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L'équation de Cauchy

L’'équation fonctionnelle suivante a été étudiée par Cauchy au
XVlléme siécle :

fx +y)=f(x)+f(y)

ou x,y € R.

Propriétés des solutions

(1) Si f est continu, alors f(x) = ax pour un certain a € R.
(2) Tout solution discontinue n'est continue nulle part.

(3) Il existe des solutions nulle part continues (AC)
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Solutions nulle part continues

@ Soit B une base de R vu comme Q-vectoriel.

e Vb € B, fixons f, € Q et supposons qu'il existe by, by € B
tels que fp, = fpy = 1.
@ Si x = A\iby + -+ + \,b,, posons

f(X) = )\lfbl —|— s + )\nfb,,‘

Remarque
Le graphe de f est dense dans R?.
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Opérateurs de différences finies

SiheR"et f:R"” — R, on pose

{ Apf(x) = f(x+h)—f(x)
AT (x) = Da(AFF)(x)

pour tout x € R et tout m € N.

Développement de la différence finie d'ordre m

m

ARf(x) = (—=1)" I CLf(x + jh)

j=0
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Equation de Cauchy généralisée et de Fréchet

L'équation de départ dans R" peut se réécrire
Ay f(x) =f(y)
et sa généralisation a I'ordre supérieur
AT f(x) = mlf(h).

Remarquons que
A (x) = 0.

La seconde équation sera dite de Fréchet.
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Résolution de |'équation de Fréchet (dimension 1)

Lemme

Si f : R — R est bornée presque partout sur ]a, b et si

AJf =0 sur |a, b[ pour presque tout h dans | — ¢, ¢[, alors f
est borné sur ]a, b|.

Théoréme

Si f : R — R est une fonction bornée presque partout sur un
voisinage de xo € R et si A7"f = 0 au voisinage de xp pour
presque tout h dans un voisinage de 0, alors f est un polynome
de degré inférieur ou égal a m — 1 au voisinage de xq.

v
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Passage en dimension n et résolution de I'équation

de Cauchy

Généralisation possible du résultat précédent a R".

Corollaire

Si f : R” — R est une fonction bornée presque partout sur un
voisinage de xo € R” et si AJ'f(x) = m!f(h) pour tout x au

voisinage de xp et pour presque tout h dans un voisinage de 0,
alors f est un polynéme homogene de degré m au voisinage de

X0, i.e.
f(x) = Z Xyt xon

|laj=m

au voisinage de xp.
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Différence finie dans D’(R")

Si f € L.(R"), alors

loc

[ Arf(x)e(x) dx = [ Fx)ATp(x) d ¥ € D(R?),

Définition

Si T est une distribution de R" et h € R", on définit
AFT € D'(R") par

(AR T)(p) = T(AT4p).
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Equation de Fréchet au sens distributions

Proposition

Si T € D'(R") vérifie A’ T = 0 pour presque tout h dans R”,
alors T est une distribution associée a un polynome de degré
inférieur ou égal a m — 1.

Corollaire : méme résultat dans L} _(R").

Quid de I'équation de Cauchy?
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Généralisation de la différence finie dans D'(R")

Equation de Cauchy équivalente dans L} (R") :

//A’"f (¥@¢)(x, h) dxdh—ml// )($@¢)(x, h) dx dh
pour tout ¢, € D(R"). Comme D(R") ® D(R") est dense

dans D(R" x R"), I'équation peut s'étendre aprés changement
de variables

J[ FGOIAT o)) d dh = mi [ F(R)o(. ) e b

pour tout ¢ € D(R" x R").

Second membre — Distribution associée a la fonction p;f
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Pullback d’'une distribution par une submersion

Définition

Soient f : X — Y et g: Y — Z deux applications entre deux
espaces topologiques. Alors le pullback de g par f est
f*g=gof.

Théoreme
Si U est ouvert dans R” et V ouvert dans R™ etsi f: U — V
est une submersion de classe C* et T une distribution sur U

alors il existe une unique extension continue de
f*: C°(V) — C°(U) en une application

. D(V) = D'(U)
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Seconde généralisation de la différence finie dans
D'(R")

Proposition
Les projections de R”

pi(x,y) = x+jy, q:(x,y)—=jix+y

sont des submersions.

Définition

L'opérateur de différence finie généralisé au sens distribution
A" D'(R") — D'(R" x R") est définie par

m

A" =3 (-1)"7C, by

j=0
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L'équation de Cauchy au sens distribution

L'équation de Cauchy au sens distribution s'écrit alors

AT =mlgyT.

Si T € D'(R") vérifie A™T = mlqgs T, alors T est une
distribution associée a un polynome homogéne de degré m.

v

Développement de A™

/ AT ) dh ¥y € D(R" x R").

\
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