
Context and challenges

Mesh management technique

 This work consists in improving the 3D thermal Finite Element Analysis of a

additive manufacturing process in the fully implicit in-house Finite Element 

code “Metafor” [1].

 The challenges of such a simulation come from multiple sources:

 The nature of the process requires a large deformation thermo-mechanical 

simulation;

 The modeling of the material law is complex.

 The geometry imposes a very fine discretization for accurate results. 

 The process requires altering the mesh geometry of the model during the 

simulation to model the addition of matter. 

 This work consisted in implementing an element activation method in 

Metafor inspired by the element deletion algorithm used in crack 

propagation.

Verification: Test from Chiumenti et al.[3] (Soft: COMET)

Ongoing: Test from Jardin et al.[4] (Soft:Lagamine)
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 Finite elements and boundary conditions (convection/radiation/laser heat 

flux) are all created at the start of the simulation but only enter the 

computation after their activation (born-dead elements).

 Elements and boundary conditions are activated/deactivated based on the 

current laser position/mesh geometry (see below).

 The method used is adapted from the deactivation of elements and boundary 

conditions used in crack propagation [2], instead of having a “crack 

propagation criterion” we have an “element activation criterion” which is for 

now based on a pre-defined laser position throughout the simulation.
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TEMPERATURE

1. Known configuration at time t.

2. Computation of laser position at time t + Δt .

3. Activation of finite elements based on the new laser position.

4. Deactivation of boundary conditions and heat flux based on 

the new mesh geometry and laser position.

5. Activation of boundary conditions and heat flux based on the 

new mesh geometry and laser position.

1. 2. 3. 4. 5.

 Realise thermomechanical simulations:

 First thermomechanical simulations have already been made.

 More implementation is required before validating the model against the 

literature (e.g. the implementation of a relaxation/annealing temperature in 

Metafor is required,…)

 Improve of the FEM modeling of the mesh/geometry for AM:

 Implement X-FEM to model the geometry of additive manufacturing 

processes to remove the constraint of a very fine mesh imposed by the layer 

height without loss of accuracy:

Final temperature distribution: Metafor
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Final temperature distribution: COMET [3]
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COMET

Temperature evolution at 2 

Thermocouples: Metafor/COMET

The user simply needs to define the laser position 

over time and the software handles the activation. 

Good  agreement of the 

temperature evolution 

between COMET and 

Metafor.

Thermal study of an AM process using 

Laser Solid Forming of Ti-6Al-4V metal powder

Both Metafor and COMET 

could predict the 

experimental oxidation 

zone.
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An investigation of the differences between Metafor and Lagamine is underway

LAGAMINE 

Software

LAGAMINE

Experimental

Metafor

Experimental

Time[s]

T
e

m
p

e
ra

tu
re

[C
°]


