
mmb: Flexible High-Speed Userspace Middleboxes
Korian Edeline, Justin Iurman, Cyril Soldani, Benoit Donnet

Université de Liège, Montefiore Institute – Belgium
ABSTRACT
Nowadays, Internet actors have to deal with a strong in-

crease in Internet traffic at many levels. One of their main
challenge is building high-speed and efficient networking
solutions. In such a context, kernel-bypass I/O frameworks
have become their preferred answer to the increasing band-
width demands. Many works have been achieved, so far, all
of them claiming to have succeeded in reaching line-rate
for traffic forwarding. However, this claim does not hold
for more complex packet processing. In addition, all those
solutions share common drawbacks on either deployment
flexibility or configurability and user-friendliness.
This is exactly what we tackle in this paper by introduc-

ing mmb, a VPP middlebox plugin that allows, through an
intuitive command-line interface, to easily build stateless
and stateful classification and rewriting middleboxes. mmb
makes a careful use of instruction caching and memory
prefetching, in addition to other techniques used by other
high-performance I/O frameworks. We compare mmb perfor-
mancewith other middlebox solutions, such as kernel-bypass
framework and kernel-level optimized approach, for enforc-
ing middleboxes policies (firewall, NAT, transport-level en-
gineering). We demonstrate that mmb performs, generally,
better than existing solutions, sustaining a line-rate process-
ing while performing large numbers of complex policies.

1 INTRODUCTION
Global Internet traffic has constantly increased over the

past decade. In 2017, 17.4 billions of devices have generated
more than 45,000 GB/second Internet traffic. By 2022, the
number of devices connected to IP networks will reach 28.5
billions, and their traffic will attain 150,700 GB/second, with
hours peaking up to a x4.8 increase factor.
In parallel, the traditional TCP/IP architecture (i.e., the

end-to-end principle) is becoming outdated in a wide range
of network situations. Indeed, corporate networks [20], WiFi
hotspots, cellular networks [22], but also Tier-1 ASes [8]
are deploying more and more middleboxes in addition to
traditional network hardware. Indeed, middleboxes can be
deployed for, e.g., security (IDS, NATs, firewalls) and network
performance (load balancer, WAN optimizer).
Internet actors have thus to deal with this double in-

crease at many levels, and particularly, in building high-
speed networking solutions. A wide range of Kernel-bypass

I/O frameworks are available to answer this increasing band-
width demand, and the Linux kernel has been striving to
stay afloat [3, 13]. Many of those efforts claim to have suc-
ceeded in reaching line-rate for traffic forwarding, less so
for more complex packet processing (e.g., a firewall with a
large number of rules, TCP options). Moreover, all of them
share common drawbacks, on either deployment flexibil-
ity by necessitating expensive hardware or specific OS to
maintain reasonable performances, or configurability and
user-friendliness by requiring non-trivial programming for
basic adaptation of common network functions.

In this paper, we overcome those limitations by introduc-
ing mmb (ModularMiddleBox), an open-source 1 plugin for
the Vector Packet Processing (VPP [18]) kernel-bypassing
framework. mmb aims at achieving line-rate forwarding per-
formancewhile performing a large number of complex packet
manipulation. It leverages VPP employment of classical and
recent advances in packet processing techniques, such as
computation and I/O batching, Zero-Copy forwarding, low-
level parallelism, and caching efficiency.
Moreover, by implementing combinable generic middle-

box policies, configurable from an intuitive command-line
interface, mmb allows for out-of-the-box middlebox deploy-
ment and easy adaptation. On modern hardware, it is able
to hold baremetal-like performance while running on a vir-
tual machine, thanks to PCIe passthrough technologies (i.e.,
SR-IOV, virtio).
We conduct a thorough comparison of trending high-

performance packet processing solutions with mmb, for a
selection of simple to complex use cases.2 We find that, with
few hardware restrictions and without the need to write a
single line of code, mmb is able to sustain packet forwarding
at line-rate speed when enforcing a large set of classification
and mangling rules, while other solutions either perform
worse, require specific hardware or OS, necessitate expert-
level configuration, or have inner design limitations that
make them inapplicable.

The remainder of this paper is organized as follows: Sec. 2
provides the required background for this paper; Sec. 3 intro-
duces mmb; Sec. 4 evaluates its performances; Sec. 5 positions
mmb with respect to notable high-performance packet pro-
cessors; finally, Sec. 6 concludes this paper by summarizing
its main achievements.

1https://github.com/mami-project/vpp-mb
2More experiments are included in the extended version of this paper [10].

1

https://github.com/mami-project/vpp-mb


ANRW ’19, July 22, 2019, Montreal, Canada K. Edeline et al.

2 VPP BACKGROUND
Vector Packet Processing (VPP) [4] is a Cisco-developed

technology providing a high-performance extensible packet-
processing stack running in user space. It implements a full
network stack and is designed to be customizable. It can run
on I/O frameworks such as DPDK, Netmap [19], or Open-
DataPlane (ODP) [17].

VPP leverages techniques such as batch-processing, Receive-
side Scaling (RSS) queues, Zero-Copy by allowing userspace
applications to have Direct Memory Access (DMA) to the
memory region used by the NIC, offloading certain packet
processing functions to dedicated hardware, and I/O batch-
ing to reduce the overhead of NIC-initiated interrupts. While
those techniques have been implemented in other kernel-
bypassing frameworks (e.g., FastClick [2]) and have been
shown to drastically improve performances [1], VPP attempts
to surpass it by introducing parallel processing on multiple
CPU cores, to maximize hardware instruction pipelining,
alongside an optimal use of CPU caches to minimize the
memory access bottleneck. To this end, VPP introduces par-
ticular coding practices (e.g., memory prefetching, cache-
fitting processing nodes, branch prediction) to maximize
low-level parallelism and cache locality.
The VPP packet processing path is based on a directed

forwarding graph architecture. An example of such a graph
is shown in Fig. 1 illustrating the sub-graph used by mmb.
It is made of cache-fitting, modular nodes performing a set
of functions (e.g., dpdk-input, ip4-lookup) to packets, in
userspace.

Kernel-bypass frameworks usually rely on a classical run-
to-completion approach [2, 15], where each single packet
is processed by each function separately. VPP chooses to
rely on a per-node batch processing, by systematically using
pre-allocated packet batches (i.e., vectors). When a function
is applied to a packets batch, the first packet causes the func-
tion to be loaded in the instruction cache. Then, the following
packets are guaranteed to hit the cache, amortizing the cost
of the initial cache miss over the whole packet vector. More-
over, this approach gives a priori information on the next
data sections to be read, allowing for efficient prefetching
strategies.

Finally, VPP packet processing functions areN-loops, which
consists in explicitly handling N packets per iteration to in-
crease the code parallelism. This practice aims at exploiting
CPU hardware pipelining and at amortizing the cost of in-
struction cache misses. By unrolling the loop, this algorithm
allows for subtracting the processing time of N packets to
the fetching time of the N next packets buffers.

3 MODULAR MIDDLEBOX
mmb (Modular MiddleBox) is a VPP extension that per-

forms stateless and stateful classification, and rewriting. It

Figure 1: VPP forwarding graph with mmb nodes.

achieves stateless packetmatching based on any combination
of constraints on network or transport protocol fields, state-
ful TCP and UDP flow matching, packet mangling, packet
dropping and bidirectional mapping. mmb is partly protocol-
agnostic by allowing tomatch and rewrite fields ip4-payload,
udp-payload, and tcp-opt, and allows for on-the-fly con-
figuration.

3.1 General Overview
Following the VPP architecture, mmb forwarding graph con-

sists in two nodes, a classification (e.g., ip4-mmb-classify)
and a rewrite node (e.g., ip4-mmb-rewrite), as shown in
Fig. 1. When mmb is enabled, its nodes are simply connected
to the processing graph. The classification node is placed
right after the ip4-input node, that validates the IP4 header
checksum, verifies its length and discards packets with ex-
pired TTLs.

Depending on the outcome of the classification step, that
can either be drop, miss, or match, packets are forwarded re-
spectively to the error-drop node which will discard them,
to ip4-lookup, the node responsible for the Forwarding In-
formation Base (FIB) lookups, that then dispatches packets
to the corresponding processing path, or the mmb-rewrite
node, applying modification rules to packets.
Overall, mmb consists in three processing paths that can

each be traversed or not by packet vectors, depending on
the input policies. A fast path, which relies on VPP bounded
index hash tables and implements the mask-based matching
operation using binary operators, is shown in Fig. 4. This
path is enabled when a rule without any TCP option is en-
tered. Moreover, it restricts the conditions to == (isequal).
The stateful flow matching is using this fast path. A first
slow path for rules that uses complex conditions (,, <, >,
≤, ≥), and a second slow path for the linked list parsing
required when classifying based on TCP options as well as
when rewriting them.

The main goal of mmb is to be easily configurable, and to
allow defining a wide range of middlebox policies by com-
bining rules, defined by using commands with a generic

2



mmb: Flexible High-Speed Userspace Middleboxes ANRW ’19, July 22, 2019, Montreal, Canada

Figure 2: mmb command-line interface syntax.

Figure 3: mmb processing path.

semantic [7, 9], at high-speed. To this end, we define a gram-
mar (see Fig. 2) that can be used to build a packet processing
middlebox directly from a command-line interface. For ex-
ample, building a middlebox that rewrites TCP port 80 to
port 443 is done as follows:

vpp# mmb add tcp−dport 80 mod tcp−dport 443

Here is another example of a middlebox stripping all options
but MSS and WSCALE if the packet contains the timestamp
option:

vpp# mmb add tcp−opt−timestamp strip ! tcp−opt−mss strip ! tcp−
opt−wscale

3.2 Classification Node
mmb packet processing is displayed in Fig. 3. The classi-

fication node is an extension to VPP classification module,
that consists in four distinct steps: a mask-based constraint
matching step, an index lookup pool, a complex matching
step, and a connection table.

The mask-based matching determines if each packet satis-
fies constraints on fixed offset fields. For this, we create one
classification table per packet mask (e.g., per combination
of fields in the match constraint), sized from 16 bytes to at
most 80 consecutive bytes. We create one key for a given
table per value for its associated packet mask. For each table,
the search for a key matching a given packet is a hash-based
search performed in constant time.

The matching operation consists of two binary operations
(AND and XOR), as shown in Fig. 4.1, which are applied to

ResultClassif y = (Packet &Mask) ⊕ Key (1)
ResultRewrite = (Packet &Mask) | Key (2)

Figure 4: Binary operations for packet classification
and rewrite.
consecutive chunks of 16 bytes, starting from the first non-
zero byte in the mask. Each results are OR’ed into a 16-byte
variable, that is compared to zero to verify if the matching
operation was successful.

Then, for each packet that matched at least one mask-key
combination, mmb checks if an additional matching is needed,
with a constant-time lookup, and performs it. Additional
matching is necessary for constraints on linked-list based
fields such as TCP options.

Finally, each packet is matched to a connection table via its
5-tuple. The connection tables keep track of every connection
that matched at least one stateful rule, and implements a flag
tracking and a timeout mechanism without interruptions.
This allows, for example, for reflexive policies. Both TCP and
UDP are handled by the connection table.
If a packet matches at least one rule with a drop target,

it is immediately forwarded to the error-drop node. If the
packet matches only non-drop rules, it is forwarded to the
mmb-rewrite node, and if the packet does not match any
rule, it is handed to the next non-mmb node, ip4-lookup.

3.3 Rewrite Node
The mmb-rewrite node consists in two operations: a mask-

based rewrite step that works on the fixed offset fields, simi-
larly to the first step of the classification node, and a complex
rewrite step for linked-list based fields.
To perform the rewrite operation, or application of tar-

gets, we build a target mask and a target key when the rule
is added. The rewrite is then performed with two binary
operations (AND and OR), as shown in Fig. 4.2.

mmb allows to perform packet mangling by defining, for
any rule, a set of static and dynamic targets. Static targets
consists in setting a user-defined value to a chosen field. In
the case of TCP options, targets may also define an option
strip or an addition. Dynamic targets allows for setting a
different value, within a predefined value range or random,
on a per-connection basis.

4 PERFORMANCE
4.1 Testbed Description
The testbed consists of three machines with Intel Xeon

CPU E5-2620 2.1GHz, 16 Threads, 32GB RAM, Debian 9.0
with 4.9 kernels. Two of these machines play the role of
Traffic Generators (TGs), while one is the Device Under Test
(DUT). An additional machine with Intel Xeon CPU E5-2630

3



ANRW ’19, July 22, 2019, Montreal, Canada K. Edeline et al.

(a) Direct (b) Indirect

(c) PCI Passthrough (d) Bridged

Figure 5: Measurement Setups. TG = Traffic Generator.
DUT = Device Under Test. Plain arrows are physical
connections, Dotted arrows are bridge networks and
the machine surrounded by dots is a virtual machine.

2.4GHz 16 Threads, 16GB RAM, Ubuntu Server 18.04 with
4.15 kernel, is used as alternative DUT for experiments re-
quiring a more recent kernel. Each machine is equipped with
an Intel XL710 2x40GB NIC connected to a Huawei CE6800
switch using one port each for TGs and both for the DUT.

The DUT runs VPP 18.10, DPDK 18.08 with 10 1GB huge
pages, and a kvm hypervisor with a Ubuntu 18.04 guest. The
TGs run iperf3 [21]. The DUTs are configured to maximize
their performances.
The testbed has four different setups: A direct client-to-

server communication setup, shown in Fig. 5a, that is used to
evaluate bandwidth baselines and rule out sender-bounded
experiments. An indirect setup, Fig. 5b, in which the DUT for-
wards traffic between sender and receiver. A PCI passthrough
setup, Fig. 5c, allowing the hypervisor to directly connect
the NIC to the guest OS. Finally, a bridged setup, Fig. 5d,
where the guest OS interfaces are connected to the host OS
interfaces using two bridges.
We choose to use 7 iperf client-server pairs, in order to

analyze the effect of a small amount of large flows, whose
processing cannot be distributed on all available DUT CPUs.
All experiments last for 20 seconds and omit the first second,
to avoid transient effects. Packets are sized according to
Ethernet MTU. All NICs distributes packets to the RX rings
by hashing both IP addresses and ports. Each experiment
result is averaged over ten runs for bandwidthmeasurements,
and a thousand runs for CPU measurements.
4.2 Experiments

The experiments consist in comparing mmb to FastClick [2],
XDP [13], and iptables. We evaluate two Linux kernel ver-
sions (i.e., 4.9 and 4.15) for both mmb and iptables because
they exhibit significant performance differences. Below, we
describe the compared tools.
FastClick [2] is a packet processor framework based on

the Click modular router [16]. It comes with multi-queue
support, zero-copy forwarding, I/O and computation batch-
ing, and integrates both DPDK and Netmap [19]. It also eases

Figure 6: Forwarding baselines. In PCI passthrough
and bridged setups, DUT is running VPP.

the writing of Click configurations, as the framework can
handle some level of parallelization automatically, without
requiring the user to allocate resources manually as in the
other Click-based frameworks.
eXpress Data Path (XDP) [13] is a programmable kernel

packet processor for Linux. It consists in an extra filtering
step in the TCP-IP stack, based on extended Berkeley Packet
Filters (eBPF), which are able to perform stateless lookups,
flow lookups, and flow state tracking. The main use cases of
XDP are pre-stackDDoS filtering, forwarding, load balancing,
and flow monitoring. Because eBPFs are introduced in the
4.14 kernel, we only evaluated XDP on the Ubuntu Server
18.04 DUT.

iptables is the builtin Linux firewall. It consists in multi-
ple filtering hooks positioned strategically in the network-
ing stack, that are triggered by packets as they progress in
the stack. However, the filtering is performed sequentially
and the packets that matches drop rules are not necessar-
ily dropped immediately and might stay longer in the pro-
cessing pipe. It comes with a connection tracking system,
conntrack.
The following use cases are considered2: (i) packet for-

warding, (ii) firewall-like packet filtering, (iii) packet filter-
ing with stateful flow tracking, and (iv) TCP options filtering.

4.3 Results
4.3.1 Forwarding. We first evaluate the TG bottleneck, by

running iperf using the direct setup. We obtain a 37.7 Gbps
throughput baseline. Then, we evaluate VPP, FastClick, and
kernel forwarding baselines for the indirect setup, and the
VPP forwarding baseline for the PCI passthrough and bridged
setups. The results are displayed in Fig. 6.
We observe that VPP, FastClick, and Linux kernel 4.15

forward packets at more than 99% of the direct baseline. The
Linux kernel 4.9 performs substantially worse, forwarding
only at 24.8 Gbps.

When running VPP, both the indirect and PCI passthrough
setups reach the direct baseline. Both setups continue to
behave similarly in following experiments. We note that this
advocates in favor of mmb deployment flexibility and from
now on, we report a single result that stands for both setups.
Unsurprisingly, the bridged performs very poorly at 3.6 Gbps,
emphasizing so the importance of direct I/O.

4



mmb: Flexible High-Speed Userspace Middleboxes ANRW ’19, July 22, 2019, Montreal, Canada

(a) Firewall 5-tuple filtering (b) Stateful matching (c) TCP Options matching

Figure 7: Performances in indirect setup.

4.3.2 Firewall. We configure mmb as a firewall and com-
pare it to a FastClick firewall configuration, an XDP-based
firewall, and the kernel forwarding with iptables filtering,
to evaluate their applicability to a basic firewall-like packet
filtering use case. To this end, we generate rules that clas-
sify packets based exclusively on five-tuples, to enable tools
withmask-based hash classification approaches (e.g., mmb and
XDP) to use a single table. We generate a new set of rules
for every experiment and ensure that no rules are matching
the traffic from the TGs. In the real world, these middlebox
policies can be used as a firewall as well as DDoS protection
measures. We inject these rules to mmb as stateless rules.
For the XDP firewall, we use a BPF hash map with five-

tuples as keys, and use it to store the type of rule (i.e., accept
or drop) and the count of accepted and dropped packets. Ev-
ery received packet is checked against the BPF for an existing
entry. If it exists, the related drop counter is incremented
and the packet dropped. Otherwise, the packet passes.
For FastClick, we use an IPFilter element that drops

packets that match a rule (i.e., none in our test), and will pass
them to the routing table otherwise. As IPFilter elements
can only support up to 216 rules, we have to chain several to
support more rules.

With iptables, we inject the rules to the FORWARD chain.
The bandwidth results are shown in Fig. 7a. It shows that

XDP and VPP with mmb on a 4.15 kernel, keep a constant
forwarding rate, regardless of the number of rules, both per-
forming very close to the direct baseline. The mmb firewall
on a 4.9 kernel shows signs of rule count dependent perfor-
mance, but we believe this is rather due to the kernel.

FastClick performance decreases even more quickly with
the number of rules (no data is depicted for more than 10,000
rules because the slow processing stalls the TGs). This is
due to the implementation of the IPFilter element that,
on the contrary to mmb and XDP that use a O(1) hash-based
approach to match packets to rules, uses a binary search
which requires O(log2 n) comparisons. Moreover, the match-
ing code has bad cache locality, further contributing to the
performance drop.

iptables on a 4.15 kernel surprisingly sustains a line-rate
bandwidth until 1,000 rules are inputted, while iptables on 4.9
kernel performance decreases already with very few rules.
This experiment indicates that the mmb mask-based fast

path, when relying on a single table, has a very limited impact
on the maximum achievable bandwidth of the forwarding
device, regardless on the number of rules.

4.3.3 Stateful. Next, we evaluate the chosen tools against
a packet filtering with stateful flow tracking use case. We
generate sets of rules matching on the received packets five-
tuple, similarly to the previous experiment, and we input a
static set of rules to guarantee that all traffic from the TGs
is matched, to enable flow tracking capabilities of the tested
tools. In the real world, this type of middlebox policies can
be used for private network-initiated reflexive ACLs.
We inject these rules to mmb as stateful rules in order to

have every packet matching at least one rule to add an en-
try to the connection table. All packets are also checked
against the opened connections, whose states are updated
accordingly.
With XDP, we build a stateful flow tracker using three

different BPF hash maps. One for five-tuple matching rules,
filled with the randomly generated rules, one for three-tuple
matching rules, with the static rules, and one for connections
tracking. The latter has hashes of the five-tuples as keys, and
maintains flow information (i.e., timestamps, flag-based TCP
state, packet counters).
With FastClick, we use an IPFilter element for flow

filtering and an IPRewriter element for connection tracking.
Each packet goes through the latter element when entering
and leaving the middlebox, triggering the creation of a new
flow entry if it is a flow first packet. If a packet matches
an existing flow, it is passed directly to the routing table
rather than to the IPFilter. IPRewriter is not thread-safe
and will only recognize a return packet as belonging to a
flow if it is processed on the same core that created the flow
entry. As Receive-Side-Scaling cannot enforce that, we use
one IPRewriter per core and keep separate flow state for
both directions.

5



ANRW ’19, July 22, 2019, Montreal, Canada K. Edeline et al.

iptables is configured as a stateful firewall by enabling
conntrack, the connection tracking module, and injecting
rules to the FORWARD chain.

Results are displayed in Fig. 7b. Again, mmb on a 4.15 kernel
and XDP have constant line-rate performances. iptables on a
4.15 also shows similar performance than for the stateless fire-
wall experiment, while iptables kernel 4.9 with conntrack
performs worse.
FastClick performs better than for the stateless case, be-

cause the costly filtering step is done only for the first packet
of each flow. However, its performance is still significantly
lower than that of mmb or XDP.

4.3.4 TCP Options. Finally, we evaluate the performance
of traffic engineering policies that matches TCP Options. The
processing of such policies is more complex because it re-
quires linked list parsing for every packet, and the presence
and order of TCP Options in a TCP packet is not known a
priori. Rules are generated to match on random value of ran-
dom TCP Options. We do not mangle TCP options because
it would disrupt TCP and affect its performance.

FastClick is not tested against this use case because none
of the distributed elements is able to match on variable-
offset TCP options. XDP is also not tested against this use
case because eBPF stack space is limited to 512 bytes, which
is exceeded by the task of implementing complex packet
parsing.

The bandwidth measurement results, displayed in Fig. 7c,
indicates that the threshold of injected TCP Options-based
classification rules to sustain line-rate packet forwarding is
78. This is explained by the CPU-time required for linked-list
parsing packets.

4.3.5 Limitations. mmb sustains line-rate processing for
the selected use case. We evaluated its stability limit when
handling rules that match on different combination of fields
(i.e., one rule per hash table), and found a clear limit of 26
combinations before after which the performances start to
diminish. This is explained by the limited cache size and the
complexity of the matching algorithm, that is linear with
regards to the tables. We advocate that this limitation is
largely sufficient for a realistic usage.

XDP runs almost at line rate for both firewall (Fig. 7a) and
stateful (Fig. 7b) use cases, which makes it a good in-kernel
alternative to mmb. However, BPF limited stack space does not
allow for more complex packet manipulation, which restricts
XDP applicability.

While FastClick is able to sustain line-rate forwarding,
combining elements into more complex packet processing is
hardened by thread-safeness and core dependence problems.
Moreover, it does not support large numbers of middlebox
policies.

5 RELATEDWORK
Over the years, numerous works have been proposed for

fast and efficient packet processing. One can cite iptables,
PF_RING [5] (a software I/O framework that modifies the
socket API to avoid buffer reallocation and bypass unnec-
essary kernel functionalities to improve the performances
of packet capture from those of libpcap), PacketShader [12]
(a GPU-accelerated software router framework, that per-
form I/O batching and kernel bypass) and eXpress Data Path
(XDP) [13], a high-performance programmable kernel packet
processor for Linux.

Themore specificmOS [14] is a networking stack for build-
ing stateful middleboxes. Its ambition is to provide a high-
performance general-purpose flow management mechanism.
It comes with an API to allow for building middleboxes appli-
cations requiring flow state tracking such as stateful NATs,
or payload reassembly such as NIDS/NIPS and L7 proto-
col analyzers. mOS is based on mTCP [11], a parallelizable
userspace TCP/IP stack.

TheClickmodular router is a flexible router framework [16].
It was not specifically designed for high-speed packet pro-
cessing as it relies on the Linux kernel via system calls for
certain tasks, leading so into an increase in processing time.
Further, on the contrary to mmb, Click requires the user to
write C++ classes to build new functionalities. RouteBricks [6]
brings hardware multi-queue support to Click, and introduce
an architecture for parallel execution of router functional-
ities as a first step towards fast modular software routers.
DoubleClick [15] integrates PacketShader I/O batching and
computation batching. Moreover, it also takes advantage
of the non-uniform memory access (NUMA) CPU architec-
ture. MiddleClick [1] further enhances FastClick with flow-
processing capabilities. It comes, among others, with an op-
tional middlebox-oriented TCP stack.

This paper has shown that VPP with mmb performs better
than those state of the art solutions for fast packet middlebox
processing.

6 CONCLUSION
This paper proposed mmb (Modular Middlebox), a high-

performance modular middlebox, implemented as a VPP
plugin. mmb can be used to deploy out-of-the box middle-
boxes and to easily and intuitively configure custom policies
through its command-line interface, on the contrary to state-
of-the-art solutions usually requiring dedicated hardware,
specific OS or non-trivial programming.
We compared mmb to other high-speed packet processors

and demonstrated, through several use cases, that mmb is
able to sustain packet forwarding at line-rate speed when
applying a large number of diverse and complex classification
and mangling rules. mmb is open source and freely available.1

6



mmb: Flexible High-Speed Userspace Middleboxes ANRW ’19, July 22, 2019, Montreal, Canada

REFERENCES
[1] T. Barbette, C. Soldani, R. Gaillard, and L. Mathy. 2018. Buliding a

Chain of High-Speed VNFs in No Time. In Proc. IEEE International
Conference on High Performance Switching and Routing.

[2] T. Barbette, C. Soldani, and L. Mathy. 2015. Fast Userspace Packet Pro-
cessing. In Proc. ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS).

[3] J. D. Brouer and T. Høiland-Jørgensen. 2018. XDP – Challenges and
Future Work. In Proc. Linux Plumbers Conference.

[4] Cisco. 2002. Vector Packet Processing (VPP). (2002). See https://fd.io.
[5] L. Deri. 2004. Improving Passive Packet Capture: Beyond Device

Polling. In Proc. International System Administration and Network En-
gineering Conference (SANE).

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. 2009. RouteBricks: Exploiting
Parallelism to Scale Software Routers. In Proc. Symposium on Operating
Systems Principles (SIGOPS).

[7] K. Edeline and B. Donnet. 2015. Towards aMiddlebox Policy Taxonomy:
Path Impairments. In Proc. IEEE International Workshop on Science for
Communication Networks (NetSciCom).

[8] K. Edeline and B. Donnet. 2017. A First Look at the Prevalence and
Persistence of Middleboxes in theWild. In Proc. International Teletraffic
Congress (ITC).

[9] K. Edeline and B. Donnet. 2017. An Observation-Based Middlebox
Policy Taxonomy. In Proc. ACM SIGCOMM CoNEXT Student Workshop.

[10] K. Edeline, J. Iurman, C. Soldani, and B. Donnet. 2019. mmb: Flexible
High-Speed Userspace Middleboxes. cs.NI 1904.11277. arXiv.

[11] J. EunYoung, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. 2014. mTCP: a Highly Scalable User-Level TCP Stack for
Multicore Systems. In Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[12] S. Han, K. Jang, K.S. Park, and S. Moon. 2010. PacketShader: A GPU-
Accelerated Software Router. In Proc. ACM SIGCOMM.

[13] T. Høiland-Jørgensen, J. D. Brouer, d. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller. 2018. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating System Kernel. In
Proc. ACM SIGCOMM CoNEXT.

[14] M. A. Jamshed, Y. G.Moon, D. Kim, D. Han, and K. S. Park. 2017. mOS: A
Reusable Networking Stack for Flow Monitoring Middleboxes. In Proc.
USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[15] J. Kim, S. Huh, K. Jang, K. S. Park, and S. Moon. 2012. The Power of
Batching in the Click Modular Router. In Proc. Asia-Pacific Workshop
on Systems.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. 2000. The
Click Modular Router. ACM Transactions on Computer Systems 18, 3
(August 2000), 263–297.

[17] Linaro Networking Group (LNG). 2013. OpenDataPlane (ODP). (2013).
See https://www.opendataplane.org.

[18] L. Linguaglossa, D. Rossi, S. Pontarelli, D. Barach, D. Marjon, and P.
Pfister. 2018. High-Speed Software Data Plane via Vectorized Packet
Processing. IEEE Communications Magazine 56, 12 (December 2018),
97–103.

[19] L. Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In
Proc. USENIX Security Symposium.

[20] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.
Sekar. 2012. Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Proc. ACM SIGCOMM.

[21] A. Tirumala, F. Qin, J. Duagn, J. Ferguson, and K. Gibbs. 2005. Iperf,
the TCP/UDP Bandwidth Measurement Tool. (2005). See http://iperf.
sourceforge.net/.

[22] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. 2011. An Untold Story
of Middleboxes in Cellular Networks. In Proc. ACM SIGCOMM.

7

https://fd.io
https://www.opendataplane.org
http://iperf.sourceforge.net/
http://iperf.sourceforge.net/

	Abstract
	1 Introduction
	2 VPP Background
	3 Modular Middlebox
	3.1 General Overview
	3.2 Classification Node
	3.3 Rewrite Node

	4 Performance
	4.1 Testbed Description
	4.2 Experiments
	4.3 Results

	5 Related Work
	6 Conclusion
	References

