive statistics like quantiles
to define the categories. Table 4 provides the detailed categorization for each variable. This framework implies that the
distribution parameters stay constant when the covariates’ values stay inside a given interval, which in turn lowers
the variability of the requested capital. Notice that the categorization might influence the results since we have some
uncertainty surrounding that stage. In particular, if a category is too wide and the true effect would vary inside that
category, the model will be misspecified. However, using a relatively large number of categories in combination with
a fused LASSO approach would limit this issue. Following Hambuckers et al. (2018), event type is kept as a nominal
predictor, however subject to regularization. Our dependent variable is the excess loss amount (in Euro), i.e. the difference
between the loss and the threshold selected in the EVT procedure (see Hambuckers et al. (2018), Section 2.2 for details).
For anonymity reasons, losses have been scaled by an unknown factor, preventing us from any reasoning on the level
itself. Then, we fit a generalized Pareto GAMLSS, and use for both ξ and σ the fused LASSO penalties described previously
to control for the number of parameters. As for the first application, the optimal tuning parameters are chosen over a
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Fig. 9. UniCredit model, the left panel shows marginal BIC curves for parameters ξ and σ , holding the other tuning parameter fixed at the respective
minimum of the BIC. The middle panel shows a histogram together with a kernel density estimate of the resulting randomized quantile residuals,
whereas the right panel shows the corresponding quantile–quantile plot.

Fig. 10. UniCredit model, coefficient paths using ordinal fused LASSO.

two-dimensional grid by BIC. The left panel of Fig. 9 displays marginal BIC curves. Similar to the first application, the
middle and right panels indicate a relatively good model fit according to the resulting randomized quantile residuals.
Only very high losses above the 98% quantile seem to be less appropriately modeled and could be further investigated.
We see that clear values for λ are chosen. Fig. 10 shows coefficients’ paths for both distribution parameters. The dotted
lines indicate the level of the selected penalization parameters, and of the different regression coefficients.

Our results are the following: for ξ (Fig. 10, left panel), the variable event type is fused in a smaller number of categories:
EPWS, BDSF and EDPM form a single category, EFRAUD and IFRAUD stand alone, whereas CPBP and DPA have their
associated coefficients set to zero. Regarding economic covariates, only the Tier-I capital ratio (TCR) is selected. The
three upper categories (.07, .08], (.08, .1] and (.1, .12] have been fused, whereas the two lower categories have their
regression coefficients set to zero. For σ (Fig. 10, right panel) we do not observe any fusion of categories regarding the
event types. Only the BDSF event type has its coefficient set to zero. Regarding the economic factors, we observe an effect
of the following variables: Italian unemployment rate, Italian GDP growth rate (GDP IT), monetary aggregate M1, S&P
500 log-returns, VIX and TCR. With the exception of the GDP IT and the TCR, all other variables exhibit extremely small
regression coefficients, suggesting that these variables should be completely excluded from the final model. For GDP IT,
the four upper categories (ranging from −.75% to 1.25%) have been fused. For TCR, only the two upper categories have
non-zero coefficients but have not been fused.

We draw several economic interpretations from these results. First, the signs of the regression coefficients indicate
that an increase in the Italian GDP growth rate above −.75% is associated with a relative increase in σ . It suggests that in
relatively good economic times, the likelihood of large losses increases. It can be explained by the fact that, in a booming
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Table 4
Summary of the explanatory variables in the UniCredit analysis. The third column shows for all (categorized) variables the interval limits (except for
variable event, which is a true factor variable) together with the frequencies of the so created categories, as indicated by the height of the black
bars.
Type Variable Categories Description

Firm-
specific

event Event type

leveragelag Leverage ratio (LR)

tier1ratiolag Tier-I capital ratio (TCR)

prflag % revenue coming from fees (PRF)

depositgrowthlag Deposit growth rate (DGR)

logreturnslag UniCredit stock returns (SR)

Macro-economic

unempitlag Italian unemployment rate (UR IT)

unempeulag EU unemployment rate (UR EU)

gdpitlag Italian GDP growth rate (GDP IT)

gdpeulag EU GDP growth rate (GDP EU)

rpi.eu EU housing price growth rate (HPI)

m1 Monetary aggregate M1 growth rate (M1)

lfc.italy Consumer loans rate <1 year in Italy (LOR IT)

lfc.eu Consumer loans rate <1 year in EU (LOR EU)

Financial

splogreturns S&P 500 returns

trlogreturns TR EU Stock Index returns (TRSI)

miblogreturns FTSE MIB index returns (MIB)

vixlag VIX

vftselag VFTSE

itinterbank.rate 3-month Italian interbank rate

italtbr 10-year Italian government bond yield

economy, the sizes of the transactions increase, letting mechanically the potential amount of money to be lost increase
as well. The same effect is observed for fines and compensation claims in lawsuits, whereas better economic conditions
may also create more incentives to commit frauds (Povel et al., 2007), increasing the likelihood of large losses related
to fraud events. Similar findings were obtained by Hambuckers et al. (2018) and Cope et al. (2012). However, here, our
results suggest that a small recession or a positive growth rate does not lead to significant differences in terms of risk.
Second, regarding the TCR, we find contradictory effects on ξ and σ : an increase up to 7% and above leads to an increase
in ξ , whereas an increase of the TCR above 8% leads to a decrease in σ . One explanation would be the following: it has
been shown that banks suffering from a huge degree of uncertainty regarding future losses tend to self-insure by holding
more capital (Valencia, 2016). Hence, an increase in TCR seems to be indicative of a higher probability of large losses,
which is consistent with the positive regression coefficient observed for ξ and findings in Hambuckers et al. (2018). On
the other hand, a high TCR can be indicative of a bank with strong internal controls, as suggested in Chernobai et al.
(2011) and Cope et al. (2012). Improved management practices would therefore explain a decrease in the scale of large
losses, reflected in the negative regression coefficients for σ . Nevertheless, the present analysis suggests that, in term of
tail risk, the former effect dominates: an increase in TCR above 7% is synonym of a heavier tail of the density.

Overall, our procedure selects a sparse model and enforces the fusion of several categories (adjacent ones for ordered
predictors). We start from an unrestricted model with 232 regression coefficients to obtain a final model with only 18
parameters. The selected set of predictors, as well as the signs and magnitudes of the coefficients, provide a model
theoretically coherent and easy to interpret. Lastly, this model limits strongly the variability of associated risk measures.

7. Conclusion

We presented a regularization approach for high-dimensional data set-ups for GAMLSS. The framework is based on
LASSO-type penalties for metric covariates, and both group and fused LASSO for categorical predictors. Estimation is
performed using a backfitting algorithm with different types of shrinkage parameter selection. Moreover, we showed
that the fused LASSO can even be implemented using a gradient boosting algorithm.

We investigated the performance of the novel fused LASSO-type penalties for GAMLSS compared to unpenalized and
commonly used boosting methods in an intensive simulation study. The performance of the LASSO-type penalties was
shown to be superior over the other methods, even if the true fused categories are supplied as covariates in the model.
In particular, it turned out that the fused boosted LASSO models have a very good performance. However, the estimation
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of the effective degrees of freedom within the boosting algorithm is to some extent critical. We used the active covariate
set as proposed in Zou et al. (2007), which has considerable computational advantages, but it turned out that we partly
overestimated the true number of parameters. For this reason, the performance was inferior for some settings, when
selecting the stopping iteration based on BIC. Therefore, a more elaborate estimation of the effective degrees of freedom
in gradient boosting will be a topic of future research.

The proposed methods were also applied to two different real data sets, namely to Munich rental guide data from the
year 2007 and to data on extreme operational losses of the Italian bank UniCredit. In the first data set, a selection of nine
factors describing certain characteristics of apartments in Munich was related to the monthly net rent per square meter.
The fusion behavior of the fused LASSO was illustrated by the help of both nominal and categorial factor covariates. In
particular, it was shown that the method detects the decisive number of different categories per predictor and yields
a sparse model, which facilitates interpretation of the estimated regression effects. In the second data set, the severity
distribution of operational losses was related to 21 economic variables, mapped into 232 ordered categorical predictors.
With the help of the proposed approach, we excluded numerous non-informative predictors from our final model. In
addition, thanks to the fused LASSO penalty, we identified the levels of the covariates that have a similar effect on the
distribution of the losses. Consequently, we were able to obtain a final model sparse and theoretically sound, producing
stable financial risk indicators.

In future research the fusion penalties presented here could also be extended for regularization and model selection
purposes when categorical effect modifiers are considered. More precisely, similar to Gertheiss and Tutz (2012), the fusion
penalties could be complemented by an additional LASSO term.

Appendix A. Supplementary data

Supplementary material, including the R-scripts and the UniCredit loss data, can be found online at https://doi.org/10.
1016/j.csda.2019.06.005.
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