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L’équation de Cauchy

L’équation fonctionnelle suivante a été étudiée par Cauchy au
XVIIème siècle :

f (x + y) = f (x) + f (y)

où x , y ∈ R.

Propriétés des solutions
(1) Si f est continu, alors f (x) = ax pour un certain a ∈ R.
(2) Tout solution discontinue n’est continue nulle part.
(3) Il existe des solutions nulle part continues (AC)
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Solutions nulle part continues

Soit B une base de R vu comme Q-vectoriel.
∀b ∈ B, fixons fb ∈ Q et supposons qu’il existe b0, b′0 ∈ B
tels que fb0 = fb′

0
= 1.

Si x = λ1b1 + · · ·+ λnbn, posons

f (x) = λ1fb1 + · · ·+ λnfbn .

Remarque
Le graphe de f est dense dans R2.
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Opérateurs de différences finies

Si h ∈ Rn et f : Rn → R, on pose{
∆hf (x) = f (x + h)− f (x)
∆m+1

h f (x) = ∆h(∆m
h f )(x)

pour tout x ∈ R et tout m ∈ N.

Développement de la différence finie d’ordre m

∆m
h f (x) =

m∑
j=0

(−1)m−jC j
mf (x + jh)
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Equation de Cauchy généralisée et de Fréchet

L’équation de départ dans Rn peut se réécrire

∆y f (x) = f (y)

et sa généralisation à l’ordre supérieur

∆m
h f (x) = m!f (h).

Remarquons que
∆m+1

h f (x) = 0.

La seconde équation sera dite de Fréchet.
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Résolution de l’équation de Fréchet (dimension 1)

Lemme
Si f : R→ R est bornée presque partout sur ]a, b[ et si
∆m

h f = 0 sur ]a, b[ pour presque tout h dans ]− ε, ε[, alors f
est borné sur ]a, b[.

Théorème
Si f : R→ R est une fonction bornée presque partout sur un
voisinage de x0 ∈ R et si ∆m

h f = 0 au voisinage de x0 pour
presque tout h dans un voisinage de 0, alors f est un polynôme
de degré inférieur ou égal à m − 1 au voisinage de x0.

Arman Molla Sur quelques généralisations des équations de Cauchy et de Fréchet



Passage en dimension n et résolution de l’équation
de Cauchy

Généralisation possible du résultat précédent à Rn.

Corollaire
Si f : Rn → R est une fonction bornée presque partout sur un
voisinage de x0 ∈ Rn et si ∆m

h f (x) = m!f (h) pour tout x au
voisinage de x0 et pour presque tout h dans un voisinage de 0,
alors f est un polynôme homogène de degré m au voisinage de
x0, i.e.

f (x) =
∑
|α|=m

aαxα1
1 · · · xαn

n

au voisinage de x0.

Arman Molla Sur quelques généralisations des équations de Cauchy et de Fréchet



Différence finie dans D′(Rn)

Si f ∈ L1
loc(Rn), alors∫

∆m
h f (x)ϕ(x) dx =

∫
f (x)∆m

−hϕ(x) dx ∀ϕ ∈ D(Rn).

Définition
Si T est une distribution de Rn et h ∈ Rn, on définit
∆m

h T ∈ D′(Rn) par

(∆m
h T )(ϕ) = T (∆m

−hϕ).
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Equation de Fréchet au sens distributions

Proposition
Si T ∈ D′(Rn) vérifie ∆m

h T = 0 pour presque tout h dans Rn,
alors T est une distribution associée à un polynôme de degré
inférieur ou égal à m − 1.

Corollaire : même résultat dans L1
loc(Rn).

Quid de l’équation de Cauchy ?
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Généralisation de la différence finie dans D′(Rn)

Equation de Cauchy équivalente dans L1
loc(Rn) :∫∫

∆m
h f (x)(ψ⊗ϕ)(x , h) dx dh = m!

∫∫
f (h)(ψ⊗ϕ)(x , h) dx dh

pour tout ϕ, ψ ∈ D(Rn). Comme D(Rn)⊗D(Rn) est dense
dans D(Rn × Rn), l’équation peut s’étendre après changement
de variables∫∫

f (x)[∆m
−hϕ(·, h)](x) dx dh = m!

∫∫
f (h)ϕ(x , h) dx dh

pour tout ϕ ∈ D(Rn × Rn).

Second membre → Distribution associée à la fonction p∗2f
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Pullback d’une distribution par une submersion

Définition
Soient f : X → Y et g : Y → Z deux applications entre deux
espaces topologiques. Alors le pullback de g par f est
f ∗g = g ◦ f .

Théorème
Si U est ouvert dans Rn et V ouvert dans Rm et si f : U → V
est une submersion de classe C∞ et T une distribution sur U
alors il existe une unique extension continue de
f ∗ : C 0(V )→ C 0(U) en une application

f ∗ : D′(V )→ D′(U)
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Seconde généralisation de la différence finie dans
D′(Rn)

Proposition
Les projections de Rn

pj : (x , y) 7→ x + jy , qj : (x , y) 7→ jx + y

sont des submersions.

Définition
L’opérateur de différence finie généralisé au sens distribution
∆m : D′(Rn)→ D′(Rn × Rn) est définie par

∆m =
m∑

j=0
(−1)m−jC j

m p∗j .
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L’équation de Cauchy au sens distribution

L’équation de Cauchy au sens distribution s’écrit alors

∆mT = m!q∗0T .

Théorème
Si T ∈ D′(Rn) vérifie ∆mT = m!q∗0T , alors T est une
distribution associée à un polynôme homogène de degré m.

Développement de ∆m

∆mT (ϕ) =
∫

∆m
h T (ϕ(·, h)) dh ∀ϕ ∈ D(Rn × Rn).
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