13th International Conference on Applications of Statistics and Probability in Civil Engineering

26-30, 2019 Seoul National University Seoul, South Korea

POMDP based Maintenance Optimization of Offshore Wind Substructures including Monitoring

ICASP

P.G. Morato, Q.A. Mai & P. Rigo

Department of ArGEnCO, University of Liege (Belgium)

J.S. Nielsen

Department of Civil Engineering, Aalborg University (Denmark)

May, 2019 - Seoul, South Korea

Introduction – Offshore wind substructures

Sequential decision making under uncertainty

Maintenance decision problem

A

AALBORG UNIVERSIT

✓ LIÈGE

Maintenance decision problem

'Pre-posterior decision analysis'...

Partially Observable Markov Decision Process (POMDP)

(1) Able to solve large state problems

- (2) Evaluation of the Value of Monitoring
- (3) Easy to model/evaluate: Dynamic Bayesian Net

'Grid-based' technique

- Finite set of belief points
- Extrapolation/interpolation

- 'Optimally' reachable beliefs
- Large state space (Robotics)

Methodology (Inspection + Monitoring)

(1) Able to solve large state problems

(2) Evaluation of the Value of Monitoring

(3) Easy to model/evaluate: Dynamic Bayesian Net

- (1) Able to solve large state problems
- (2) Evaluation of the Value of Monitoring
- (3) Easy to model/evaluate: Dynamic Bayesian Net

Fracture mechanics - Paris' Law

$$g_{FM(t)} = a_c - \left[\left(1 - \frac{m}{2} \right) C \pi^{\frac{m}{2}} \Delta S^m \Delta n + a_{t-1}^{\left(1 - \frac{m}{2}\right)} \right]^{\frac{2}{2-m}}$$

given a_0

(1) States: 200

(2) Combined actions

- **Do-nothing** + No inspection
- Do-nothing + Inspection
- **Do-nothing** + Monitoring
- Repair + No inspection

(3) Transitions

Parameter	Distribution	Mean	StDev
a_0	EXP	0.2	-
a_c	Determ.	9	-
ln(C)	Determ.	-33.5	-
m	Determ.	3.5	-
ΔS	NORMAL	60	10
Δn	Determ.	10 ⁶	-

Application: Setting up the model

Infinite horizon POMDP - SARSOP Solving

12

'SARSOP Algorithm': POMDP 200 states

$$NVoI = VoI - C_{mon} = E(C_0) - E(C_1) - C_{mon}$$

'SARSOP Algorithm': POMDP 200 states

14

- No detection
- Mild damage
- Severe damage

- Estimation of the Value of Monitoring
- Large state space Reasonable CPU Time
- Only time-variant parameters
- Future:

15

- Include time-invariant parameters
- Compare with finite horizon POMDPs

13th International Conference on Applications of Statistics and Probability in Civil Engineering

26-30, 2019 Seoul National University Seoul, South Korea

POMDP based Maintenance Optimization of Offshore Wind Substructures including Monitoring

ICASP 1

P.G. Morato pgmorato@uliege.be

May, 2019 - Seoul, South Korea