Atomic Data and Nuclear Data Tables 120 (2018) 293-322

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Second spectrum of Chromium (Cr II) Part I: New energy level reanalysis

Safa Bouazza^{a,*}, Pascal Quinet^{b,c}, Patrick Palmeri^b

^a Département de Physique, Université de Reims-Champagne, UFR SEN, BP 1039 F-51687 Reims Cedex 2, France

^b Physique Atomique et Astrophysique, Université de Mons UMONS, B-7000 Mons, Belgium

^c IPNAS, Université de Liège, B-4000 Liège, Belgium

ARTICLE INFO

Article history: Received 24 March 2017 Received in revised form 10 May 2017 Accepted 10 May 2017 Available online 7 June 2017

Keywords: Energy-levels Leading components Landé g_j-factor Chromium first ion

ABSTRACT

Using a linked-parametric technique of level-fitting calculations in a multiconfiguration basis, a parametric fine structure (fs) analysis for both even and odd parities of Cr II was achieved. For the first time the fs parameter, magnetic Landé g-factor and the percentage of leading eigenvector values for more than one thousand levels are determined and given for these two sets. This study has led us to confirm in the whole the well founded basis of NIST team works but inevitably also to exchange assignments of some levels classified in earlier lists of energy levels and to shift positions of some quartets like ${}^{4}F_{J}$ for instance. Furthermore we take this opportunity to add our predicted doublet, quartet and sextet locations for missing experimental levels up to 124,000 cm⁻¹.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: safa.bouazza@univ-reims.fr (S. Bouazza).

Contents

1.	Introduction.		. 294
2.	Analysis proc	edure of the fine structure and results	. 294
	2.1. Even-	parity configurations	. 294
	2.2. Odd-r	arity configurations	. 295
3.	Conclusion		. 295
	Acknowledgr	nents	. 295
	References		. 295
	Explanation of	of Tables	. 297
	Table 1.	Comparison of the experimental and calculated energy values, percentages of first and second components and g_l -factors for	
		Cr II even-parity configurations	. 297
	Table 2.	Values of the intra-configuration fine structure parameters for Cr II even configurations	. 297
	Table 3.	Values of even configuration interaction parameters	. 297
	Table 4.	Proposals of new positions for the quartet 3d ⁴ (⁵ D)5d ⁴ F	. 297
	Table 5.	Comparison of the experimental and calculated energy values, percentages of first and second components and g ₁ -factors for	
		Cr II odd-parity configurations	. 297
	Table 6.	Values of the intra-configuration fine structure parameters for Cr II odd configurations	. 297
	Table 7.	Values of odd configuration interaction parameters	. 297

1. Introduction

Chromium is the first element in group 6, of the transition metals, well known for its remarkable magnetic properties: it is the only elemental solid which shows antiferromagnetic ordering at room temperature and below; above 38 °C it changes to paramagnetic. Naturally occurring chromium is composed of three stable isotopes: ⁵²Cr, ⁵³Cr and ⁵⁴Cr, with abundances of 83.79%, 9.50% and 2.37% and nuclear spins of 0, 3/2 and 0, respectively. Consequentially hyperfine structure (hfs) splitting of only enriched 53 Cr exists and was possible to evaluate like in [1,2] for atomic chromium but unfortunately no similar observations were achieved for ionic chromium. Furthermore, up to now, no isotope shift measurements are found in literature. As in many cases for different elements, Kiess [3] initiated the Cr II spectrum analysis. He reported observations of spectra excited in direct current arcs and condensed sparks between chromium electrodes. He succeeded in classifying of 1843 lines linking 138 even-parity levels of 3d⁵, 3d⁴4s and 3d³4s² configurations with 139 oddparity levels belonging to only one configuration: 3d⁴4p. In 1952 Moore published a compilation of the energy levels and some of its ions [4]. This work was updated by Sugar and Corliss in 1985 [5]. Johansson extended the Kiess study a half century later, particularly in the near-infrared region and analyzed 450 additional levels [6]. Sansonetti et al. [7,8] reported in turn new observations of Cr II some years later, in the near-ultra-violet region 1140-3400 Å, using 10.7 m normal incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer and then more than 3600 lines were classified linking 283 even levels and 368 odd levels. This work was extended two years later [8] by a large number of measurements in the region 2850–37,900 Å, presenting a list of more than 5300 lines linking this time 456 even and 457 odd levels. In this laborious compilation one can find highly excited level positions of the 3d⁴5g, 3d⁴6g and even 3d⁴6h configurations, up to 124,500 cm⁻¹. Finally, let us point also the useful implication in this item of Saloman who gave a general survey of the situation [9].

The aim of this study is to perform oscillator strength parameterization and Hartree–Fock eigenvector calculations. In this regard, it is well known that the use of optimized eigenvectors obtained through a least-squares fitting of the calculated energy levels to the available experimental data may considerably improve the final results, not only for the atomic structure but also for radiative transition rates, magnetic Landé g-factors etc. Moreover, in many of our previous works, semi-empirically optimized eigenvectors turned out very useful for the confirmation of, or identification of errors in, tentative energy-level analyses. It also helped, on the one hand, in ascertaining the proper spectroscopic designation for identifying experimentally measured but not classified levels and, on the other hand, in predicting energy values of missing (not experimentally observed) levels. We want to take advantage of these excellent works of the NIST team to get level eigenvectors in order to transform into actual intermediate coupling the transition matrix beforehand obtained in pure LS coupling with help of Racah algebra [10–12]. In order to determine the radiative transition rates in the near future, we first need to deeply investigate both oddand even-parities, i.e. two sets of six and eleven configurations respectively in this work, some of whose of their energy levels are determined experimentally. As severe tests for level eigenvector validity one can use generally experimental hfs data. In the absence of the latter in the case of Cr II we will turn our efforts towards experimental oscillator strength or transition probability values, plentifully available in literature [13-16].

2. Analysis procedure of the fine structure and results

2.1. Even-parity configurations

We gave in our previous papers all details of the analysis procedure used to study fine structure of atoms and ions, see for instance [17–21]. Nevertheless we prefer to remind the reader that this procedure includes electrostatic and spin dependent interactions, which are represented by the Slater integrals F^k , G^k , R^k and the spin–orbit parameters ζ_{nl} . In our model, the configuration interaction was considered among the following even-parity configurations:

$$3d^5 + \sum_{n=4}^{n=9} 3d^4ns + \sum_{n'=4}^{n'=6} 3d^4n'd + 3d^34s^2.$$

The interaction effects with distant configurations influencing the term structure were taken into account by two body parameters α and β representing the one- and two-electron excitations respectively and by the three body parameters $T(d^2s)$, T2(22) and T3(42). The effects of excitations of one electron from a closed shell to an open one were taken into account by electrostatically correlated spin–orbit interaction [22,23]. The other details of the whole procedure used here are described also in Refs. [24–26]. The fs least squares fitting procedure has been carried out over

295

276 energy levels attributed to this extended model. With 445 parameters, 31 of which being treated as free, a very good fit has been achieved, resulting in a mean deviation for the energy level values of $\sigma(E) = 57 \text{ cm}^{-1}$. In Table 1 are given the observed energy levels, calculated eigenvalues, percentages of first and second components of the wave functions and their corresponding LS term designations. Moreover in this Table the calculated Landé g₁factors, deduced from the eigenvector compositions, are compared with experimental ones when they are available in the literature. Tables 2 and 3 contain the values of fs parameters obtained through our fitting procedure. We have mentioned the number of experimental works in the Introduction as large even if many observed energy levels are missing. This is due mainly to the hard and long perusal and careful interpretation of recorded spectra obtained with the help of Fourier Transform spectrometer. For this reason we propose our predicted values in the column 3 of Table 2 to suggest the positions of missing energy levels absent in column 2 with rather quite acceptable accuracy. In this work we have discarded or shifted some questionable energy levels, particularly those concerning $3d^45d^{-4}F$. We suggest clarifying the situation of these quartets 3d⁴5d ⁴F since from our analysis these levels should be located around proposed values given in Table 4 within uncertainty interval of about 50 cm⁻¹. We have to point out also other divergences with literature data about $3d^{4}(^{5}D)5d^{-6}S_{5/2}$ and $3d^{4}(^{5}D)6d^{-6}S_{5/2}$. We propose 111,469 cm⁻¹ and 119,789 cm⁻¹ respectively instead of 109394.430 cm⁻¹ and 117672.453 cm⁻¹. In Table 2 we also give our predicted values up to 124000 $\rm cm^{-1}$ in some cases, value close enough to ionization energy: 132971.02 (0.12) cm⁻¹ [27]. In general one can observe a satisfactory agreement between the experimental values given in literature and our calculated data. In [27], Sansonetti et al. corrected some assignments proposed two years earlier [8] (some quartets belong rather to 3d⁴4d than to 3d⁴5d for instance) and we confirm these changes. Furthermore we agree totally with the optimized energy levels given in Table 3 of [27]. Nevertheless in the energy interval 103,000–108,000 cm⁻¹ Sansonetti et al. [27] list the positions for $3d^{4}({}^{3}F)d^{4}F$, $3d^{4}({}^{3}P)4d^{4}F$ and $3d^{4}({}^{3}H)4d^{4}F$ levels while Saloman [9] preferred to omit these level positions. We have found courageous that Sansonetti provided these questionable data since we think these levels belong really to 3d⁴4d but there remain sometimes some issues in the level labeling.

2.2. Odd-parity configurations

From our experience in fs studies we know that the investigations of odd-parity configuration levels in neutral and lowly ionized iron-group atoms are more difficult than those concerning even-parity configuration ones due to the presence of complex configuration-interaction effects particularly between configurations of the type $3d^{k}4p$, $3d^{k-1}4s4p$ and $3d^{k-2}4s^{2}4p$. In the case of the Cr II spectrum, the levels of $3d^{3}4s4p$ overlap levels from both the $3d^{2}4s^{2}4p$ and $3d^{4}4p$ configurations and generally this entanglement is hard to delimit. In this analysis we have considered only configurations whose experimental energy levels are given in literature, namely:

$$3d^{4}4p + 3d^{4}5p + 3d^{4}6p + 3d^{3}4s4p + 3d^{4}4f + 3d^{4}5f$$

in order to avoid a kind of absorption of fs parameters in the presence of level resonance like electrostatic repulsions for instance. The quasi-totality of experimentally known odd-parity levels, located up to 124,000 cm⁻¹, i.e. 354 levels, were fitted using 23 variable parameters among a total number of 245. Since we have found some wrong experimental levels belonging to the evenparity configurations we first have paid attention to looking for questionable experimental odd-parity levels. For this purpose we have discarded at the beginning the level $3d^{3}({}^{4}F)4s4p({}^{1}P){}^{4}F_{9/2}$ at 105203.460 cm⁻¹ because its fitting was very bad. The levels of this quartet might be located higher. In [8] Sansonetti et al. have omitted to list 5 levels of the sextet $3d^{4}({}^{5}D)5p {}^{6}F$, giving only the level ${}^{6}F_{3/2}$. Yet these levels, given previously in [7] exist. In Table 5 we give our fitting procedure results with the calculated g_{J} -value and leading eigenvector components and in Tables 6–7 are displayed the fs radial parameter values.

3. Conclusion

We took advantage of these huge and excellent works of the NIST team, giving a relevant number of experimental energy levels (more than 500) of the second spectrum of chromium to make a list of at least 1000 Cr II energy levels with high reliability, predicting more than 500 of them, missing in previous works. It is a pity that a Zeeman study was not achieved in the same way because sometimes we have faced some problems and experimental Landéfactors would surely help us to take reasonable decisions, recurring to a comparison with our calculated g_l values. Despite this deficiency we have performed successful fitting procedures with low standard deviations and then without these fingerprints we remain optimistic concerning our computed data and our change proposals too. We will confirm the contributions of this fruitful study in Part II, Part III and Part IV of this global work on the Cr II spectrum, showing very satisfactory agreements between experimental oscillator strengths and our calculated data obtained thanks to our deduced level eigenvector amplitudes, strengthening by the way the well founded basis of our fine structure analysis.

Acknowledgments

PQ and PP are respectively Research Director and Research Associate of the Belgian Fund for Scientific Research F.R.S.-FNRS. Financial support from this organization is deeply acknowledged. SB thanks deeply Dr. J.C. Boisson for technical assistance.

References

- [1] T. Reinhardt, J. Maichel, M. Bauman, J. Krüger, Z. Phys. D 34 (1995) 87.
- [2] J. Marek, Astron. Astrophys. 44 (1975) 69.
- [3] C.C. Kiess, J. Res. Natl. Bur. Stand. 47 (1951) 387.
- [4] C.E. Moore, Atomic Energy Levels, Vol. II, National Bureau of Standards, (US), Circular N 467, Washigton DC, 1952.
- [5] J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14 (Suppl. 2) (1985) 279.
- [6] S. Johansson, T. Zethson, H. Hartman, et al., Astron. Astrophys. 361 (2000) 977.
- [7] C.J. Sansonetti, F. Kerber, J. Reader, M.R. Rosa, Astrophys. J. Suppl. 153 (2004) 555.
- [8] C.J. Sansonetti, G. Nave, J. Reader, F. Kerber, Astrophys. J. Suppl. Ser. 202 (2012) 15.
- [9] E.B. Saloman, J. Phys. Chem. Ref. Data 41 (2012) N4.
- [10] J. Ruckowski, M. Elantkowska, J. Dembczynski, J. Quant. Spectrosc. Radiat. Transfer 149 (2014) 168.
- [11] J. Ruckowski, S. Bouazza, M. Elantkowska, J. Dembczynski, J. Quant. Spectrosc. Radiat. Transfer 155 (2015) 1.
- [12] S. Bouazza, J. Spectrosc. Radiat. Transfer 187 (2017) 280.
- [13] H. Nilsson, G. Lyung, H. Lundberg, K.E. Nielsen, Astron. Astrophys. 445 (2006) 1165.
- [14] J. Gurell, H. Nilsson, L. Engström, H. Lundberg, R. Blackwell-Whitehead, K.E. Nielsen, S. Mannervik, Astron. Astrophys. 511 (2010) A68.
- [15] L. Engström, H. Lundberg, H. Nilsson, H. Hartman, E. Bäckström, Astron. Astrophys. 570 (2014) A34.
- [16] S.D. Bergeson, J.E. Lawler, Astrophs. J. 408 (1993) (1993) 382.
- [17] J. Dembczynski E. Stachowska, G. Szawiola, J. Ruckowski, Eur. Phys. J. D 4 (1998) 39.
- [18] S. Bouazza, Can. J. Phys. 94 (2016) (2016) 1310.
- [19] J. Dembczynski, S. Bouazza, G. Szawiola, J. Ruckowski, J. Physique 7 (1997) 1175.
- [20] S. Bouazza, P. Quinet, P. Palmeri, J. Quant. Spectrosc. Radiat. Transfer 163 (2015) 39.
- [21] P. Quinet, S. Bouazza, P. Palmeri, J. Quant. Spectrosc. Radiat. Transfer 164 (2015) 193.
- [22] J. Dembczynski, M. Elantkowska, B. Furmann, J. Ruckowski, J. Phys. B. 43 (2010) 6.

- [23] J. Dembczynski, M. Elantkowska, J. Ruckowski, D. Stefanska, At. Data Nucl. Data Tables 93 (2007) 1.
- [24] J. Dembczynski, G. Szawiola, M. Elantkowska, E. Stachowska, J. Ruckowski,
- [24] J. Defineeynski, G. Szawiola, M. Elantkowska, E. Stachowska, J. Ruckowski, Phys. Scr. 54 (1996) 5.
 [25] E. Stachowska, J. Dembczynski, L. Windholz, J. Ruckowski, M. Elantkowska, At. Data Nucl. Data Tables 113 (2017) 350.
- [26] M. Elantkowska, J. Ruckowski, J. Dembczynski, Eur. Phys. J. Plus 130 (2015) 1.
- [27] C.J. Sansonetti, G. Nave, Astrophys. J. Suppl. Ser. 213 (2014) 28.
- [28] R.D. Cowan, The Theory of Atomic Structure Spectra, University of California Press, Berkeley, CA, 1981.

Explanation of Tables

Table 1.	Comparison of the experimental and calculated energy values, for Cr II even-parity configurations	percentages of first and second components and g_j -factors
	J-value:	Total angular momentum of considered level.
	E _{obs} :	Observed energy level value in cm^{-1} .
	E _{calc} :	Calculated eigenvalue in cm ⁻¹ .
	Largest eigenvalue component:	Percentage contribution of the main eigenvector component.
		In $2S'+1L' \cdot 2S+1L$ $2S'+1L'$ stands for the parent term
	Next largest component:	Percentage contribution of the second eigenvector component. In $\frac{2S'+1}{L'}$ $\frac{2S'+1}{L'}$ stands for the parent term.
	Calc. g _j : Obs. g _j :	Calculated Landé g_j -factor value using eigenvector level composition. Measured Landé g_j -factor value by means of Zeeman structure.
Table 2. Configuration:	Values of the intra-configuration fine structure parameters for Name of the considered configuration in this study.	Cr II even configurations
Parameter:	Name of radial parameter	
Value	Radial parameter value in cm^{-1} Standard deviation is given in	
value.	parentheses.	
T-1-1- 0	⁷ Frozen to zero. " Deduced from <i>a</i> D initio of is calculations.	
Table 3.	values of even configuration interaction parameters	
	Configurations:	Designations of interacting configurations.
	Parameter:	Name of radial parameter whose meanings are given in [26].
	value:	parentheses.
Table 4	Proposals of new positions for the quartet 3d ⁴ (⁵ D)5d ⁴ F	
	J-value:	Total angular momentum of considered level.
	Position given in [27]:	Experimental energy level in cm^{-1} given in Ref. [27].
	Our proposed position:	Obtained energy level in cm ⁻¹ by means of our calculations.
Table 5	Comparison of the experimental and calculated energy values, for Cr II odd-parity configurations	percentages of first and second components and g_j -factors
	J-value:	Total angular momentum of considered level.
	E_{obs} :	Observed energy level value in cm ⁻¹ .
	E_{calc} :	Calculated eigenvalue in cm ⁻¹ .
	Largest eigenvalue component:	Percentage contribution of the main eigenvector component. In $\frac{2S'+1}{2} + \frac{2S'+1}{2} + \frac{2S'+1}$
		In $3d^34s4p^{25''+1}L''$, $25'+1L'$; $25'+1L, 25'+1L'$ and $25''+1L''$ stand
		respectively for the parent and grandparent terms.
	Next largest component:	Percentage contribution of the second eigenvector component. In ${}^{2S'+1}L'$; ${}^{2S+1}L$, ${}^{2S'+1}L'$ stands for the parent term.
		In $3d^34s4p^{2S''+1}L''$. $^{2S'+1}L'$; ^{2S+1}L , $^{2S'+1}L'$ and $^{2S''+1}L''$ stand
		respectively for the parent and grandparent terms.
	Calc. g _J : Obs. g _J :	Calculated Landé g_j -factor value using eigenvector level composition. Measured Landé g_j -factor value by means of Zeeman structure.
Table 6	Values of the intra-configuration fine structure parameters for	Cr II odd configurations
	Configuration:	Name of the considered configuration in this study.
	Parameter:	Name of radial parameter.
	Value:	Radial parameter value in cm ⁻¹ . Standard deviation is given in
		f Frozen to zero ^d Deduced from <i>d</i> initio or fs calculations
Table 7	Values of odd configuration interaction parameters	Trozen to zero. Deduccu nom ub mitto or is carculations.
	Configurations:	Designations of interacting configurations.
	Parameter:	Name of radial parameter whose meanings are given in [25].
	Value:	Radial parameter value in cm^{-1} . Standard deviation is given in
		parentheses.
		$\frac{d}{d}$ Deduced from <i>a</i> b initio or fs calculations

 Table 1

 Comparison of the experimental and calculated energy values, percentages of first and second components and g_J-factors for Cr II even-parity configurations.

J-value	Eobs	Ecalc	Largest eigen	value component	Next largest ei	genvalue component	Calc. g _i	Obs. g _l
,	(cm ⁻¹)	(cm ⁻¹)	0 0	(%)	0	(%)	0,	6,
	[8,27]							[5]
0.5	11061 747	11009	00.84	244 4650, 60	0.05	2d4 4c 3D: 4D	2 2 2 2	2 2 2 2
	19528 230	1908	99.04	$3d^4 4s^5 D$, D	0.03 4 34	3d ⁵⁴ D	-0.001	5.525 0.000
	21823 725	21873	97.05	3d ⁵⁴ P	1.00	3d ⁴ 4s ³ P· ⁴ P	2 664	2 693
	25035 346	25062	94 12	3d ⁵⁴ D	4 4 1	$3d^4 4s^5 D^{-4}D$	0.003	0.045
	29951818	29959	57.86	3d ⁴ 4s ³ P ^{• 4} P	40.32	$3d^4 4s^3P^{4}P$	2,666	2.685
	34659.242	34674	58.61	$3d^4 4s^3P$; ² P	40.45	$3d^4 4s^3P$; ² P	0.671	0.67
	38396.188	38409	99.21	3d ⁴ 4s ³ D; ⁴ D	0.46	3d ⁵⁴ D	0.000	
	40415.090	40364	53.58	3d ⁴ 4s ¹ S; ² S	31.31	3d ⁵² S	1.999	
	44307.078	44287	67.38	3d ⁵² S	24.22	3d ⁴ 4s ¹ S; ² S	2.002	
	55626.102	55655	58.96	3d ⁴ 4s ³ P; ⁴ P	40.54	3d ⁴ 4s ³ P; ⁴ P	2.669	
	59526.684	59491	47.13	3d ⁴ 4s ³ P; ² P	34.02	3d ⁴ 4s ³ P; ² P	0.667	
		63372	64.01	3d ⁵² P	15.56	3d ³ 4s ²² P	0.671	
	65882.438	65895	98.88	$3d^3 4s^{24}P$	0.43	3d ⁵⁴ P	2.659	
		70925	83.11	3d ³ 4s ²² P	15.5	3d ⁵² P	0.673	
	82692.008	82677	99.63	3d ⁴ 5s ³ D; ⁶ D	0.09	3d ⁴ 4d ³ D; ⁶ D	3.337	
	84209.781	84218	99.72	3d ⁴ 5s ³ D; ⁴ D	0.09	3d ⁴ 4s ³ D; ⁴ D	0.000	
	87453.484	8/368	95.41	3d ⁴ 4d ⁵ D; ⁶ D	3.88	30 ⁴ 40 ⁵ D; ⁶ F	3.180	
	8/594.562	8/015	95.5	30° 40° D; °F	3.89	30°40°D;°D 244 4450;40	-0.512	
	80651617	80550	89.20 80.27	$2d^4 4d^5 D \cdot 4D$	7.14	2d ⁴ dd ⁵ D· ⁴ D	2.474	
	89031.017	09339	69.27 77.64	$3d^4 Ac^{1}S^{-2}S$	7.14	$3d^4 Ac^{1}S^{2}S$	2 002	
	99677 850	99706	59.62	3d ⁴ 5s ³ P· ⁴ P	21.51	3d ⁴ 5s ³ P· ⁴ P	2.002	
	100782 820	100809	59.92	3d ⁴ 5s ³ P ² P	37.06	3d ⁴ 5s ³ P ² P	0.719	
	105098.859	105135	99.7	3d ⁴ 6s ⁵ D: ⁶ D	0.13	3d ⁴ 6s ⁵ D; ⁴ D	3.334	
		105797	56.83	3d ⁴ 4d ³ F; ⁴ D	11.94	$3d^4 6s^5D; {}^4D$	0.018	
	105923.445	105862	87.2	3d ⁴ 6s ⁵ D; ⁴ D	6.41	3d ⁴ 4d ³ F; ⁴ D	0.006	
	115234.461	115235	98.73	3d ⁴ 7s ⁵ D; ⁶ D	1.04	3d ⁴ 7s ⁵ D; ⁴ D	3.303	
		115527	98.77	3d ⁴ 7s ⁵ D; ⁴ D	1.04	3d ⁴ 7s ⁵ D; ⁶ D	0.033	
	116361.016	116348	77.29	30° 60°D; °F	21.6	3d ⁴ 6d ⁵ D; ⁶ D	0.208	
	•							
	120702.898	120699	96.61	3d ⁴ 8s ⁵ D: ⁶ D	3.15	3d ⁴ 8s ⁵ D: ⁴ D	3.233	
1.5								
	12032.545	11980	99.86	3d ⁴ 4s ⁵ D; ⁶ D	0.03	3d ⁴ 4s ³ P; ⁴ P	1.869	1.867
	19631.205	19614	94.97	3d ⁴ 4s ⁵ D; ⁴ D	4.54	3d ⁵⁴ D	1.201	1.192
	21824.141	21865	96.65	3d ⁵⁴ P	0.92	3d ⁴ 4s ³ P; ⁴ P	1.731	1.717
	25042.760	25074	93.5	3d ⁵⁴ D	4.52	3d ⁴ 4s ⁵ D; ⁴ D	1.204	1.207
	30307.365	30311	58.16	3d ⁴ 4s ³ P; ⁴ P	40.22	3d ⁴ 4s ³ P; ⁴ P	1.734	1.756
	31082.885	31134	65.91	3d ⁴ 4s ³ F; ⁴ F	19.35	3d ⁴ 4s ³ F; ⁴ F	0.414	0.416
	31531.172	31496	67.93	3d ⁵² D	23.09	3d ³² D	0.776	
	32844.703	33029	84.75	3d ³⁴ F	6.86	$3d^{4} 4s^{3}F; {}^{4}F$	0.408	1 2 2 1
	35355.898	35374	59.03	30°45°P; P	40.25	30°48°P; P	1.334	1.331
	12086 566	12026	99.09	$3d^{4} 4s^{3} D, D$	0.47	2d ⁵² D	0.800	
	425669 398	45634	52.53 64.69	$3d^{4} 4s^{1}D^{2}D$	4.52	3d ⁴ 4s ¹ D ² D	0.800	
	47372 430	47317	75.78	3d ⁵² D	12 38	$3d^4 4s^1D^{-2}D$	0.800	
	53051.270	53055	97.64	$3d^3 4s^{24}F$	2.09	3d ⁵⁴ F	0.399	
	54868.508	54894	76.42	3d ⁴ 4s ³ F; ⁴ F	23.02	3d ⁴ 4s ³ F; ⁴ F	0.399	
	55398.672	55424	59	3d ⁴ 4s ³ P; ⁴ P	40.4	3d ⁴ 4s ³ P; ⁴ P	1.734	
	59130.340	59117	49.13	3d ⁴ 4s ³ P; ² P	34.96	3d ⁴ 4s ³ P; ² P	1.335	
		63311	66.68	3d ⁵² P	15.1	3d ³ 4s ²² P	1.334	
	66010.273	66001	97.86	3d ³ 4s ²⁴ P	1.03	3d ⁵² P	1.728	
	•							
	97762.664	97740	00.57	244 5 . 5 . 6 .	0.12	244 5 5 5 7 4 0	1 9 6 9	
	82703.004	82749	99.57	$30^{-}55^{-}D; ^{-}D$	0.12	2d ⁴ Ec ⁵ D; ⁶ D	1.808	
	86165 266	86097	95.35	$3d^4 4d^5 D^{+} {}^4S$	3.49	3d ⁴ 4d ⁵ D ⁶ P	2.015	
	86594 375	86527	99.02	3d ⁴ 4d ⁵ D ⁶ C	0.44	3d ⁴ 5d ⁵ D ⁶ C	0.002	
	86667.719	86683	94.39	$3d^4 4d^5 D^{-6} P$	3.51	$3d^4 4d^5 D^{-4} S$	2.381	
	87470.539	87397	86.55	3d ⁴ 4d ⁵ D: ⁶ D	11.37	3d ⁴ 4d ⁵ D: ⁶ F	1.783	
	87666.203	87681	87.76	3d ⁴ 4d ⁵ D; ⁶ F	11.34	3d ⁴ 4d ⁵ D; ⁶ D	1.157	
	89277.922	89264	79.68	3d ⁴ 4d ⁵ D; ⁴ P	16.3	3d ⁴ 4d ⁵ D; ⁴ D	1.645	
	89724.172	89648	79.19	3d ⁴ 4d ⁵ D; ⁴ D	16.3	3d ⁴ 4d ⁵ D; ⁴ P	1.283	
	90512.516	90566	94.39	3d ⁴ 4d ⁵ D; ⁴ F	1.23	3d ⁴ 4d ³ H; ⁴ F	0.407	
		99957	75.4	3d ³ 4s ²² D	22.79	3d ⁴ 4s ¹ S ; ² D	0.800	
	100040.172	100052	59.72	3d ⁴ 5s ³ P; ⁴ P	37	3d ⁴ 5s ³ P; ⁴ P	1.722	
	101245.000	101207	79.67	3d4 5s 3F; 4F	20.08	3d4 5s 3F; 4F	0.399	

J-value	Eobs	E_{calc}	Largest eiger	ivalue component	Next largest ei	genvalue component	Calc. g _l	Obs. g _l
	(cm^{-1})	(cm^{-1})		(%)		(%)	-	-
	8.27	· · ·				()		[5]
	[0,27]							[0]
	101492.820	101511	60.1	3d ⁴ 5s ³ P; ² P	36.5	3d ⁴ 5s ³ P; ² P	1.346	
		104266	78.85	3d ⁴ 4d ³ H: ⁴ F	6.79	3d ⁴ 4d ³ G: ⁴ F	0.406	
	105168 766	105228	19.21	3d ⁴ 4d ³ P ⁴ F	18 29	3d ⁴ 4d ³ P 4D	0 921	
	105100.700	105220	13.21	214 413 p 4p	10.25	214413745	0.521	
		105508	28.96	3d 4d P; F	18.17	3d 4d P; F	0.786	
		105592	19.93	3d ⁴ 4d ³ F; ² P	18.23	3d4 4d 3F; 4D	1.232	
	105980.445	106013	26.94	3d ⁴ 4d ³ F; ⁴ P	17.46	3d ⁴ 4d ³ P; ⁴ P	1.530	
		106216	26.42	$3d^4 Ad^3 F 4F$	14.16	$3d^4 Ad^3 F^{+} P$	1.073	
		100210	20.42		14.10	214 5 15 5 4 5	1.075	
		106306	39.88	3d ⁺ 4d ⁻² F; ⁺ F	9.79	3d ⁺ 5d ² D; ⁺ P	0.829	
		106596	33.33	3d ⁴ 4d ³ P; ² D	15.2	3d ⁴ 4d ³ P; ² D	0.879	
		106626	99.01	3d ⁴ 6s ⁵ D: ⁶ D	0.4	3d ⁴ 6s ⁵ D; ⁴ D	1.863	
	106627 164	106664	28.02	3d4 5d5 D. 4P	22.57	3d4 4d 3p. 4p	1 578	
	100027.104	100004	28.02	50 50 D, F	22.J1	50 40 F, F	1.378	
	106877.172	106879	95.31	3d ⁺ 5d ⁵ D; ^o G	2.15	3d ⁴ 5d ⁵ D; ⁶ F	0.032	
		106952	64.67	3d4 5d 5D; 6P	20.48	3d ⁴ 5d ⁵ D; ⁴ S	2.219	
	106924.797	107096	51.23	3d ⁴ 5d ⁵ D: ⁴ S	14.86	3d ⁴ 5d ⁵ D: ⁶ P	1.853	
		107129	21.07	$3d^{4} d^{3}C d^{4}D$	21.71	$2d^4 5d^5 D \cdot 4D$	1 257	
		107138	51.57	50 40 G, D	21.71	50 50 D, D	1.257	
		107162	44.51	3d4 4d 3G; 4F	28.8	3d ⁴ 5d ³ D; ⁴ F	0.640	
	107259.820	107231	52.53	3d ⁴ 5d ⁵ D; ⁶ F	20.9	3d ⁴ 5d ⁵ D; ⁶ D	1.315	
		107392	58.27	3d ⁴ 6s ⁵ D [•] ⁴ D	11.19	3d ⁴ 4d ³ P ^{• 2} P	1,232	
	107414 699	107407	50.27	2d4 5d5 D, 6D	25.75	244 545 0 65	1.252	
	107414.088	107407	50.59	30° 50° D; °D	25.75	30° 50° D; ° F	1.570	
		107435	27.61	3d4 6s3D; 4D	12.61	3d4 4d 3F; 2P	1.301	
	107516.711	107967	96.26	3d ⁴ 5s ³ D: ⁴ D	1.75	3d ⁴ 4d ³ G: ⁴ D	1.199	
		108187	83.06	3d ⁴ 5s ³ C · ² D	9 1 8	3d ⁴ 4d ³ D ² D	0.826	
		100717	40.00	24443E.2D	11.00	244 = 30, 20	0.020	
		108/1/	46.9	3d* 4d 3F; 2D	11.96	3d* 5s 3D; 2D	0.798	
	115301 977	115301	97 15	3d ⁴ 7s ⁵ D ⁶ D	2 64	$3d^4 7s^5 D^{-4} D$	1 851	
	115501.577	115501	07.15	247-5D, 4D	2.04	2447-50.60	1.051	
	115640.297	115641	97.21	3d ⁺ /s ⁵ D; ⁺ D	2.64	3d ⁴ /s ⁵ D; ⁶ D	1.218	
	116171.633	116191	90.96	3d ⁴ 6d ⁵ D; ⁶ G	6.41	3d ⁴ 6d ⁵ D; ⁶ F	0.095	
	116253.273	116281	46.32	3d ⁴ 6d ⁵ D; ⁶ P	27.68	3d ⁴ 6d ⁵ D: ⁶ D	2.005	
	1102051275	110201	53.01	2d4 cd5p, 4c	21.00	2d4 cd5p, 6p	1,000	
	110355.430	110365	52.81	30° 60° D; °S	21.85	30° 60° D; ° P	1.892	
	116429.156	116444	49.19	3d4 6d°D; °F	28.83	3d4 6d°D; 4S	1.487	
	116581.773	116567	58.46	3d ⁴ 6d ⁵ D; ⁶ D	22.01	3d ⁴ 6d ⁵ D: ⁶ P	1.850	
		117106	8/1 21	3d ⁴ 6d ⁵ D [•] ⁴ F	288	3d ⁴ 6d ⁵ D · ⁴ D	0 447	
		117100	56.2	244416.2	2.00	244 44 10.20	0.447	
		11/191	56.2	3d ⁴ 4d ⁴ S; ² D	14.02	3d ⁴ 4d ⁴ S; ² D	0.825	
	117381.578	117348	56.31	3d ⁴ 6d ⁵ D; ⁴ P	17.7	3d ⁴ 6d ⁵ D; ⁴ D	1.539	
		117637	55.04	3d ⁴ 6d ⁵ D; ⁴ D	22.16	3d ⁴ 6d ⁵ D; ⁴ P	1.332	
2.5								
2.5	0.000	207	00.87	2d ⁵ 6c	0.06	2d4 5d 5D 6s	2 002	
	0.000	-307	99.87	50°5	0.00	Su Su D, S	2.002	
	12147.772	12100	99.88	3d ⁴ 4s ³ D; ⁶ D	0.03	3d ⁴ 6s ³ D; ⁶ D	1.659	1.669
	19797.859	19783	94.63	3d ⁴ 4s ⁵ D; ⁴ D	4.85	3d ⁵⁴ D	1.373	1.37
	20512.062	20529	98.83	3d ⁵⁴ G	0.4	3d ⁴ 4s ³ G ⁴ G	0 571	0 599
	20012.002	20525	00.00	24540	0.02	2 44 4- 3D: 4D	1 500	1.50
	21822.500	21857	90.52	30 P	0.83	30 45 P; P	1.598	1.59
	25046.715	25081	92.97	3d ⁵⁴ D	4.78	3d4 4s°D; 4D	1.374	1.381
	30864.434	30878	58.38	3d ⁴ 4s ³ P; ⁴ P	39.96	3d ⁴ 4s ³ P; ⁴ P	1.599	1.572
	31117 326	31162	60 79	3d ⁴ 4s ³ F [•] ⁴ F	17 62	3d ⁴ 4s ³ F [•] ⁴ F	1 039	1 0 3 2
	21250.075	21206	E1 70	24520	17.02	2452	1.000	1.052
	31330.873	31300	51.78	30D	17.62	30-0	1.125	
	32603.355	32547	78.45	3d ² ² F	12.63	3d ⁵² D	0.919	
	32854.941	33015	83.19	3d ⁵⁴ F	6.57	3d ⁴ 4s ³ F; ⁴ F	1.023	
	33417 980	33417	96 55	3d ⁴ 4s ³ C · ⁴ C	1.15	3d ⁴ 4s ³ F ⁴ F	0.583	0.588
	25417.300	2541/	67.00	2d4 4-3E-2E	10.07	2d4 4a 3E 2E	0.555	0.000
	3309.180	5019	07.09	50° 45° F; ~F	19.27	5u 45 °F; °F	0.850	0.876
	38314.836	38344	99.11	3d4 4s 3D; 4D	0.47	3d⁵⁴D	1.372	
	39742.035	39725	86.3	3d ⁵² F	8.06	3d ⁴ 4s ³ F: ² F	0.857	
	42897 945	47978	915	3d ⁴ 4s ³ D· ² D	4 89	3d ⁵² D	1 200	
	45720 500	12320	51.5 CE 75	$24 4 + 10^{-2}$	17.00	244 4-1D-2D	1.200	
	45/30.598	45/12	05./5	30. 45 'D; "D	17.78	30.45 D; 2D	1.201	
	47354.371	47306	79.1	3d ⁵² D	10.63	3d ⁴ 4s ¹ D; ² D	1.200	
	50687.621	50622	98.56	3d ⁴ 4s ¹ F: ² F	0.6	3d ⁵² F	0.858	
	52071 000	52772	077	2d ³ /c ²⁴ E	2.05	24545	1 020	
	53271.000	JJ2/J	5/./		2.03		1.029	
	54883.496	54897	76.44	3d* 4s 3F; *F	22.65	3d* 4s °F; *F	1.028	
	55023.027	55055	59.3	3d ⁴ 4s ³ P; ⁴ P	40.2	3d ⁴ 4s ³ P; ⁴ P	1.601	
	59577 660	59634	76 34	3d ⁴ 4s ³ F ^{• 2} F	22.81	3d ⁴ 4s ³ F ^{• 2} F	0.857	
	66256 579	66225	00	3d ³ 4c ²⁴ D	0.61	3d ⁵² D	1 505	
	00230.378	00223	30	Ju 45 ľ	0.01	JU D	1.595	
		67161	55.12	3d ⁵ ² D	21.14	3d ⁵² D	1.206	
		72416	66.62	3d ³ 4s ²² D	14.16	3d ³ 4s ²² D	1.201	
		77494	76 71	3d ⁴ 4s ¹ D· ² D	22.31	3d ⁴ 4s ¹ D ^{, 2} D	1 200	
	01001 004	01000	00.71	24 F-5D-6D	0.10	24 F-5D, 4D	1.200	
	82881.094	82868	99.53	30. 22°D; "D	0.19	30 · 55°D; ⁻ D	1.658	
		82905	99.53	3d ³ 4s ²² F	0.33	3d ⁵² F	0.857	
	84495 609	84509	99.63	3d ⁴ 5s ⁵ D· ⁴ D	0.19	3d ⁴ 5s ⁵ D ⁶ D	1.373	
	QCCE / 170	QCEE 1	00 C	244 445 D. 60	0.15	244 4450.60	0.060	
	00004.172	1 5000	90.0	5u 4u ⁻ D; -G	0.72	5u 4u ⁻ D; ⁻ r	0.800	
	86691.516	86744	96.36	3d⁴ 4d⁵D; ⁰P	2.83	3d⁴ 4d°D; °D	1.881	
	87514.797	87451	79.59	3d ⁴ 4d ⁵ D; ⁶ D	17.09	3d ⁴ 4d ⁵ D; ⁶ F	1.603	
				,				

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest ei	genvalue component	Calc. g _j	Obs. g _j
	(cm^{-1}) [8,27]	(cm^{-1})		(%)		(%)	v	[5]
	87759.062	87773	81.67	3d ⁴ 4d ⁵ D: ⁶ F	17.06	3d ⁴ 4d ⁵ D: ⁶ D	1.373	
	89055.945	89169	96.39	3d ⁴ 4d ⁵ D; ⁴ G	1.22	3d ⁴ 4d ³ H; ⁴ G	0.573	
	89336.812	89326	79.19	3d ⁴ 4d ⁵ D; ⁴ P	17.19	3d ⁴ 4d ⁵ D; ⁴ D	1.559	
	89812.398	89746	77.45	3d ⁴ 4d ⁵ D; ⁴ D	17.34	3d ⁴ 4d ⁵ D; ⁴ P	1.407	
	90608.961	90670	93.23	3d ⁴ 4d ⁵ D; ⁴ F	1.93	3d ⁴ 4d ⁵ D; ⁴ D	1.034	
	91955.336	91949	91.84	3d ⁴ 4d ⁵ D; ⁶ S	6.41	3d ⁴ 5d ⁵ D; ⁶ S	2.002	
		99783	76.65	$3d^3 4s^{22}D$	21.47	3d ³ 4s ²² D	1.200	
	100650.461	100659	61.93	3d ⁴ 5s ³ P; ⁴ P	37.79	3d ⁴ 6s ³ P; ⁴ P	1.601	
	1012/6.54/	101235	79.23	30 ° 55 ° F; ° F	19.72	30 ° 65 ° F; ° F	1.025	
	102 146.705	102139	76.23	$3d^4 5c^3 C \cdot 4C$	19.47	2d4 6c 3Et 2E	0.632	
		103444	90.04 78.20	2d ⁴ /d ³ U· ⁴ E	1.50	$3d^4 dd^3 C 4E$	1.020	
		104299	74.29	$3d^4 4d^3H^4G$	12 45	$3d^4 5d^5 D^{-4}G$	0.588	
		105108	65.4	3d ⁴ 4d ³ H [•] ² F	10.44	$3d^4 4d^3P^{-2}F$	0.901	
	105285.312	105358	21.34	$3d^4 4d^3P$; ⁴ D	17.84	3d ⁴ 4d ³ F: ⁴ D	1.231	
		105690	30.06	3d ⁴ 4d ³ P; ⁴ F	18.89	3d ⁴ 4d ³ P; ⁴ F	1.153	
	105923.438	105897	24.22	3d ⁴ 4d ³ P; ⁴ P	20.19	3d ⁴ 4d ³ F; ⁴ P	1.508	
	106095.602	106065	63.97	3d ⁴ 4d ³ F; ⁴ G	14.46	3d ⁴ 5d ⁵ D; ⁴ G	0.576	
		106244	38.39	3d ⁴ 4d ³ F; ⁴ F	9.41	3d ⁴ 4d ³ F; ⁴ P	1.214	
		106388	22.07	3d ⁴ 4d ³ F; ⁴ F	19.43	3d ⁴ 5d ⁵ D; ⁴ P	1.316	
	106722.555	106649	15.01	3d ⁴ 5d ⁵ D; ⁴ P	13.36	3d ⁴ 4d ³ P; ⁴ D	1.351	
		106726	98.22	3d ⁴ 5d ⁵ D; ⁶ D	0.55	3d ⁴ 6s ⁵ D; ⁴ D	1.652	
		106741	26.58	3d ⁴ 4d ³ P; ² D	12.75	3d ⁴ 4d ³ F; ² D	1.304	
	106929.375	106929	86.28	3d ⁴ 5d ⁵ D; ⁶ G	5.45	3d ⁴ 5d ⁵ D; ⁶ F	0.905	
		106970	51.58	$3d^4 4d^3F;^2F$	10.97	3d ⁴ 4d ³ F; ² F	0.851	
	107025.250	107002	73.12	3d ⁴ 5d ⁵ D; ⁶ P	18.77	3d ⁴ 5d ⁵ D; ⁶ D	1.789	
		107233	43.92	3d ⁴ 4d ³ G; ⁴ D	31.85	3d ⁴ 5d ⁵ D; ⁴ D	1.370	
		107254	38.15	3d ⁴ 5d ⁵ D; ⁶ F	20.05	3d ⁴ 4d ³ G; ⁴ F	1.268	
	107309.328	107291	47.23	3d ⁴ 4d ³ G; ⁴ G	27.69	3d ⁴ 5d ⁵ D; ⁴ G	0.663	
	107510 400	107321	30.79	3d ⁴ 4d ³ G; ⁴ F	20.09	3d ⁴ 5d ⁵ D; ⁴ F	1.199	
	107519.422	107521	56.94	3d ⁴ 5d ⁵ D; ⁶ D	31.07	3d ⁴ 5d ³ D; ⁶ F	1.554	
	10/59/.609	107556	93.54	30° 65° D; °D	2.38	30* 40 °G; *D	1.3/6	
	107726 773	107021	02.07	$2d^4 5c^{3}D^{4}D$	21.50	$2d^4 d^3 C \cdot 4D$	1 250	
	10/720.775	107931	52.57	$3d^4 Ad^3 C \cdot {}^2D$	6.9	$3d^4 d 3E^2D$	1.555	
		108215	75.41	3d ⁴ 5s ³ D ^{• 2} D	9 19	$3d^4 4d^3F^2D$	1,155	
		108875	33.65	$3d^4 4d^3F$; ² D	23.46	$3d^4 5s^3D;^2D$	1.191	
		109135	44.94	3d ⁴ 4d ³ G; ² F	19.13	3d ⁴ 4d ³ P; ² F	0.871	
		110092	20.48	3d ⁴ 4d ³ D; ⁴ D	19.71	3d ⁴ 4d ³ G; ⁴ D	1.352	
		110324	31.92	3d ⁴ 5d ⁵ D; ⁴ F	18.21	3d ⁴ 4d ³ D; ⁴ F	1.136	
		110431	21.12	3d ⁴ 5d ⁵ D; ⁴ P	17.86	3d ⁴ 4d ³ D; ⁴ P	1.505	
		110873	26.93	3d ⁴ 5d ⁵ D; ⁴ G	26.3	3d ⁴ 4d ³ G; ⁴ G	0.578	
	109394.430	111469	80.84	3d ⁴ 5d⁵D; ⁶ S	15.35	3d ⁴ 6d ⁵ D; ⁶ S	2.002	
		112672	71.79	3d ⁴ 4d ³ D; ⁴ F	9	3d ⁴ 4d ³ G; ⁴ F	1.018	
		112888	48.81	$3d^{4} 4d^{3}D; {}^{4}G$	24.55	3d ⁴ 4d ³ D; ² F	0.695	
		113025	37.65	3d ⁴ 4d ³ D; ² F	30.86	3d ⁴ 4d ³ D; ⁴ G	0.749	
		113505	61.82	3d ⁴ 4d ³ D; ⁴ P	10.14	3d ⁴ 6d ⁵ D; ⁴ P	1.577	
		113851	36.13	3d ⁴ 5s ¹ D; ² D	21.94	3d ⁴ 4d ¹ G; ² D	1.214	
		113911	29.21	3d ⁴ 5s ¹ D; ² D	28.51	3d ⁴ 4d ³ D; ⁴ D	1.299	
		113972	20.76	3d ⁴ 4d ⁴ G; ² D	18.56	3d ⁴ 4d ³ D; ⁴ D	1.281	
	115/17 707	11434U 115716	28.72 06.77	כעי 40 ש; 20 244 ס, ס, ס, ס	13.23	2d4 7c5, ~D	1.200	
	115910 201	115410	90.77	$2d^4 7c^5 D, 4D$	2.03	$2d^{4}7c^{5}D$, D	1.050	
	116213 320	115010	90.82 75.63	3d ⁴ 6d ⁵ D ⁺ ⁶ C	5.04 15 12	3d ⁴ 6d ⁵ D ^{+ 6} F	0.006	
	110215,520	116304	79.33	$3d^4 dd^1 C \cdot {}^2F$	24.34	3d ⁴ /d ³ D ² F	0.940	
	116294 969	116308	38.81	3d ⁴ 6d ⁵ D ^{, 6} P	30.27	3d ⁴ 6d ⁵ D ⁶ D	1 5 3 4	
	116477 406	116466	58.21	3d ⁴ 6d ⁵ D [•] ⁶ F	31.59	3d ⁴ 6d ⁵ D ⁶ P	1,470	
	116687.078	116670	58.12	$3d^4 6d^5 D^{-6} D$	21.07	3d ⁴ 6d ⁵ D ^{• 6} P	1.636	
	116877.070	116951	79.87	3d ⁴ 6d ⁵ D: ⁴ G	7.13	3d ⁴ 6d ⁵ D: ⁴ F	0.611	
	117072.742	117156	55.39	3d ⁴ 4d ¹ S; ² D	13.83	3d ⁴ 4d ¹ S; ² D	1.213	
	117228.406	117193	71.98	3d ⁴ 6d ⁵ D; ⁴ F	6.87	3d ⁴ 6d ⁵ D; ⁴ G	1.035	
	117481.172	117400	58.37	3d ⁴ 6d ⁵ D; ⁴ P	13.7	3d ⁴ 6d ⁵ D; ⁴ D	1.499	
		117729	56.56	3d ⁴ 6d ⁵ D; ⁴ D	20.18	3d ⁴ 6d ⁵ D; ⁴ P	1.415	
		118772	99.38	3d ⁴ 6s ¹ F; ² F	0.14	3d ⁴ 5s ³ F; ⁴ F	0.857	
		119678	66.44	3d ⁴ 4d ¹ D; ² F	17.53	3d ⁴ 4d 1D; 2F	0.865	
		119789	82.92	3d ⁴ 6d ⁵ D; ⁶ S	12.34	3d ⁴ 5d ⁵ D; ⁶ S	2.002	
	117672.453	120129	64.41	3d ⁴ 4d ¹ D; ² D	15.96	3d ⁴ 4d ¹ D; ² D	1.193	
	120870.633	120874	93.6	3d ⁴ 8s ⁵ D; ⁶ D	6.2	3d ⁴ 8s ⁵ D; ⁴ D	1.641	
		121156	93.73	3d4 8s5D; 4D	6.2	3d⁴ 8s⁵D; ⁶ D	1.390	

J-value	Eobs	E_{calc}	Largest eiger	nvalue component	Next largest ei	genvalue component	Calc. g _l	Obs. g _l
5	(cm^{-1})	(cm^{-1})		(%)		(%)	0,	0,
	[8,27]	. ,				. ,		[5]
	17202 020	17762	00.90	244 4050, 60	0.02	2d4 Ec 5 Dt 6D	1 5 9 0	1 5 7 9
	12303.820	12263	99.89	3d · 4s ° D; ° D	0.03	30°55°D; °D	1.589	1.578
	20024.012	20015	94.44	30°48°D; °D	5.17	$30^{-1}D$	1.429	1.427
	20517.793	20539	98.91	30° G	0.39	30 45 G; G	0.984	0.994
	25033.668	25064	93.27	3d ³ *D	5.27	3d ⁴ 4s ⁵ D; ⁴ D	1.429	1.432
	30156.732	30166	99.33	3d4 4s 3H; 4H	0.33	3d ⁴ 4s ³ G; ⁴ G	0.668	0.667
	31168.576	31221	68.49	3d ⁴ 4s ³ F; ⁴ F	19.52	3d ⁴ 4s ³ F; ⁴ F	1.235	1.246
	32355.656	32325	97.72	3d ⁵² F	0.44	3d ⁴ 4s ³ F; ² F	1.143	
	32836.656	33002	84.5	3d ⁵⁴ F	7.03	3d ⁴ 4s ³ F; ⁴ F	1.233	
	33521.090	33530	95.73	3d ⁴ 4s ³ G; ⁴ G	1.81	3d ⁴ 4s ³ F; ⁴ F	0.992	1.024
	35607.512	35657	66.93	3d ⁴ 4s ³ F; ² F	18.26	3d ⁴ 4s ³ F; ² F	1.138	1.144
	36101.527	36130	74.33	3d ⁵² G	17.3	3d ⁴ 4s ³ G; ² G	0.890	
	38269 570	38302	99.28	3d ⁴ 4s ³ D ⁴ D	0.48	3d ⁵⁴ D	1 429	
	38508 934	38494	76.87	$3d^4 4s^3C^{-2}C$	10.88	3d ⁵² C	0.894	0.91
	20682 710	20638	22.57	$3d^4 4s^1Ct^2C$	22.08	2d ⁵² E	0.070	0.51
	20877 025	20623	52.57	2d ⁵² E	20.25	$2d^4 4s^{1}Ct^{2}C$	1 052	
	59677.055	59625	32.02	ЭЦ Г ЭЦ4 4-15-25	20.23	50 48 G, G	1.032	
	50667.234	50611	98.44	30 · 45 · F; - F	0.57	30°°F	1.144	
	52297.766	52192	91.94	3d ³² G	4.64	3d ³ 4s ²² G	0.889	
	53566.262	53572	97.59	$3d^3 4s^{24}F$	2	3d ⁵⁴ F	1.238	
	54887.986	54884	76.69	3d ⁴ 4s ³ F; ⁴ F	22.21	3d ⁴ 4s ³ F; ⁴ F	1.238	
	59570.199	59595	76.87	3d ⁴ 4s ³ F; ² F	21.95	3d ⁴ 4s ³ F; ² F	1.142	
	62701.734	62582	64.29	3d ⁴ 4s ¹ G; ² G	34.24	3d ⁴ 4s ¹ G; ² G	0.889	
		65898	94.52	$3d^3 4s^{22}G$	4.65	3d ⁵² G	0.889	
		82767	99.57	$3d^3 4s^{22}F$	0.33	3d ⁵² F	1,143	
	83041 320	83033	99.57	3d ⁴ 5s ⁵ D ⁶ D	0.16	3d ⁴ 5s ⁵ D ⁴ D	1 588	
	84726 680	8/7/9	99.63	$3d^4 5s^5 D; ^4D$	0.16	3d ⁴ 5s ⁵ D; ⁶ D	1,300	
	04720.000	0474J	09.00	2d4 4d5 p. 6C	1.00	2d4 4d5D; 6E	1.450	
	007 30.27 3	00040	96.21	50 40 D, G	1.09	50 40 D, F	1.140	
	86/82.04/	86832	96.26	30° 40° D; °P	2.98	30° 40° D; °D	1./12	
	8/58/.86/	8/530	//.43	3d ⁴ 4d ⁵ D; ⁶ D	19.02	30 ⁴ 40 ⁵ D; ⁶ F	1.554	
	87858.469	87879	79.4	3d ⁴ 4d ³ D; ^o F	19.12	3d ⁴ 4d ³ D; ^o D	1.433	
	89173.992	89297	96.22	3d ⁴ 4d ⁵ D; ⁴ G	1.23	3d ⁴ 4d ³ H; ⁴ G	0.986	
	89885.008	89808	94.8	3d ⁴ 4d ⁵ D; ⁴ D	1.81	3d ⁴ 4d ⁵ D; ⁴ F	1.426	
	90725.812	90799	93.16	3d ⁴ 4d ⁵ D; ⁴ F	1.87	3d ⁴ 4d ⁵ D; ⁴ D	1.241	
	100068.859	100073	99.18	3d ⁴ 5s ³ H; ⁴ H	0.32	3d ⁴ 5s ³ G; ⁴ G	0.668	
	101321.812	101276	78.98	3d ⁴ 5s ³ F; ⁴ F	19.25	3d ⁴ 5s ³ F; ⁴ F	1.235	
	102243.156	102225	78.7	3d ⁴ 5s ³ F: ² F	18.72	3d ⁴ 5s ³ F: ² F	1.138	
		103523	96.52	3d ⁴ 5s ³ G; ⁴ G	1.22	3d ⁴ 5s ³ F: ⁴ F	0.987	
	103949 273	103709	94.86	3d ⁴ 4d ³ H ^{, 4} H	2.88	3d ⁴ 4d ³ H ² C	0.676	
	1055 15.275	104165	71 44	$3d^4 4d^3 H^{-2}C$	10.29	$3d^4 4d^3C^{2}C$	0.906	
		10/1363	72.38	$3d^4 Ad^3 H$	7.84	$3d^4 d^3C$; 4E	1 212	
	104542 100	104303	72.30	$2d^4 = 5c^3 + 2c^2$	1.04	$2d^4 dd^3 u ^2 C$	0.805	
	104343.103	104455	34.40 76.22	244 44 344 4C	1.05	244 F 45 D 4C	0.095	
	105 196.992	104964	70.25	50 40 H, G	12.24	50 50 D, G	0.989	
	105446.994	105436	99.42	3d ⁴ 6s ⁵ D; ⁶ D	0.45	3d ⁴ 6s ⁵ D; ⁴ D	1.588	
		105822	82.86	3d ⁴ 4d ³ H; ² F	7.56	3d ⁴ 4d ³ P; ² F	1.147	
		105857	66.47	3d ⁴ 4d ³ F; ⁴ D	11.9	3d ⁴ 4d ³ F; ⁴ D	1.421	
		106043	77.73	3d ⁴ 4d ³ F; ⁴ H	15.05	3d ⁴ 4d ³ F; ⁴ H	0.674	
		106097	38.56	3d ⁴ 4d ³ F; ⁴ F	31.01	3d ⁴ 4d ³ F; ⁴ G	1.115	
	106030.914	106133	60.62	3d ⁴ 4d ³ F; ⁴ G	14.89	3d ⁴ 5d ⁵ D; ⁴ G	0.977	
	106275.180	106286	21.23	3d ⁴ 4d ³ P; ⁴ D	18.61	3d ⁴ 4d ³ P; ⁴ F	1.334	
		106575	38.38	3d ⁴ 4d ³ F; ⁴ F	13.26	3d ⁴ 4d ³ P; ⁴ D	1.303	
	107006.266	107009	84.49	3d ⁴ 5d ⁵ D: ⁶ G	8.21	3d ⁴ 5d ⁵ D: ⁶ F	1.186	
	107114.727	107089	68.73	3d ⁴ 5d ⁵ D: ⁶ P	18.79	3d ⁴ 5d ⁵ D: ⁶ D	1.641	
		107125	48 25	3d ⁴ 4d ³ F ² F	9 95	3d ⁴ 4d ³ F ² F	1 092	
		107202	45.07	$3d^4 4d^3 C^{4} D$	35.87	3d ⁴ 5d ⁵ D· ⁴ D	1 /10	
	107396 199	107240	43.07	3d4 5d5 n · 6 c	16 27	3d4 5d5 n 6 0	1.413	
	10/300.100	107349	45.49	50 50 D, F	10.27	34 44 35.20	1.424	
	107500 044	107362	46.01	30. 40 °F; °G	10.86	30° 40°F; °G	0.934	
	107500.344	107395	51.21	3d ⁴ 4d ⁵ G; ⁴ G	27.58	3d ⁴ 5d ⁵ D; ⁴ G	1.013	
		107455	41.46	3d ⁴ 4d ³ G; ⁴ F	27.74	3d ⁴ 5d ⁵ D; ⁴ F	1.276	
	107627.367	107624	56.18	3d ⁴ 5d ⁵ D; ⁶ D	34.07	3d ⁴ 5d ⁵ D; ⁶ F	1.526	
	107716.266	107755	96.86	3d ⁴ 6s ⁵ D; ⁴ D	0.99	3d ⁴ 5s ³ D; ⁴ D	1.430	
	107829.508	107825	82.64	3d ⁴ 4d ³ G; ⁴ H	7.39	3d ⁴ 4d ³ F; ² G	0.697	
		107892	94.26	3d ⁴ 5s ³ D; ⁴ D	2.92	3d ⁴ 4d ³ G; ⁴ D	1.429	
		108186	48.86	3d ⁴ 4d ³ G; ² F	20.33	3d ⁴ 4d ³ P; ² F	1.141	
		108816	66.04	$3d^4 5s^1G^{2}G$	33 14	$3d^4 5s^1G^{2}G$	0.889	
		109400	39.21	3d ⁴ 4d ³ C ^{• 2} F	25.05	3d ⁴ 4d ³ P ² F	1 144	
		110276	20.10	3d ⁴ 4d ³ n· ⁴ n	17 10	3d ⁴ 4d ³ C· ⁴ D	1 258	
	107950 555	110270	20.19	24 E 45 D. 4 E	17.12	2d4 dd 3D. 4E	1.000	
	10/000.000	110445	24.02	$5u^{-}$ $5u^{-}$ D_{1}^{+} T_{1}^{+}	17.52	50 40 D; T	1.300	
		11064/	03.20	50° 40° 6; 40	/.0/	50.40°H; 40	0.894	
		110919	26.82	30° 50°D; °G	25.17	3d 4d G; G	0.989	
		112697	56.6	3d4 4d 3D; 4F	7.84	3d4 4d 3G; 4F	1.170	
		112728	36.99	3d ⁴ 4d ¹ I; ² G	36.45	3d ⁴ 4d ³ D; ² G	0.949	

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest ei	genvalue component	Calc. g _j	Obs. g _j
	(cm ⁻¹) [8,27]	(cm^{-1})		(%)		(%)	-	[5]
		112924	59.71	3d ⁴ 4d ³ D; ⁴ G	12.73	3d ⁴ 4d ³ D; ² F	1.026	
		113033	45.83	3d ⁴ 4d ³ D; ² F	16.96	3d ⁴ 4d ¹ G; ² F	1.111	
		113896	55.78	$3d^4 4d^3D; {}^4D$	16.76	3d ⁴ 6d ⁵ D; ⁴ D	1.429	
		113997	54.99	$3d^4 4d {}^1G; {}^2G$	29.75	$3d^4 4d {}^{1}G; {}^{2}G$	0.889	
	115501 041	114951	43.04	3d ⁴ 4d ⁵ D; ² G	41.96	3d ⁴ 4d ⁻¹ l; ² G	0.889	
	115581.641	115580	97.78	3d ⁴ /s ⁵ D; ⁶ D	2.04	3d ⁺ /s ⁵ D; ⁺ D 2d ⁴ 7c ⁵ D; ⁶ D	1.585	
	110047.820	116203	97.0 32.75	3d ⁴ /d ¹ C ² F	2.04	3d ⁴ /d ³ D, ² F	1.455	
	116281 860	116288	68.03	3d ⁴ 6d ⁵ D ⁶ C	20.55	$3d^4 6d^5 D^{-6}F$	1.145	
	116385.570	116384	39.96	3d ⁴ 6d ⁵ D; ⁶ P	33.36	3d ⁴ 6d ⁵ D; ⁶ D	1.538	
	116572.391	116550	51.7	3d ⁴ 8s ⁵ D; ⁶ F	35.86	3d ⁴ 6d ⁵ D; ⁶ P	1.492	
	116790.258	116762	56.46	3d ⁴ 6d ⁵ D; ⁶ D	21.91	3d ⁴ 6d ⁵ D; ⁶ F	1.567	
	116985.359	117046	77.99	3d ⁴ 6d ⁵ D; ⁴ G	9.46	3d ⁴ 6d ⁵ D; ⁴ F	1.013	
	117263.375	117323	73.62	3d ⁴ 6d ⁵ D; ⁴ D	6.41	3d ⁴ 4d ³ D; ⁴ D	1.416	
	117520.656	117754	74.44	3d ⁴ 6d ⁵ D; ⁴ F	9.38	3d ⁴ 6d ⁵ D; ⁴ G	1.225	
		118774	99.41	3d ⁴ 5s ¹ F; ² F	0.19	3d ⁴ 5s ³ F; ⁴ F	1.144	
		119716	68.84	3d ⁴ 4d ¹ D; ² F	18.21	3d ⁴ 4d ¹ D; ² F	1.143	
	121026 250	120271	/2.88	30° 40 °D; °G	17.16	30° 40 °D; 2G	0.889	
	121036.359	121037	96.08	30°85°D;°D	3.74	30° 85°D; °D	1.583	
		121364	90.17	3d ⁴ 6s ³ H· ⁴ H	0.15	$3d^4 6s^3 Ct^4 C$	0.667	
		1221537	97.47	$3d^4 5d^3H^{4}H$	0.15	3d ⁴ 6d ³ H [•] ⁴ H	0.669	
		122482	47.65	3d ⁴ 4d ¹ F; ² F	45.69	3d ⁴ 5d ³ H: ² F	1.143	
		122805	78.67	3d ⁴ 5d ³ H; ² G	8.59	3d ⁴ 4d ¹ F; ² G	0.896	
		123077	83.86	3d ⁴ 5d ³ H; ⁴ F	4.07	3d ⁴ 5d ³ G; ⁴ F	1.230	
		123109	75.96	3d ⁴ 4d ¹ F; ² G	8.22	3d ⁴ 5d ³ H; ² G	0.889	
		123607	18.57	3d ⁴ 5d ³ P; ⁴ F	17.16	3d ⁴ 5d ³ H; ⁴ G	1.163	
		123628	44.91	3d ⁴ 5d ³ H; ⁴ G	16.47	3d ⁴ 5d ³ F; ⁴ G	1.050	
		123950	19.24	3d ⁴ 5d ³ P; ⁴ F	15.68	3d ⁴ 5d ³ H; ² F	1.205	
	124310.148	124309	30.49	3d ⁴ 9s ³ D; ⁶ D	17.39	3d ⁴ 6s ³ P; ⁴ D	1.445	
4.5		124310	64.06	3d ⁴ 9s ⁵ D; ⁶ D	8.2	3d ⁴ 6s ³ P; ⁴ D	1.516	
4.5	12406 456	12/67	00.97	2d ⁴ 4c ⁵ D ⁶ D	0.04	2d4 de 3E. 4E	1 5 5 7	1 55 /
	20519.270	20545	98.97	3d ⁵⁴ G	0.39	3d ⁴ 4s ³ G ⁴ G	1.172	1.161
	30218 779	30239	99.19	3d ⁴ 4s ³ H ^{• 4} H	0.55	$3d^4 4s^3G^{+4}G$	0.971	0.978
	31219.336	31276	68.16	3d ⁴ 4s ³ F; ⁴ F	18.87	3d ⁴ 4s ³ F; ⁴ F	1.331	1.34
	32854.246	33014	84.12	3d ⁵⁴ F	7.86	3d ⁴ 4s ³ F; ⁴ F	1.331	
	33618.941	33638	95.91	3d ⁴ 4s ³ G; ⁴ G	1.61	3d ⁴ 4s ³ F; ⁴ F	1.174	1.185
	34630.914	34627	68.03	3d ⁴ 4s ³ H; ² H	28.06	3d ⁵² H	0.916	
	35610.305	35591	65.67	3d ⁵² H	30.53	$3d^4 4s^3H;^2H$	0.914	
	36272.523	36264	73.45	3d ⁵² G	14.67	$3d^4 4s {}^3G; {}^2G$	1.103	
	38563.008	38559	74.32	$3d^4 4s {}^{3}G; {}^{2}G$	12.32	$3d^4 4s {}^{1}G; {}^{2}G$	1.111	1.1
	39824.371	39778	47.56	3d* 4s 'G; 2G	26.93	3d* 4s 'G; 2G	1.111	
	52521.025	52190	92.1	2d ³ 4c ²⁴ E	4.40	2454E	1.112	
	54967 512	54942	97.14 77.26	2d ⁴ /c ³ E, 4E	1.92	2d ⁴ /c ³ E, 4E	1.335	
	62688 961	62579	64 55	$3d^4 4s^1 C^{-2}C$	34 36	$3d^4 4s^1 G^{-2}G$	1.554	
	02000.301	66194	93.6	$3d^3 4s^{22}G$	4.4	3d ⁵² G	1.109	
		69833	98	3d ³ 4s ²² H	1.22	3d ³ 4s ²² G	0.911	
	83240.422	83241	99.69	3d ⁴ 5s ⁵ D; ⁶ D	0.1	3d ⁴ 4d ⁵ D; ⁶ D	1.557	
	86847.008	86946	98.1	3d ⁴ 4d ⁵ D; ⁶ G	1.24	3d ⁴ 4d ⁵ D; ⁶ F	1.275	
	87687.508	87629	83.8	3d ⁴ 4d ⁵ D; ⁶ D	15.34	3d ⁴ 4d ⁵ D; ⁶ F	1.537	
	87948.531	87981	82.98	3d ⁴ 4d ⁵ D; ⁶ F	15.7	3d ⁴ 4d ⁵ D; ⁶ D	1.453	
	89325.281	89463	96.29	3d ⁴ 4d ⁵ D; ⁴ G	1.25	$3d^4 4d^3H; {}^4G$	1.173	
	90850.961	90940	95.03	3d ⁴ 4d ⁵ D; ⁴ F	1.24	3d ⁴ 4d ³ H; ⁴ F	1.333	
	100135.781	100146	98.63	3d ⁴ 5s ³ H; ⁴ H	0.55	3d ⁴ 5s ³ G; ⁴ G	0.971	
	101021./9/	101050	97.05	30 ⁺ 55 ³ H; ² H	1.03	30 ⁻ 55 ⁻³ F; ⁻ F	0.917	
	101382.938	101334	/8.26	$30^{\circ} 55^{\circ} F$; 'F	18.49	30° 55° F; 'F 244 5° 3E; 4E	1.325	
	103027.039	103685	97.29 88 57	3d ⁴ 2d ³ u 4i	6.21	3d ⁴ 2d ³ u 4u	0744	
	104023 961	103797	90.97	$3d^4 4d^3H \cdot {}^4H$	6.16	3d ⁴ 4d ³ H· ⁴ I	0.7-14	
	104023.301	104192	65 91	$3d^4 4d^3H^{-2}G$	10 97	$3d^4 4d^3 G^{-2}G$	1.137	
		104463	68.26	3d ⁴ 4d ³ H: ⁴ F	10.15	$3d^4 4d^3H^2G$	1.301	
	104666.359	104652	76.75	3d ⁴ 4d ³ H: ⁴ G	11.59	3d ⁴ 5d ⁵ D: ⁴ G	1.174	
	105255.305	105089	97.43	3d ⁴ 5s ³ G; ² G	0.78	3d ⁴ 4d ³ H; ² G	1.111	
	105365.508	105269	75.66	3d ⁴ 4d ³ H; ² H	14.16	3d ⁴ 4d ³ F; ² H	0.913	
	105650.000	106045	46.53	3d ⁴ 4d ³ F; ⁴ F	20.53	3d ⁴ 4d ³ P; ⁴ F	1.330	
		106090	72.85	3d ⁴ 4d ³ F; ⁴ H	18.33	3d ⁴ 4d ³ F; ⁴ H	0.971	
	106148.734	106220	60.76	3d ⁴ 4d ³ F; ⁴ G	17.57	3d ⁴ 5d ⁵ D; ⁴ G	1.165	
		106597	39.66	3d ⁴ 4d ³ P: ⁴ F	27.51	3d ⁴ 4d ³ F: ⁴ F	1.331	

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest ei	genvalue component	Calc. g _i	Obs. g _i
5	(cm^{-1})	(cm ⁻¹)	0 0	(%)	0	(%)	0,	[5]
	[0,27]	107044	00.80	244 Ca 5Da 6D	0.02	244 5-50, 60	1 557	[J]
	107111761	107044	99.80 88.73	3d ⁴ 5d ⁵ D; ⁶ C	0.08	3d ⁴ 5d ⁵ D ^{, 6} F	1.557	
	10/111./01	107341	38.96	$3d^4 4d^3F^{2}G$	11.14	3d ⁴ 4d ³ F ^{• 2} H	1.050	
	107455.484	107422	42.71	3d ⁴ 5d ⁵ D; ⁶ D	40.03	3d ⁴ 5d ⁵ D; ⁶ F	1.457	
	107632.227	107505	27.96	3d ⁴ 4d ³ G; ⁴ G	14.75	3d ⁴ 5d ⁵ D; ⁴ G	1.084	
		107520	30.28	3d ⁴ 4d ³ G; ⁴ G	13.78	3d ⁴ 4d ³ F; ² H	1.093	
		107584	40.51	3d ⁴ 4d ³ G; ⁴ F	27.49	3d ⁴ 5d ⁵ D; ⁴ F	1.278	
	107696.273	107688	51.28	3d ⁴ 5d ⁵ D; ⁶ D	45.84	3d ⁴ 5d ⁵ D; ⁶ F	1.495	
	107706.742	107780	43.06	$3d^{4} 4d^{3}G; {}^{4}H$	34.58	$3d^{4} 4d^{3}G; {}^{4}I$	0.875	
	107922.453	107946	46.4	3d ⁴ 4d ³ G; ⁴ H	36.9	3d ⁴ 4d ³ G; ⁴ I	0.874	
		108814	66.1	$3d^4 5s {}^{1}G; {}^{2}G$	33.16	$3d^4 5s {}^{1}G; {}^{2}G$	1.112	
		109086	70.51	3d ⁻⁴ 4d ⁻³ G; ² H	10.57	3d ⁻⁴ 4d ⁻¹ ; ² H	0.914	
		110491	38.59	$30^{\circ} 50^{\circ} D$; 'F	27.12	$30^{\circ} 40^{\circ} D$; F	1.329	
		110796	26.14	$3d^4 5d^5 D^{+4}C$	23 35	3d ⁴ /d ³ C ⁴ C	1.110	
		112684	37.26	3d ⁴ 4d ³ D ^{, 2} C	35.89	$3d^4 4d^{1}l^{-2}C$	1.172	
		112762	52 41	$3d^4 4d^3 D$, 4	9.05	$3d^4 4d^3 G^{+4}F$	1.142	
		112797	54.49	$3d^4 4d^1I$; ² H	26.43	3d ⁴ 4d ¹ G; ² H	0.917	
		112951	72.71	3d ⁴ 4d ³ D; ⁴ G	7.12	3d ⁴ 5d ⁵ D; ⁴ G	1.183	
		114095	51	3d ⁴ 4d ¹ G; ² G	28.48	3d ⁴ 4d ¹ G; ² G	1.108	
		114853	31.18	3d ⁴ 4d ¹ G; ² H	22.65	3d ⁴ 4d ¹ I; ² H	0.940	
		114958	37.03	3d ⁴ 4d ¹ I; ² G	36.52	3d ⁴ 4d ³ D; ² G	1.084	
	115788.281	115789	99.79	3d ⁴ 7s ⁵ D; ⁶ D	0.08	3d ⁴ 8s ⁵ D; ⁶ D	1.557	
	116388.859	116388	76.91	3d ⁴ 6d ⁵ D; ⁶ G	18.65	3d ⁴ 6d ⁵ D; ⁶ F	1.312	
	116601.500	116577	41.43	3d ⁴ 6d ⁵ D; ⁶ D	38.69	3d ⁴ 6d ⁵ D; ⁶ F	1.455	
	116831.570	116795	54.62	$3d^{4} 6d^{5}D; {}^{6}D$	41.53	3d ⁴ 6d ⁵ D; ⁶ F	1.497	
	117141.492	117185	80.77	3d ⁴ 6d ⁵ D; ⁴ G	7.12	3d ⁴ 6d ⁵ D; ⁴ F	1.186	
	117488.422	117492	82.77	3d ⁴ 6d ⁵ D; ⁴ F	7.03	3d ⁴ 6d ⁵ D; ⁴ G	1.322	
	101010 770	120264	74	3d ⁴ 4d ¹ D; ² G	17.55	3d ⁴ 4d ¹ D; ² G	1.112	
	121246.773	121247	99.78	30° 85° D; ° D	0.08	30° /S°D; °D	1.557	
		122033	97.00	2d ⁴ 5d ³ U · ⁴ I	1.00	2d4 5d 3u · 4u	0.909	
		122130	87.49	3d ⁴ 5d ³ H [•] ⁴ H	10.33	3d ⁴ 5d ³ H [•] ⁴ I	0.945	
		122473	97.76	3d ⁴ 6s ³ H; ² H	1.7	3d ⁴ 6s ³ H: ⁴ H	0.911	
		122883	73.27	3d ⁴ 5d ³ H; ² G	7.6	3d ⁴ 5d ³ H; ² H	1.100	
		123112	50.62	3d ⁴ 4d ¹ F; ² G	18.74	3d ⁴ 5d ³ H; ⁴ F	1.121	
		123170	60.55	3d ⁴ 5d ³ H; ⁴ F	23.47	3d ⁴ 4d ¹ F; ² G	1.266	
		123226	40.51	3d ⁴ 5d ³ H; ² H	22.36	3d ⁴ 4d ¹ F; ² H	0.977	
		123701	61.11	3d ⁴ 5d ³ H; ⁴ G	23.54	3d ⁴ 5d ³ F; ⁴ G	1.174	
		123999	59.93	$3d^4 4d^1F;^2H$	16.95	$3d^4 5d^3F;^2H$	0.910	
		124254	50.39	3d ⁴ 5d ³ P; ⁴ F	33.72	3d ⁴ 5d ³ P; ⁴ F	1.333	
	10 4500 707	124417	76.67	3d ⁴ 6s ³ F; ⁴ F	20.3	3d ⁴ 6s ³ F; ⁴ F	1.330	
	124523.727	124517	/4.3	30° 50°F; °H	22.22	30° 50°F; *H	0.967	
		124524	99.82	2d ⁴ 5c ³ E, ⁴ E	0.07	30° 85° D; ° D 244 44 3E, 4E	1.337	
		124557	63.6	30 35 F; F 3d ⁴ 5d ³ F: ⁴ F	15.53	3d 4d 7; 7 3d4 5d 3F; 4F	1.333	
55		124751	05.0	Su Su I, I	10.20	Ju Ju I, I	1.520	
	20512.098	20544	98.97	3d ⁵ ⁴ G	0.38	3d ⁴ 4s ³ G; ⁴ G	1.273	1.278
	30143.246	30099	98.84	3d ⁵² I	0.45	3d ⁵² H	0.924	
	30298.471	30333	99.36	3d ⁴ 4s ³ H; ⁴ H	0.48	3d ⁴ 4s ³ G; ⁴ G	1.134	1.234
	33694.141	33721	97.57	3d ⁴ 4s ³ G; ⁴ G	1.29	3d ⁴ 4s ³ H; ² H	1.270	1.276
	34812.930	34812	63	3d ⁴ 4s ³ H; ² H	34.55	3d ⁵² H	1.093	
	35707.473	35700	62.95	3d ⁵² H	35.34	3d ⁴ 4s ³ H; ² H	1.091	
	40228.293	40215	99.61	3d ⁴ 4s ¹ I; ² I	0.23	$3d^4 4s^3H;^2H$	0.923	
		70068	99.26	3d ³ 4s ²² H	0.7	3d ⁵² H	1.091	
	86980.078	87088	98.47	3d ⁴ 4d ³ D; ^o G	0.91	3d ⁴ 4d ³ D; ^o F	1.344	
	88001.336	88060	98.58	30" 40°D; °F	0.92	30" 40°D; °G	1.454	
	89508.499 100221 504	ᲒᲧᲐᲮ/ 1002 <i>4</i> 0	90.03 00 0	30° 40° D; "G 3d4 5c 30, 40	1.28	30 · 40 ° H; °G	1.2/4	
	100221.394	100240	90.9 Q8 Q1	3d ⁴ 5с ³ ц· ² ц	0.5	3d ⁴ 5c ³ U · ⁴ U	1.154	
	101134./09	101240	90.94 QR R/	$3d^4 5s^3 Ct^4 C$	0.51	3d ⁴ 5c ³ µ· ⁴ и	1.092	
	103843 312	103775	85.39	$3d^4 4d^3H^{-4}I$	9.97	$3d^4 4d^3H^{+4}H$	0.983	
	105045,512	103893	88 53	$3d^4 4d^3 H^{\cdot 4}H$	9,56	3d ⁴ 4d ³ H· ⁴ I	1,116	
	104460.164	104435	98.5	3d ⁴ 4d ³ H: ⁴ K	0.33	3d ⁴ 5d ³ H: ⁴ K	0,771	
	105423.344	105209	77.79	3d ⁴ 4d ³ H; ⁴ G	10.85	3d ⁴ 5d ⁵ D; ⁴ G	1.273	
		105425	76.32	3d ⁴ 4d ³ H; ² H	15.39	3d ⁴ 4d ³ F; ² H	1.091	
	106145.227	105984	81.51	3d ⁴ 4d ³ H; ² I	6.61	3d ⁴ 4d ¹ I; ² I	0.935	
		106161	73.86	3d ⁴ 4d ³ F; ⁴ H	18.04	3d ⁴ 4d ³ F; ⁴ H	1.125	
	106293.438	106326	60.79	3d ⁴ 4d ³ F; ⁴ G	19.45	3d ⁴ 5d ⁵ D; ⁴ G	1.265	
	107246.797	107268	92.17	3d ⁴ 5d ⁵ D; ⁶ G	5.41	3d ⁴ 5d ⁵ D; ⁶ F	1.349	

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest ei	genvalue component	Calc. g _j	Obs. g _J
	(cm^{-1}) [8,27]	(cm^{-1})		(%)		(%)		[5]
		107578	31.05	3d ⁴ 4d ³ F: ² H	21.96	$3d^4 4d^3G$; 4G	1.142	
	107701.281	107677	50.1	3d ⁴ 5d ⁵ D; ⁶ F	17.6	$3d^4 4d^3G; {}^4G$	1.330	
		107695	43.28	3d ⁴ 5d ⁵ D: ⁶ F	26.81	3d ⁴ 4d ³ G; ⁴ G	1.319	
	107760.703	107825	42.48	3d ⁴ 4d ³ G; ⁴ I	36.99	3d ⁴ 4d ³ G; ⁴ H	1.052	
	108017.984	108032	54.18	3d ⁴ 4d ³ G; ⁴ H	35.98	3d ⁴ 4d ³ G; ⁴ I	1.068	
		108761	80.93	3d ⁴ 5s ¹ I; ² I	15.73	3d ⁴ 4d ³ G; ² I	0.924	
		108999	69.47	3d ⁴ 4d ³ G; ² I	18.77	3d ⁴ 5s ¹ I; ² I	0.927	
		109210	70.55	3d ⁴ 4d ³ G; ² H	10.87	3d ⁴ 4d ¹ I; ² H	1.090	
		110986	30.22	3d ⁴ 5d ⁵ D; ⁴ G	24.08	3d ⁴ 4d ³ G: ⁴ G	1.273	
		112827	53.21	3d ⁴ 4d ¹ I; ² H	28.34	3d ⁴ 4d ¹ G; ² H	1.093	
		112941	77.45	3d ⁴ 4d ³ D; ⁴ G	8.44	3d ⁴ 5d ⁵ D; ⁴ G	1.272	
		113274	44.92	$3d^4 4d^1G;^2I$	30.97	3d ⁴ 4d ¹ I; ² I	0.924	
		114519	35.6	3d ⁴ 4d ¹ I; ² I	15.66	3d ⁴ 4d ¹ G; ² I	0.957	
		114940	28.91	3d ⁴ 4d ¹ G; ² H	21.28	3d ⁴ 4d ¹ I; ² H	1.058	
	116531.117	116523	86.34	3d ⁴ 6d ⁵ D; ⁶ G	12.18	3d ⁴ 6d ⁵ D; ⁶ F	1.357	
	116828.922	116783	86.77	3d ⁴ 6d ⁵ D; ⁶ F	12.31	3d ⁴ 6d ⁵ D; ⁶ G	1.441	
	117342.328	117368	88.08	3d ⁴ 6d ⁵ D; ⁴ G	4.58	3d ⁴ 5d ³ H: ⁴ G	1.274	
		122134	98.35	3d ⁴ 6s ³ H; ⁴ H	1.28	3d ⁴ 6s ³ H; ² H	1.133	
		122215	83.19	3d ⁴ 5d ³ H; ⁴ I	13.6	3d ⁴ 5d ³ H; ⁴ H	0.987	
6.5	30149 879	30124	99.28	3d ⁵² I	0.26	3d ⁴ 4d ³ H· ² I	1 077	
	30391 832	30444	99.20	3d ⁴ 4s ³ H· ⁴ H	0.08	$3d^4 4s^{1}l \cdot {}^{2}l$	1 2 3 1	1 2 3 4
	40202 109	40209	99.78	$3d^4 4s^{1}I^{2}I$	0.08	3d ⁴ 4s ³ H ⁴ H	1.231	1.251
	87137.023	87258	99 38	3d ⁴ 4d ⁵ D ⁶ G	0.00	3d ⁴ 5d ⁵ D ^{, 6} G	1.385	
	100322.078	100355	99.77	$3d^4 5s^3H$; ⁴ H	0.11	$3d^4 5s^{-1}I;^{-2}I$	1.231	
	103948.250	103887	83.68	3d ⁴ 4d ³ H; ⁴ I	12.14	3d ⁴ 4d ³ H: ⁴ H	1.123	
	104190.523	103993	86.46	3d ⁴ 4d ³ H: ⁴ H	11.79	3d ⁴ 4d ³ H; ⁴ I	1.216	
	104539.984	104521	97.82	3d ⁴ 4d ³ H; ⁴ K	0.82	$3d^4 4d^3H;^2K$	0.965	
	105124.836	105151	97.95	3d ⁴ 4d ³ H; ² K	0.83	3d ⁴ 4d ³ H; ⁴ K	0.935	
	106342.898	106180	71.17	3d ⁴ 4d ³ H; ² I	13.03	3d ⁴ 4d ³ F; ⁴ H	1.104	
		106245	64.04	3d ⁴ 4d ³ F; ⁴ H	15.12	3d ⁴ 4d ³ F; ⁴ H	1.201	
	107412.031	107448	98.46	3d ⁴ 5d ⁵ D; ⁶ G	0.97	3d ⁴ 7s ⁵ D; ⁶ G	1.385	
	107846.664	107906	61.85	3d ⁴ 4d ³ G; ⁴ I	35.41	3d ⁴ 4d ³ G; ⁴ H	1.151	
	108103.953	108112	61.9	3d ⁴ 4d ³ G; ⁴ H	32.03	3d ⁴ 4d ³ G; ⁴ I	1.188	
		108784	94.85	3d ⁴ 5s ¹ I; ² I	3.91	3d ⁴ 4d ³ G; ² I	1.077	
		109219	80.93	3d ⁴ 4d ³ G; ² I	10.65	3d ⁴ 4d ¹ I; ² I	1.077	
		112233	99.34	3d ⁴ 4d ¹ I; ² K	0.3	3d ⁴ 5d ¹ I; ² K	0.934	
		113315	47.09	3d ⁴ 4d ¹ G; ² I	27.69	3d ⁴ 4d ¹ I; ² I	1.077	
		114562	46.34	3d ⁴ 4d ¹ I; ² I	17.97	3d ⁴ 4d ¹ G; ² I	1.077	
	116708.656	116695	98.86	3d ⁴ 7s ⁵ D; ⁶ G	1.01	3d ⁴ 5d ⁵ D; ⁶ G	1.385	
		122230	99.81	3d ⁴ 6s ³ H; ⁴ H	0.1	3d ⁴ 6s ¹ I; ² I	1.231	
7.5	10,4000,000	104020	06.21	2 4 4 3 11. 41	2.07	244430.41	1 200	
	104069.906	104028	96.31	$30^{\circ} 40^{\circ} H; 1$	2.87	30 · 40 °G; 1	1.200	
	104633.094	104624	98.23	30° 40° H; K	0.66	30 40 H; K	1.091	
	105285.422	105557	98.8	$30^{-}40^{-}H; -K$	0.71	50° 40° H; K	1.067	
	10/981./19	108065	95.95	$30^{\circ} 40^{\circ} \text{G}; 1$	2.85	30 · 40 ° H; 1	1.200	
		112243	99.47	2d ⁴ 4d ¹ 1, ² K	0.3	244 Ed 11, 21	1.007	
8.5		113013	99.00	JU 4U I, L	0.24	Su Su I, L	0.941	
	104734.508	104744	99.46	3d ⁴ 4d ³ H; ⁴ K	0.33	3d ⁴ 5d ³ H; ⁴ K	1.177	
		113033	99.58	3d ⁴ 4d ¹ I; ² L	0.24	3d ⁴ 5d ¹ I; ² L	1.059	

Configuration	Parameter	Value (cm ⁻¹)
3d ⁵	$\begin{array}{c} E_{av} \\ \mathrm{F}^2(\mathrm{3d},\mathrm{3d}) \\ \mathrm{F}^4(\mathrm{3d},\mathrm{3d}) \\ \zeta_{\mathrm{3d}} \\ \alpha \\ \beta \end{array}$	34907(13) 54319(62) 31973(71) 199(23) 52(1) -83(19)
3d ⁴ 4s	$\begin{array}{c} E_{av} \\ F^{2}(3d,3d) \\ F^{4}(3d,3d) \\ G^{2}(3d,4s) \\ \zeta_{3d} \\ \alpha \\ \beta \\ T_{s} \end{array}$	$\begin{array}{c} 39185(8)\\ 59200(40)\\ 35099(61)\\ 7044(27)\\ 231(11)\\ 58(2)\\ -125(23)\\ 21(9)\end{array}$
3d ³ 4s ²	$\begin{matrix} E_{av} \\ \mathrm{F}^2(\mathrm{3d},\mathrm{3d}) \\ \mathrm{F}^4(\mathrm{3d},\mathrm{3d}) \\ \zeta_{\mathrm{3d}} \\ \alpha \\ \beta \end{matrix}$	68847(23) 63138(89) 37001(98) 257(21) 21(2) 0 ^f
3d ⁴ 5s	$\begin{array}{c} E_{av} \\ F^{2}(3d,3d) \\ F^{4}(3d,3d) \\ G^{2}(3d,5s) \\ \zeta_{3d} \\ \alpha \\ \beta \\ T_{s} \end{array}$	$\begin{array}{c} 107550(11)\\ 59996(59)\\ 37827(69)\\ 1448(30)\\ 234^{d}\\ 65(2)\\ 0^{f}\\ 29(7)\end{array}$
3d ⁴ 6s	$\begin{array}{c} E_{av} \\ F^{2}(3d,3d) \\ F^{4}(3d,3d) \\ G^{2}(3d,6s) \\ \zeta_{3d} \\ \alpha \\ \beta \end{array}$	$\begin{array}{c} 129035(20) \\ 60565^d \\ 37986^d \\ 723(42) \\ 235^d \\ 0^f \\ 0^f \end{array}$
3d ⁴ 7s	$E_{av} \ { m F}^2({ m 3d},{ m 3d}) \ { m F}^4({ m 3d},{ m 3d}) \ { m G}^2({ m 3d},{ m 7s}) \ { m \zeta}_{{ m 3d}} \ { m lpha} \ { m eta} \$	$\begin{array}{c} 139030(21) \\ 60583^d \\ 38050^d \\ 270^d \\ 236^d \\ 0^f \\ 0^f \end{array}$
3d ⁴ 8s	$\begin{array}{c} E_{av} \\ \mathrm{F}^2(\mathrm{3d},\mathrm{3d}) \\ \mathrm{F}^4(\mathrm{3d},\mathrm{3d}) \\ \mathrm{G}^2(\mathrm{3d},\mathrm{3s}) \\ \zeta_{\mathrm{3d}} \\ \alpha \\ \beta \end{array}$	$\begin{array}{c} 144504(30) \\ 60853^d \\ 37500^d \\ 148^d \\ 236^d \\ 0^f \\ 0^f \end{array}$
3d ⁴ 9s	F_{av} $F^{2}(3d,3d)$ $F^{4}(3d,3d)$ $G^{2}(3d,9s)$ ζ_{3d} α β	$144523(43) \\ 60853^d \\ 37500^d \\ 92^d \\ 236^d \\ 0^f \\ 0^f$
3d⁴4d	$egin{array}{l} E_{av}\ F^2(3d,3d)\ F^4(3d,3d)\ \zeta_{3d}\ \zeta_{4d}\ \zeta_{4d}\ lpha\ \lpha\ lpha\ \lpha\ \ \lpha\ \ \lpha\ \ \lpha\ \ \lpha\ \ \lpha\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$112817(22) \\ 59397(56) \\ 40284(119) \\ 244(11) \\ 10^d \\ 46(2)$

Table 2

Values of the intra-configuration fine structure parameters for Cr II even configurations.

Configuration	Parameter	Value (cm ⁻¹)
	β	-52^{d}
	F ² (3d,4d)	4266(74)
	F ⁴ (3d,4d)	1600(88)
	G ⁰ (3d,4d)	1694(12)
	G ² (3d,4d)	1297(67)
	G ⁴ (3d,4d)	619(67)
3d ⁴ 5d	E_{av}	131497(14)
	F ² (3d,3d)	60812^{d}
	F ⁴ (3d,3d)	37673 ^d
	ζ _{3d}	244^{d}
	55d	4^d
	α	O ^f
	β	O ^f
	F ² (3d,5d)	1621 ^d
	F ⁴ (3d,5d)	785 ^d
	G ⁰ (3d,5d)	931 ^d
	G ² (3d,5d)	763 ^d
	G ⁴ (3d,5d)	520 ^d
3d ⁴ 6d	E_{av}	140071(11)
	F ² (3d,3d)	60583 ^d
	F ⁴ (3d,3d)	37500 ^d
	ζ _{3d}	244^{d}
	ζ6d	2^d
	α	O ^f
	β	0 ^f
	F ² (3d,6d)	799 ^d
	F ⁴ (3d,6d)	354^{d}
	G ⁰ (3d,6d)	403^{d}
	G ² (3d,6d)	383 ^d
	G ⁴ (3d,6d)	267^{d}

^{*f*} Frozen to zero. ^{*d*} Deduced from *ab initio* or fs calculations.

Та	bl	e	3

Values of even configuration interaction parameters.

Configurations	Parameter ^a	Value (cm ⁻¹)
$3d^5 - 3d^3 4s^2$	R ²	11076(194)
3d ⁵ -3d ⁴ 4s	R ²	-3710(55
3d ⁵ -3d ⁴ 5s	R ²	-2799(450)
3d ⁵ -3d ⁴ 4d	R ² R ⁴	9075(279) 7754(354)
3d ⁵ -3d ⁴ 5d	R ² R ⁴	3736(462) 2445(480)
3d ⁵ -3d ⁴ 6d	R ² R ⁴	2892(499) 3168(700)
$3d^44s - 3d^34s^2$	R ²	-897(350)
3d ⁴ 4s-3d ⁴ 5s	E ²	2911(478)
3d ⁴ 4s-3d ⁴ 6s	E ²	2053(500)
3d ⁴ 4s-3d ⁴ 4d	D^2 E^2	6514(266) 2097(391)
3d ⁴ 4s-3d ⁴ 5d	D^2	2657(498)

307

Table 4Proposals of new positions for the quartet 3d4(5D)5d4F.

J-value	Position given in [27] (cm ⁻¹)	Our proposed position (cm ⁻¹)
1.5	107516.711	110256
2.5	107726.773	110324
3.5	107850.552	110443
4.5	107947.996	110491

Table 5

Comparison of the experimental and calculated energy values, percentages of first and second components and g_J-factors for Cr II odd-parity configurations.

J-value	Eobs	Ecalc	Largest eiger	nvalue component	Next largest e	eigenvalue component	Calc. g _j	Obs. g _J
	(cm ⁻¹) [8,27]	(cm ⁺)		(%)		(%)		[5]
0.5				- 14 - 5- 6-		- 14 - 5- 6-		
	46823.305	46811	99.48	3d ⁴ 4p ³ D; ⁶ F	0.24	3d ⁴ 5p ⁵ D; ⁶ F	-0.669	-0.689
	48749.277	48685	79.02	3d ⁴ 4p ⁵ D; ⁴ P	18.02	3d ⁴ 4p ⁵ D; ⁶ D	2.790	2.844
	49492.711	49455	81.70	3d ⁴ 4p ³ D; ⁶ D	17.72	3d ⁴ 4p ³ D; ⁴ P	3.217	3.155
	54417.957	54369	97.15	3d ⁴ 4p ⁵ D; ⁴ D	0.89	3d ⁴ 4p ³ P; ⁴ D	-0.002	0.007
	63801.754	63839	48.15	3d ⁴ 4p ³ P; ² S	42.74	3d ⁴ 4p ³ P; ² S	1.951	
	65029.336	64748	48.95	3d ⁴ 4p ³ P; ⁴ D	34.21	3d ⁴ 4p ³ P; ⁴ D	0.021	
	66256.438	66425	52.96	3d ⁴ 4p ³ P; ⁴ P	34.21	3d ⁴ 4p ³ P; ⁴ P	2.540	2.545
	66871.828	66711	53.48	3d ⁴ 4p ³ P; ² P	27.84	3d ⁴ 4p ³ P; ² P	0.819	
	67859.562	68024	65.08	$3d^4 4p {}^3F; {}^4D$	19.78	3d ⁴ 4p ³ F: ⁴ D	0.003	
	73406.891	73552	95.14	$3d^4 4p^3D$; $4D^4D$	1.05	$3d^4 4p^3D$; ² P	0.016	
	74920 383	74592	93 54	$3d^4 4n^3D^{+4}P$	3 65	$3d^4 4n^3P^{-4}P$	2 622	
	74520.505	74932	50.06	$3d^4 4p^3 D^{2}P$	22.62	$3d^4 4p^{-1}s^{-2}p$	0.607	
	74033.032	74030	26.24	$2d^4 4p^2 D$, F	24.51	$2d^4 4p^3$, r $2d^4 4p^3$, r	0.097	
	77777.320	77081	30.24	30° 4p° 5; -P	34.51	30° 4p° D; P	0.000	
	81648.641	81602	95.09	³ d ³ 4s 4p ⁴ F. ³ P; ⁶ D	2.28	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	3.258	
	81734.648	81733	97.20	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	1.87	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	-0.589	
	82853.891	82762	68.50	3d ⁴ 4p ¹ D: ² P	15.36	3d ⁴ 4p ¹ D: ² P	0.667	
	85486.164	85333	89.00	3d ³ 4s 4p	4.67	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	-0.003	
				⁴ F. ³ P; ⁴ D				
	89507.961	89576	58.41	3d ⁴ 4p ³ P; ⁴ P	32.60	3d ⁴ 4p ³ P; ⁴ P	2.651	
	90475.375	90549	35.99	3d ⁴ 4p ³ P; ⁴ D	25.63	$3d^4 4p {}^3F; {}^4D$	0.015	
	92988.815	92943	98.10	$3d^4 5p^5D$; ⁶ F	1.11	$3d^4 5p^5D$; ⁴ D	-0.660	
		93314	52.28	$3d^4 5n^5D^{-6}D$	30.55	$3d^4 5n^5D^{-4}P$	3 123	
		03675	64.65	$3d^3 4s 4n$	31.07	$3d^4 5p^5 D$, 1	3,000	
		33073	04.05	⁴ P. ³ P; ⁶ D	51.57	50 50 D, 1	3.033	
	93800.484	93815	44.02	3d ⁴ 4p ³ F; ⁴ D	19.83	3d ⁴ 4p ³ P; ⁴ D	0.033	
	93968.672	93931	46.54	3d ⁴ 5p ⁵ D; ⁶ D	34.56	3d ⁴ 5p ⁵ D; ⁴ P	3.065	
	94624.703	94640	54.50	3d ⁴ 4p ³ P; ² P	27.05	3d ⁴ 4p ³ P; ² P	0.642	
	94839.211	94764	82.72	3d ⁴ 5p ⁵ D; ⁴ D	4.46	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	0.039	
		96711	51.34	$3d^4 4p^3P$; ² S	45.84	3d ⁴ 4p ³ P; ² S	1.998	
	97168.469	97369	78.91	3d ³ 4s 4p 4p 3p. 4p	8.30	3d ³ 4s 4p ² D. ³ P; ⁴ P	2.660	
		100156	58.83	3d ³ 4s 4p ² P. ³ P. ⁴ P	24.24	3d ³ 4s 4p ² D. ³ P; ⁴ P	2.623	
		100322	47.95	$3d^{3} 4s 4p$ $^{2}p ^{3}p 4D$	32.52	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	0.068	
		101245	52.53	3d ³ 4s 4p ⁴ P. ³ P. ² P	31.21	3d ³ 4s 4p ² P. ³ P; ² S	1.086	
		101966	62.97	3d ³ 4s 4p ² P. ³ P. ² S	28.29	3d ³ 4s 4p ⁴ P. ³ P; ² P	1.560	
	102619.641	102797	54.42	3d ³ 4s 4p ⁴ P. ³ P: ⁴ D	37.35	3d ³ 4s 4p ² P. ³ P; ⁴ D	0.013	
		103756	39.64	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	34.28	3d ³ 4s 4p ² D. ³ P; ⁴ D	0.009	
	104439.570	104463	39.26	3d ³ 4s 4p ² D. ³ P; ⁴ D	32.51	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	0.020	
		105121	45.07	3d ³ 4s 4p ² D. ³ P; ² P	22.25	3d ³ 4s 4p ² P. ³ P; ² P	0.778	
	105392.508	105364	52.97	3d ⁴ 4f ⁵ D; ⁴ P	23.77	3d ⁴ 4f ⁵ D; ⁶ D	2.145	
		105482	56.32	3d ⁴ 4f ⁵ D: ⁶ F	33.06	3d ⁴ 4f ⁵ D: ⁴ P	0.848	
		105524	58.02	3d ⁴ 4f ⁵ D: ⁶ D	26.65	3d ⁴ 4f ⁵ D: ⁴ D	1.888	
		105585	38.48	$3d^3 4s 4p$ $^{2}D ^{3}P 4p$	32.64	3d ³ 4s 4p ² P. ³ P; ⁴ P	2.526	
4.5		105650	58.48	3d ⁴ 4f ⁵ D; ⁴ D	19.59	3d ⁴ 4f ⁵ D; ⁶ F	0.457	
1.5	46005 137	16997	00.40	2d4 4n5D, 6E	0.24	2d4 5p 5D, 6E	1.067	1 174
	40300.13/	40002	33.43	2d4 4=50, 60	0.24	2d4 4=50, 40	1.00/	1,124
	40398.871	40337	30.03	5u 4p ⁻ D; ⁻ P	2./ 1	5u 4p ⁻ D; ⁻ r 2d4 4-55, 65	2.383	2.382
	49005.848	48920	/3.32	3d 4p ³ D; ⁺ P	21.01	30° 4p°D; °D	1.783	1.802
	49564.504	49510	78.38	3d⁴ 4p°D; °D	20.85	3d ⁴ 4p ³ D; ⁴ P	1.840	1.824
	51584.102	51804	95.62	3d⁴ 4p⁵D; ⁴ F	1.87	3d ⁴ 4p ³ F; ⁴ F	0.400	0.406
	54499.492	54443	97.13	3d ⁴ 4p ⁵ D; ⁴ D	0.84	3d ⁴ 4p ³ P; ⁴ D	1.200	1.178
	64061.680	64058	48.93	3d ⁴ 4p ³ P; ⁴ D	34.22	3d ⁴ 4p ³ P; ⁴ D	1.202	1.199
	66354.758	66555	51.57	3d ⁴ 4p ³ P; ⁴ P	33.21	3d ⁴ 4p ³ P; ⁴ P	1.676	1.671
	66649.391	66747	25.19	3d ⁴ 4p ³ P; ² P	21.91	$3d^4 4p^3F;^2D$	1.078	
	67070.445	66973	62.84	3d ⁴ 4p ³ F: ⁴ F	12.56	3d ⁴ 4p ³ F: ⁴ F	0.500	
	67379.297	67382	31.57	3d ⁴ 4n ³ P: ² P	17.16	3d ⁴ 4n ³ F: ² D	1.035	
	67870 211	68035	63.02	3d ⁴ 4n ³ F ⁴ D	18 94	3d ⁴ 4n ³ F ⁴ D	1,195	
	5.0.0.211		03.02		10.01		1.1.55	

J-value	Eobs	E_{calc}	Largest eiger	value component	Next largest e	eigenvalue component	Calc. g _j	Obs. g _l
	(cm^{-1})	(cm^{-1})		(%)		(%)		[5]
	[0,27]			- 14 - 2- 4-		- 14 - 2- 4-		[]
	68305.555	68164	52.07	3d ⁴ 4p ³ P; ⁴ S	42.86	$3d^4 4p^3P; 4S^3$	1.974	1.978
	69348.141	69473	35.24	3d ⁻⁴ 4p ⁻³ G; ⁴ F	27.20	3d ⁻⁴ 4p ⁻³ P; ² D	0.637	
	69638.594	69743	50.57	3d ⁴ 4p ³ G; ⁴ F	17.92	3d ⁴ 4p ³ P; ² D	0.571	
	73411.883	73558	93.22	3d ⁴ 4p ³ D; ⁴ D	1.38	3d ⁴ 4p ³ D; ⁴ F	1.194	
	74273.336	74293	85.27	3d ⁴ 4p ³ D; ⁴ F	10.95	3d ⁴ 4p ³ G; ⁴ F	0.422	
	74717.555	74466	91.95	3d ⁴ 4p ³ D; ⁴ P	3.48	3d ⁴ 4p ³ P; ⁴ P	1.712	
	74984.695	74905	56.44	3d ⁴ 4p ³ D; ² P	28.91	3d ⁴ 4p ¹ S; ² P	1.341	
	77713.273	77640	37.11	3d ⁴ 4p ¹ S; ² P	24.02	3d ⁴ 4p ³ D; ² P	1.288	
	78109.453	78086	75.78	3d ⁴ 4p ³ D; ² D	6.18	3d ⁴ 4p ³ F; ² D	0.843	
		78961	99.78	3d ³ 4s 4p ⁴ F. ³ P: ⁶ G	0.08	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	-0.002	
	80288 023	80280	61.84	$3d^4 4n^1 D^{-2} D$	19.83	3d ⁴ 4n ¹ D ^{• 2} D	0.804	
	81707.328	81687	92.04	3d ³ 4s 4p 4 _F ³ p. 6 _F	6.91	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	1.125	
	81824.070	81812	89.89	3d ³ 4s 4p ⁴ F ³ P: ⁶ D	7.26	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	1.809	
	82010 01/	87818	66 5 1	$3d^4 4n^{1}D^{-2}P$	1478	$3d^4 4n^{1}D^{2}P$	1 3 3 3	
	02515.514	02010	00.51	$2d^{3} 4c 4p$	4.61	$2d^{3} 4c 4p 4p 3p 4p$	1,555	
	03300.325	03445	00.24	50 45 4p	4.01	50 45 4p P. P. D	1.196	
	00010 000	00710	70.05	1. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	0.55	244 4-30-20	0.700	
	86919.008	86710	/0.85	3d · 4p · F; ~D	9.55	3d 4p P; 2D	0.798	
	8/628.734	87802	67.02	3d ⁻ 4s 4p	15.19	3a° 4s 4p *F. °P; 2D	0.476	
				⁴ F. ³ P; ⁴ F				
	88604.250	88431	69.92	3d³ 4s 4p ⁴ F. ³ P; ² D	12.75	3d³ 4s 4p 4F. 3P; 4F	0.726	
	89422.328	89500	56.63	3d ⁴ 4p ³ P; ⁴ P	31.52	3d ⁴ 4p ³ P; ⁴ P	1.727	
	90262.125	90005	66.11	$3d^4 4p^3F$; 4^4F	16.27	3d ³ 4s 4p ⁴ F. ³ P: ⁴ F	0.411	
	90450.617	90508	34.42	$3d^4 4p^3P$; ⁴ D	24.46	$3d^4 4p {}^3F; {}^4D$	1.193	
	91556 359	91585	31.27	$3d^4 4n^{3}P^{2}D$	23.25	$3d^4 4n^{3}P^{-2}D$	0.809	
	97234 906	02323	50.02	$3d^4 4p^3P^4S$	40.61	$3d^4 4n^3P$	2 0 1 8	
	02612 202	02205	68 75	$2d^{3} 4c 4p$	25.15	$3d^{4} 5n^{5} D \cdot {}^{6} D$	2.010	
	92012.205	92595	08.75	⁴ P. ³ P; ⁶ P	23.15	Su Sp D, P	2.578	
	93047.287	93017	98.05	3d ⁴ 5p ⁵ D; ⁶ F	0.95	3d ⁴ 5p ⁵ D; ⁴ D	1.067	
	93574.430	93441	56.09	3d ⁴ 5p ⁵ D; ⁶ D	19.77	3d ⁴ 5p ⁵ D; ⁴ P	1.850	
	93740.241	93758	31.46	3d ³ 4s 4p ⁴ P. ³ P: ⁶ D	22.92	3d ⁴ 5p ⁵ D; ⁴ P	1.800	
	93769 992	93785	35.86	$3d^4 4n^3F^{4}D$	15.00	3d ⁴ 4p ³ P · ⁴ D	1.372	
	94002 493	93876	41.40	$3d^4 5n^5 D^{-6} P$	27 35	$3d^{3} As An ^{4}P ^{3}P ^{6}D$	2 158	
	94098 172	94045	45.93	$3d^4 5p^5D$; 4P	26.20	3d ⁴ 5n ⁵ D ^{, 6} D	1 870	
	04255 077	04221	45.55	$3d^4 5p^5 D$, 1	1.86	$2d^4 5p^5 D; 4D$	0.422	
	04292 150	04425	54.55	$2d^{4} 4m^{3} D^{2} D$	1.00	$2d^4 4m^3 D^2 D$	1 2 2 2	
	94383.130	94425	57.55	30 4p P; P	28.09	30 4p P; P	1.332	
	94932.942	94856	83.91	3d ⁴ 5p ³ D; ⁴ D	4.55	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.192	
	97294.047	97472	80.74	3d ³ 4s 4p ⁴ P. ³ P; ⁴ P	7.18	3d° 4s 4p 2D. 3P; 4P	1.734	
	98314.984	98100	50.46	3d ⁴ 4p ³ F; ² D	18.84	3d ⁴ 4p ³ F; ² D	0.800	
	98578.555	98816	77.09	3d ³ 4s 4p ² G. ³ P; ⁴ F	12.35	3d ³ 4s 4p ² D. ³ P; ⁴ F	0.402	
		100299	54.31	3d ³ 4s 4p ² p ³ p • 4p	25.80	3d ³ 4s 4p ² D. ³ P; ⁴ P	1.724	
	100691.820	100517	46.25	$3d^{3} 4s 4p$ ${}^{2}p^{3}p \cdot {}^{4}D$	32.53	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.191	
	101157.773	101417	77.12	3d ³ 4s 4p 4p ³ p ² p	4.19	3d ³ 4s 4p ² P. ³ P; ⁴ D	1.310	
	101986.992	102009	42.45	$3d^{3} 4s 4p$ $^{2}D^{3}P 4F$	17.84	3d ³ 4s 4p ² G. ³ P; ⁴ F	0.478	
	102602.312	102485	84.44	3d ³ 4s 4p ² p ³ p ⁴ S	9.86	3d ⁴ 4p ⁴ P. ³ P; ⁴ S	1.986	
	102684.391	102787	48.06	3d ³ 4s 4p ⁴ P. ³ P: ⁴ D	35.99	3d ³ 4s 4p ² P. ³ P; ⁴ D	1.176	
		103184	43.21	3d ³ 4s 4p ² P. ³ P: ² D	21.36	3d ³ 4s 4p ² D. ³ P; ² D	0.798	
	104274.570	103907	37.61	3d ³ 4s 4p ² D. ³ P; ⁴ D	35.39	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.203	
	104616.250	104559	32.41	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	30.33	3d ³ 4s 4p ² D. ³ P; ⁴ D	1.220	
		104751	43.06	3d ³ 4s 4p ² D. ³ P; ² P	17.77	3d ³ 4s 4p ² D. ³ P; ² P	1.335	
		104988	45.78	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	35.05	3d ⁴ 4f ⁵ D; ⁴ F	0.420	
	105283.430	105256	62.24	3d ⁴ 4f ⁵ D; ⁴ P	13.40	3d ⁴ 4f ⁵ D; ⁶ D	1.657	
		105386	29.87	3d ⁴ 4f ⁵ D; ⁶ D	25.81	3d ⁴ 4f ⁵ D; ⁶ F	1.404	
		105447	49.77	3d ⁴ 4f ⁵ D: ⁶ G	19.88	3d ⁴ 4f ⁵ D: ⁶ P	0.922	
				Ju 11 D, O	10.00	34 H D, I	0.022	

J-value E_{obs} (cm ⁻¹)		E_{calc} (cm ⁻¹)	Largest eigen	value component (%)	Next largest eigenvalue component (%)		Calc. g _j	Obs. g _J
	[8,27]	105.55		0.13 · · ·		0 12 4 4 0 - 0 - 4		[5]
		105480	35.30	3d ³ 4s 4p ² D. ³ P; ⁴ P	30.83	3d ³ 4s 4p ² P. ³ P; ⁴ P	1.716	
		105544	31.72	3d ⁴ 4f ⁵ D; ⁶ G	30.42	3d ⁴ 4f ⁵ D; ⁶ F	1.086	
		105629	39.25	3d ⁴ 4f ⁵ D; ⁴ D	33.71	3d ⁴ 4f ⁵ D; ⁶ P	1.698	
		105676	30.07	3d ⁴ 4f ⁵ D: ⁶ F	28.22	$3d^4 4f^5D$; ⁶ D	1.437	
		105946	60.12	3d ⁴ 4f ⁵ D: ⁴ F	23.78	3d ³ 4s 4p ⁴ F. ¹ P: ⁴ F	0.463	
	106726.086	106544	81.23	$3d^{3} 4s 4p$ $4p^{3}p 4s$	10.67	3d ³ 4s 4p ² P. ³ P; ⁴ S	1.979	
	107212.344	106852	85.12	3d ³ 4s 4p 4p ³ p ² D	4.89	3d ³ 4s 4p ⁴ F. ³ P; ² D	0.812	
		109178	71.68	$3d^{3} 4s 4p$ 2p 3p 2p	14.16	3d ³ 4s 4p ² D. ³ P; ² P	1.328	
		100515	94.76	$3d^4 6n^5 D^{-6}F$	1.85	3d ⁴ 6p ⁵ D: ⁴ P	1.086	
	100661 252	100563	54.70	$2d^4 6p^5 D; 4P$	24.54	2d ⁴ 6p ⁵ D; ⁶ D	1,000	
	105001.552	109505	72 50	$2d^4 cn^5 D$	24.34	2d4 cp ⁵ D; ⁶ D	1.055	
		109880	/ 3.59	30° 6p° D; ° P	25.12	30° 60° D; °D	2.259	
		110039	49.36	3d ⁴ 6p ⁵ D; ⁶ D	32.09	3d ⁴ 6p ⁵ D; ⁴ P	1.872	
	109914.492	110147	42.42	3d ³ 4s 4p ² D. ³ P; ² D	37.87	3d ³ 4s 4p ² P. ³ P; ² D	0.803	
		110316	90.13	3d ⁴ 6p ⁵ D; ⁴ F	2.39	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	0.440	
		110435	48.04	3d ⁴ 5p ³ P; ⁴ D	32.95	3d ⁴ 5p ³ P; ⁴ D	1.205	
		110895	22.35	3d ⁴ 5p ³ P; ⁴ P	15.70	3d ⁴ 5p ³ P; ² P	1.559	
	110931.633	111052	83.18	3d ⁴ 6p ⁵ D: ⁴ D	4.91	3d ³ 4s 4p ⁴ F. ¹ P: ⁴ D	1.221	
		111231	27.52	3d ⁴ 5n ³ P [•] ⁴ P	20.50	$3d^4 5n^{3}P^{2}P$	1 493	
		111567	32 53	$3d^4 5n^3 D.49$	23.30	$3d^4 5n^3 P^{-2}D$	1 500	
		111707	32.33	54 5-35.45	23.47	54 54 17; ⁻ D	1.500	
		111/31	32./8	30°5p°F; F	27.88	30°5p°F; °D	0./19	
		111811	23.33	3d* 4p 'D; 2P	17.24	3d* 5p °P; 4D	1.191	
		111980	42.68	3d ⁴ 4p ¹ D; ² P	11.86	3d ⁴ 4p ¹ D; ² P	1.311	
		112158	43.03	3d ⁴ 5p ³ F; ⁴ D	20.74	3d ⁴ 5p ³ F; ⁴ F	0.949	
		112229	36.20	3d ⁴ 5p ³ F; ² D	18.95	3d ⁴ 5p ³ F; ⁴ D	0.826	
		114106	55.25	$3d^4 5p^3G$; ⁴ F	39.84	3d ³ 4s 4p ² F. ³ P: ⁴ F	0.404	
		115080	52.69	3d ³ 4s 4p ² F ³ P [•] ⁴ F	33.60	3d ⁴ 5p ³ G; ⁴ F	0.416	
		115176	58 22	3d ⁴ 5f ⁵ D· ⁴ P	20.25	3d ³ 4s 4n ⁴ P ¹ P ⁴ P	1 642	
		115381	42.68	3d ⁴ 5f ⁵ D; ⁶ C	34.01	$3d^4 4n^5 D^{-6}F$	0.736	
	115 420 975	115361	42.00	244 55 0.60	10.62	2d4 4=5D, 6C	1.240	
	115430.875	115456	40.96	30° 51° D; ° D	19.62	3d · 4p ⁵ D; °G	1.249	
		115505	46.29	3d ⁴ 5f ³ D; ⁴ D	30.34	3d ⁴ 4p ⁵ D; ^o G	0.831	
	115605.898	115599	33.31	3d ⁴ 5f ⁵ D; ⁶ F	18.25	3d ⁴ 5f ⁵ D; ⁶ P	1.259	
		115610	58.66	3d ⁴ 4p ¹ D; ² D	20.26	3d ⁴ 4p ¹ D; ² D	0.888	
		115721	54.40	3d ⁴ 5f ⁵ D; ⁴ F	21.75	3d ⁴ 4p ⁵ D; ⁴ D	0.742	
	115747.539	115750	61.71	3d ⁴ 5f ⁵ D: ⁶ P	28.72	3d ⁴ 4p ⁵ D; ⁶ D	2.112	
	115966.555	116200	55.52	3d ³ 4s 4p 4p ¹ p. 4p	32.24	3d ⁴ 5f ⁵ D; ⁴ P	1.727	
		117167	48.18	$3d^{3} 4s 4p$ ${}^{2}F^{3}P^{4}D$	36.50	3d ³ 4s 4p ⁴ P. ¹ P; ⁴ D	1.201	
	118622.562	118792	44.64	3d ³ 4s 4p 4p 1p: 4D	44.36	3d ³ 4s 4p ² F. ³ P; ⁴ D	1.199	
		120098	50.78	$3d^{3} 4s 4p$ ${}^{2}F^{3}P^{2}D$	14.72	3d ⁴ 5p ³ D; ² D	0.795	
		120332	73 78	$3d^4 5n^3D^{-4}F$	1176	3d ⁴ 5n ³ D ⁴ D	0 573	
		120352	47 18	$3d^{4} 5n^{3} n 4n$	10 /5	$3d^4 5n^3 D^{+2} D$	1 122	
		120-1/0	72.10	2d4 = - 3 2 -	13.43	$3d^{3} 4a^{4}a^{2}E^{3}D^{2}D$	0.005	
		120632	32.37	30°50°D;4D	13.39	$3a^{-} 4s 4p^{+}F.^{-}P; ^{+}D$	0.905	
		120834	50.01	3a* 5p °D; ² P	24.39	3d* 5p ³ D; ⁴ D	1.268	
		120901	24.09	3d ³ 4s 4p ² P. ¹ P; ² P	16.83	3d ³ 4s 4p ² D. ¹ P; ² P	1.179	
2.5		120944	84.33	3d ⁴ 4f ³ H; ⁴ F	3.80	3d ⁴ 4f ³ H; ² D	0.499	
	47040.273	47001	99.51	3d ⁴ 4p ⁵ D; ⁶ F	0.24	3d ⁴ 5p ⁵ D; ⁶ F	1.315	1.314
	48491.059	48423	97.41	3d ⁴ 4p ⁵ D: ⁶ P	2.08	3d ⁴ 4p ⁵ D: ⁴ P	1.881	1.875
	49351 734	49267	66.85	$3d^4 4n^5 D^{-6} D$	31.86	$3d^4 4n^5 D^{-4}P$	1.640	1 678
	10001.704	40602	62.05	3d ⁴ /n ⁵ D· 4D	27 55	3d ⁴ /n ⁵ D· ⁶ D	1.540	1.020
	51660 406	51876	05.07	3d ⁴ / m ⁵ D · 4 E	194	$3d^4 An^{3}E 4E$	1.020	1 025
	51009.400	510/0	33.3 I 07 12	2d4 4-50 40	1.04	Ju 44 F, F 2d4 4m 3D 4D	1.000	1.025
	54625.594	54559	97.13	$3a^{4}4p^{2}D;^{4}D$	0.83	$3a^{4} 4p^{2} D; ^{2} D$	1.3/2	1.3/6
	64448.750	64387	47.68	3d ⁺ 4p ² P; ⁴ D	33.40	3d* 4p ³ P; ⁴ D	1.372	1.38
	65156.492	65273	51.44	3d ⁴ 4p ³ F; ⁴ G	21.25	3d ⁴ 4p ³ F; ⁴ G	0.573	0.593
	66726.781	66895	44.25	3d ⁴ 4p ³ P; ⁴ P	28.34	3d ⁴ 4p ³ P; ⁴ P	1.505	1.502
	67012.078	67104	30.66	3d ⁴ 4p ³ F: ² D	16.39	3d ⁴ 4p ³ F: ⁴ F	1.238	
	67344 008	67317	74 02	$3d^4 4n^3 H^{-4}C$	15 30	$3d^4 4n^3F^{4}G$	0.584	
	67387 004	67307	60.22	3d ⁴ /m ³ E, 4E	11.01	$3d^4 An^3 E 4E$	1 072	
	67067 700	61231	UU.33 E7 33	2d4 4n 3r. 4n	11.91	2,44 4,5 3F. 4D	1.073	
	0/80/./89	08034	57.32	50° 4p°r; *D	10.80	50.4p ⁻ F; ² D	1.33/	
	68583.305	68542	32.72	3d* 4p °F; 4F	30.46	3d ⁺ 4p ² G; ² F	0.881	
	69954.055	69604	43.26	3d⁴ 4p ³P; ²D	30.51	3d4 4p 3P; 2D	1.186	

J-value	Eobs	Ecalc	Largest eiger	ivalue component	Next largest e	eigenvalue component	Calc. g _j	Obs. g _J
	(cm^{-1}) [8,27]	(cm^{-1})		(%)		(%)		[5]
	69477 898	69998	76 94	3d ⁴ 4n ³ C [•] ⁴ F	9.44	3d ⁴ 4n ³ D ⁴ F	1 0 2 3	[-]
	70316.820	70219	71.08	$3d^4 4p^3G; {}^4G$	12.58	$3d^4 4p^3H$; ⁴ G	0.600	
	70584.391	70448	45.01	$3d^4 4p^3G;^2F$	35.96	$3d^4 4p^3F;^2F$	0.856	
	73436.125	73577	91.46	$3d^4 4p^3D$; 4D	2.54	$3d^4 4p^3D$; ⁴ F	1.365	
	74318.844	74248	84.13	3d ⁴ 4p ³ D; ⁴ P	6.59	3d ⁴ 4p ³ D; ⁴ F	1.529	
	74436.117	74294	35.72	3d ⁴ 4p ¹ G; ² F	17.07	3d ⁴ 4p ¹ G; ² F	0.961	
	74483.906	74383	61.59	3d ⁴ 4p ³ D; ⁴ F	14.51	3d ⁴ 4p ¹ G; ² F	1.003	
	76987.672	76938	72.72	3d ⁴ 4p ³ D; ² F	7.82	3d ⁴ 4p ³ G; ² F	0.858	
	77935.203	77905	77.02	3d ⁴ 4p ³ D; ² D	9.53	3d ⁴ 4p ¹ D; ² D	1.201	
		79115	99.82	3d ³ 4s 4p ⁴ F. ³ P; ⁶ G	0.06	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	0.857	
	80420.164	80431	58.30	3d ⁴ 4p ¹ D; ² D	18.42	3d ⁴ 4p ¹ D; ² D	1.195	
	81232.883	81189	68.03	3d ⁴ 4p ¹ D; ² F	17.83	3d ⁴ 4p ¹ D; ² F	0.862	
	81815.883	81830	82.80	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	14.47	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	1.608	
	81961.867	81943	84.98	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	13.85	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	1.364	
	84604.641	84394	87.93	3d ⁴ 4p ¹ F; ² F	3.20	3d ⁴ 4p ³ D; ² F	0.859	
	85778.656	85652	88.04	3d ³ 4s 4p ⁴ F. ³ P; ⁴ D	4.58	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.371	
	86507.328	86353	70.78	3d ⁴ 4p ¹ F; ² D	10.06	3d ⁴ 4p ³ P; ² D	1.199	
	86566.461	86669	93.63	3d ³ 4s 4p ⁴ F. ³ P; ⁴ G	3.77	3d ³ 4s 4p ² G. ³ P; ⁴ G	0.572	
	87766.594	88023	76.52	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	14.84	3d ⁴ 4p ³ F; ⁴ F	1.034	
	89164.516	88910	82.10	3d ³ 4s 4p ⁴ F. ³ P; ² D	5.55	3d ³ 4s 4p ⁴ P. ³ P; ² D	1.195	
	89453.031	89518	56.85	3d ⁴ 4p ³ P; ⁴ P	31.61	3d ⁴ 4p ³ P; ⁴ P	1.593	
	90258.195	90035	32.25	3d ⁴ 4p ³ P; ⁴ D	23.01	3d ⁴ 4p ³ F; ⁴ D	1.356	
	90441.766	90447	62.75	3d ⁴ 4p ³ F; ⁴ F	17.68	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	1.041	
	90706.805	91017	36.96	3d ⁴ 4p ³ F; ² F	21.60	3d ⁴ 4p ³ F; ⁴ G	0.774	
	91078.711	91269	50.75	3d ⁴ 4p ³ F; ⁴ G	16.95	3d ⁴ 4p ³ F; ⁴ G	0.660	
	91426.047	91441	31.30	3d ⁴ 4p ³ P; ² D	23.62	3d ⁴ 4p ³ P; ² D	1.208	
	92417.891	92542	70.50	3d ³ 4s 4p ⁴ P. ³ P; ⁶ P	28.60	3d ⁴ 5p ⁵ D; ⁶ P	1.886	
		93138	45.29	3d ⁴ 5p ⁵ D; ⁶ F	37.27	3d ³ 4s 4p ⁴ F. ³ P; ² F	1.069	
	93143.853	93143	52.72	3d ⁴ 5p ⁵ D; ⁶ F	32.10	3d ³ 4s 4p ⁴ F. ³ P; ² F	1.103	
	93670.984	93624	43.33	3d ⁴ 4p ³ F; ⁴ D	19.23	3d ⁴ 4p ³ P; ⁴ D	1.380	
	93776.125	93709	61.24	3d ⁴ 5p ⁵ D; ⁶ D	23.84	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	1.650	
	93973.992	93909	44.72	3d ⁴ 5p ⁵ D; ⁶ P	21.54	3d ³ 4s 4p ⁴ P. ³ P; ⁶ P		
	94144.430	94027	58.32	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	26.19	3d ⁴ 5p ⁵ D; ⁶ D	1.679	
	94265.930	94246	64.23	3d ⁴ 5p ⁵ D; ⁴ P	15.20	3d ⁴ 5p ⁵ D; ⁶ P	1.627	
	94365.203	94407	87.99	3d ⁴ 5p ⁵ D; ⁴ F	4.40	3d ⁴ 5p ⁵ D; ⁴ P	1.081	
	95076.719	94993	82.35	3d ⁴ 5p ⁵ D; ⁴ D	4.41	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.368	
	97070.938	97285	84.37	3d ³ 4s 4p ² G. ³ P; ⁴ G	7.72	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ G	0.574	
	97182.555	97310	47.66	3d ³ 4s 4p ⁴ P. ³ P; ⁴ P	38.83	3d ³ 4s 4p ⁴ P. ³ P; ⁶ S	1.756	
	97875.016	97864	60.60	3d ³ 4s 4p ⁴ P. ³ P; ⁶ S	31.99	3d ³ 4s 4p ⁴ P. ³ P; ⁴ P	1.841	
	98207.461	98021	51.59	3d ⁴ 4p ³ F; ² D	18.56	$3d^4 4p {}^3F; {}^2D$	1.196	
	98641.891	98756	57.67	3d ³ 4s 4p ² G. ³ P; ⁴ F	14.13	3d ⁴ 4p ¹ G; ² F	0.985	
	99243.938	98911	35.46	3d ⁴ 4p ¹ G; ² F	21.18	3d ³ 4s 4p ² G. ³ P; ⁴ F	0.907	
		100798	52.35	3d ³ 4s 4p ² P. ³ P; ⁴ P	27.08	3d ³ 4s 4p ² D. ³ P; ⁴ P	1.586	
	101074.523	100857	45.68	3d ³ 4s 4p ² P. ³ P; ⁴ D	29.69	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.367	
	102145.641	102220	67.33	3d ³ 4s 4p ² G. ³ P; ² F	6.99	3d ⁴ 4p ¹ G; ² F	0.877	
	102297.062	102442	41.13	3d ³ 4s 4p ² D. ³ P; ⁴ F	12.77	3d ³ 4s 4p ² G. ³ P; ⁴ F	1.042	
	102655.906	102815	43.71	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	40.54	3d ³ 4s 4p ² P. ³ P; ⁴ D	1.350	
	102678.945	102877	76.41	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ G	8.15	3d ³ 4s 4p ² G. ³ P; ⁴ G	0.574	
		103278	45.91	3d ³ 4s 4p ² P. ³ P; ² D	24.43	3d ³ 4s 4p ² D. ³ P; ² D	1.206	
	104467.805	104149	44.48	3d ³ 4s 4p ² D. ³ P; ⁴ D	28.24	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.372	

J-value E _{obs}		Ecalc	Largest eigenvalue component		Next largest e	Calc. g _l	Obs. g _l	
	(cm^{-1})	(cm^{-1})		(%)	Ū.	(%)	0,	0,
	[8,27]	. ,						[5]
	104900 117	104755	20.02	$2d^{3}$ 4a 4a	20.14	2d3 4a 4a 2D 3D: 4D	1 204	
	104869.117	104/55	30.92	30 ⁻ 45 4p 4c 1p, 4p	29.14	30° 48 4p - D P; - D	1.304	
	105121.000	105111	25 47	F. P; D 244 45D, 4D	22.71	244 450.45	1 262	
	105121.909	105111	35.47	30° 41° D; °P	22.71	30° 41° D; °F	1.203	
		105139	38.74	3d ⁴ 4f ⁵ D; ^o H	34.64	3d ⁴ 4f ⁵ D; ⁴ P	0.976	
		105146	54.25	3d ⁴ 4f ⁵ D; ⁶ H	12.76	3d ⁴ 4f ⁹ D; ⁴ F	0.710	
		105289	39.12	3d ⁴ 4f ⁵ D; ⁶ D	33.09	3d ⁴ 4f ⁵ D; ⁶ P	1.641	
		105425	35.13	3d ⁴ 4f ⁵ D; ⁶ G	31.57	3d ⁴ 4f ⁵ D; ⁶ F	1.286	
		105470	38.03	3d ³ 4s 4p	35.43	3d ³ 4s 4p ² D. ³ P: ⁴ P	1.587	
				² P. ³ P. ⁴ P		1		
	105438 273	105561	46.61	3d ⁴ 4f ⁵ D· ⁶ C	17.89	3d ⁴ 4f ⁵ D ^{, 6} D	1 256	
	105532.070	105631	60.64	3d ⁴ 4f ⁵ D; ⁴ D	11.05	3d ⁴ 4f ⁵ D; ⁶ P	1.230	
	105552.070	105051	40.17	244 450, 65	20.00	244 45D 6D	1.410	
		105720	40.17	30 ⁻⁴¹⁻ D; -F	30.90	$30^{-}41^{-}D$; ^{-}D	1.338	
	105677.609	105/35	72.04	3d · 4f D; ·G	7.34	3d ³ 4s 4p ² H.	0.693	
						³ P; ⁴ G		
	105902.969	106054	42.79	3d ⁴ 4f ⁵ D; ⁴ F	21.65	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	0.951	
		106170	60.26	3d ³ 4s 4p	9.79	3d ⁴ 4f ⁵ D; ⁴ G	0.656	
				² H. ³ P; ⁴ G				
	107022.148	106930	46.88	3d ³ 4s 4p	27.17	3d ³ 4s 4p ⁴ P. ³ P; ² D	0.959	
				${}^{2}D.{}^{3}P:{}^{2}F$		1		
	107355 516	107244	63.20	$3d^3 4s 4n$	18.80	3d ³ 4s 4n ² D ³ P ² F	1 098	
	107 555.510	107244	05.20	4p 3p. 2D	10.00	5u 434p D. 1, 1	1.050	
	100604 207	100622	06.24	2d4 cn ⁵ D: 6E	151	2d4 6p5D, 4E	1 2 1 /	
	109694.297	109033	96.24	30' 6p' D; F	1.51	30° 6p° D; °F	1.314	
	109864.891	109769	42.29	3d ⁴ 6p ⁵ D; ⁶ P	34.27	3d ⁺ 6p ⁵ D; ⁺ P	1.730	
		109997	61.99	3d⁴ 6p°D; °D	34.84	3d4 6p ⁵ D; ⁶ P	1.726	
	109943.383	110057	43.71	3d ³ 4s 4p	39.50	3d ³ 4s 4p ² P. ³ P; ² D	1.202	
				² D. ³ P; ² D				
	109973.973	110194	53.11	3d ⁴ 6p ⁵ D; ⁴ P	21.81	3d ⁴ 6p ⁵ D; ⁶ P	1.656	
		110350	76.94	$3d^4 5p^3H$: ⁴ G	11.07	3d ⁴ 6p ⁵ D: ⁴ F	0.640	
	110315 062	110306	75 77	$3d^4 6n^5 D$; ⁴ E	12.02	$3d^4 5n^3 H; {}^4C$	1 000	
	110515.002	110000	17.70	$2d^4 = 5n^3 D + 4D$	22.02	$2d^4 = 5p^3 D + 4D$	1.000	
	111002 212	111171	47.79	30 3p P, D	52.01	$3d^{3} d_{2} d_{2} d_{2} d_{2} d_{2} d_{3} d_{4}$	1.579	
	111082.312	1111/1	83.53	3d ⁴ 6p ⁵ D; ⁴ D	5.12	3d ³ 4s 4p ⁻ F. ¹ P; ⁻ D	1.3/1	
		111394	70.79	3d ⁴ 5p ³ F; ⁴ G	21.54	3d ⁴ 5p ³ F; ⁴ G	0.590	
		111430	45.94	3d ⁴ 5p ³ P; ⁴ P	30.14	3d ⁴ 5p ³ P; ⁴ P	1.536	
		111835	33.34	3d ⁴ 5p ³ F; ⁴ F	18.85	3d ⁴ 5p ³ F; ² D	1.122	
		112122	37.80	3d ⁴ 5p ³ P; ² D	25.68	3d ⁴ 5p ³ P; ² D	1.203	
		112140	28.44	3d ⁴ 5p ³ F; ⁴ F	13.29	3d ⁴ 5p ³ F; ² F	1.085	
		112264	37.84	3d ⁴ 5n ³ F ^{• 2} F	27.21	$3d^4 5n^3 F^{-4}D$	1 071	
		112201	46.41	$3d^4 5n^3 F^2 D$	14.09	$3d^4 5n^3F^2D$	1 197	
		112250	40.41	$2d^4 4p^{1}Dt^{2}E$	17.10	$2d^4 4p^{1}Dt^{2}E$	0.961	
		112005	42.42	$3d^4 = p^3 + q^4 + q^4$	17.19	3d 4p D, F	0.801	
		113985	43.43	30° 5p°G; °G	24.93	30' 5p - G; F	0.796	
		114198	39.32	3d ⁺ 5p ⁻² G; ⁺ G	27.41	3d ³ 4s 4p ² F. ³ P; ⁴ F	0.839	
		114515	68.91	3d ⁴ 5p ³ G; ² F	11.20	3d ⁴ 5p ³ G; ⁴ G	0.837	
		115082	52.38	3d ⁴ 5f ⁵ D; ⁴ P	10.98	3d ⁴ 5f ⁵ D; ⁴ D	1.447	
		115117	38.60	3d ³ 4s 4p	28.81	3d ⁴ 5p ³ G; ⁴ F	1.149	
				² F. ³ P; ⁴ F				
	115208.312	115234	90.58	3d ⁴ 5f ⁵ D: ⁶ H	6.47	3d ⁴ 5f ⁵ D: ⁶ G	0.344	
	115309 562	115340	38.23	3d ⁴ 5f ⁵ D ⁶ D	30.48	3d ⁴ 5f ⁵ D ⁶ F	1 4 4 8	
	115505.502	115426	24.94	$3d^4 5f^5 D$, 4D	23.10	$3d^4 4n^5 D$; ⁶ C	1 2 3 1	
	115461 740	115420	24.04	2d4 56 D: 4C	23.50	2d4 4p ⁵ D; ⁶ C	1.251	
	115401.742	115460	20.05	30 31 D, G	25.51	50 4p D, G	1.008	
		115580	28.63	30°51°D; 'G	24.43	3d 4p D; G	1.017	
	115767.047	115618	27.97	3d ⁴ 5f ³ D; ⁴ G	26.78	3d ⁴ 4p ⁵ D; ⁶ P	1.237	
		115722	69.55	3d ⁴ 4p ¹ D; ² D	23.99	3d ⁴ 4p ¹ D; ² D	1.199	
		115765	44.58	3d ⁴ 5f ⁵ D; ⁶ D	28.61	3d ⁴ 5f ⁵ D; ⁶ P	1.614	
	115810.297	115817	55.26	3d ⁴ 5f ⁵ D; ⁴ F	16.85	3d ⁴ 5f ⁵ D; ⁴ D	1.045	
		116243	64.53	$3d^{3} 4s 4p$	21.19	3d ⁴ 5f ⁵ D: ⁴ P	1.597	
				4p 1p. 4p				
		116672	93 95	$3d^3 4s 4n$	3.76	$3d^3 4s 4n^2H$	0 574	
		110072	55.55	² E ³ D·4C	5.70	³ D· ⁴ C	0.574	
		117101	55.24	r. r, G	20.02	r, G	1 272	
		11/131	55.24	30° 48 4p	29.93	3a- 4s 4p 'P. 'P; 'D	1.372	
				² F. ² P; ³ D			·	
		118054	36.66	3d* 5p 'G; ² F	26.39	3d ² 4s 4p ² G. ¹ P; ² F	0.858	
		118788	50.83	3d ³ 4s 4p	36.95	3d³ 4s 4p ² F. ³ P; ⁴ D	1.370	
				⁴ P. ¹ P; ⁴ D				
		119248	30.82	3d ³ 4s 4p	26.33	3d ⁴ 5p ³ D; ² F	0.859	
				² G. ¹ P: ² F		± ·		
		120046	5179	$3d^3 4s 4n$	16.03	3d ⁴ 5n ³ D ^{• 2} D	1,202	
		1200-10	51,75	² F ³ D ² L	10.05	за эр D , D	1.202	
		120265	76 52	$2d45n^{3}D.4E$	16 40	$2d^{4} 5n^{3} D 4D$	1 002	
		120303	70.33	54 5p 2p 2p	10.42	3u 3p D; D	1.095	
		120433	34./2	30° 50° D; 2D	23.53	30 ⁻ 4s 4p ⁻ F. ⁻ P; ⁻ D	1.261	
		120726	48.34	3d ⁺ 5p ³ D; ⁴ D	17.51	3d* 5p 3D; 4F	1.273	
		120849	76.78	3d⁴ 4f ³H; ⁴G	17.99	3d⁴ 4f ³H; ²F	0.643	

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest e	eigenvalue component	Calc. g _j	Obs. g _J
	(cm^{-1}) [8.27]	(cm^{-1})		(%)		(%)		[5]
	[0,27]	120896	54.24	3d ⁴ 4f ³ H· ² F	23.60	3d ⁴ 4f ³ H• ⁴ F	0.800	[0]
		120992	70.02	3d ⁴ 5p ³ D; ⁴ P	6.87	3d ⁴ 4f ³ H; ⁴ D	1.509	
3.5				•				
	47227.219	47165	99.53	3d ⁴ 4p ⁵ D; ⁶ F	0.24	3d ⁴ 5p ⁵ D; ⁶ F	1.398	
	48632.059	48559	99.56	3d ⁴ 4p ⁵ D; ⁶ P	0.13	3d ⁴ 5p ⁵ D; ⁶ P	1.715	
	49645.805	49639	99.30	3d ⁴ 4p ⁵ D; ⁶ D	0.31	3d ⁴ 4p ⁵ D; ⁴ F	1.587	
	51788.816	51980	95.34	3d ⁴ 4p ⁵ D; ⁴ F	1.80	3d ⁴ 4p ³ F; ⁴ F	1.240	
	54784.449	54707	97.20	3d ⁴ 4p ⁵ D; ⁴ D	0.92	3d ⁴ 4p ³ D; ⁴ D	1.429	
	63600.863	63642	82.23	3d ⁴ 4p ³ H; ⁴ H	16.09	3d ⁴ 4p ³ G; ⁴ H	0.669	
	64924.461	64801	44.80	3d ⁴ 4p ³ P; ⁴ D	31.52	3d ⁴ 4p ³ P; ⁴ D	1.428	
	65256.852	65298	31.00	3d ⁴ 4p ³ H; ² G	22.87	3d ⁴ 4p ³ F; ⁴ G	0.934	
	65542.898	65498	27.66	3d ⁴ 4p ³ H; ² G	27.29	3d ⁴ 4p ³ F; ⁴ G	0.939	
	67333.781	67323	75.03	3d ⁴ 4p ³ F; ⁴ F	14.53	3d ⁴ 4p ³ F; ⁴ F	1.228	
	67393.453	67378	69.21	3d ⁴ 4p ³ H; ⁴ G	17.47	3d ⁴ 4p ³ F; ⁴ G	0.996	
	67875.367	68035	50.77	3d ⁴ 4p ³ F; ⁴ D	14.36	3d ⁴ 4p ³ F; ⁴ D	1.393	
	68759.805	68714	33.51	3d ⁴ 4p ³ F; ² F	25.44	3d ⁴ 4p ³ G; ² F	1.165	
	68843.273	68938	82.37	3d ⁴ 4p ³ G; ⁴ H	16.12	3d ⁴ 4p ³ H; ⁴ H	0.669	
	69506.070	69621	76.20	3d ⁴ 4p ³ G; ⁴ F	9.02	3d ⁴ 4p ³ D; ⁴ F	1.210	
	69903.477	69778	36.09	$3d^4 4p {}^3F; {}^2G$	24.67	$3d^4 4p^3H;^2G$	0.911	
	70426.992	70316	69.91	$3d^4 4p^3G; {}^4G$	12.89	$3d^4 4p^3H; {}^4G$	0.999	
	70852.164	70695	52.42	3d ⁴ 4p ³ G; ² F	33.12	3d ⁴ 4p ³ F; ² F	1.142	
	72648.516	72752	78.63	3d ⁴ 4p ³ G; ² G	10.37	3d ⁴ 4p ³ H; ² G	0.893	
	73485.609	73623	92.77	$3d^4 4p^3D$; 4D	2.62	$3d^4 4p^3D$; 4^4F	1.421	
	74114.367	74058	51.78	3d ⁴ 4p ¹ G; ² F	24.62	3d ⁴ 4p ¹ G; ² F	1.145	
	74423.672	74432	83.74	$3d^4 4p^3D$; ⁴ F	10.17	$3d^4 4p^3G$; ⁴ F	1.242	
	75716.495	75929	47.58	$3d^4 4p^1G^{2}$	28.11	$3d^4 4p^1G;^2G$	0.891	
	76878 953	76839	74 11	$3d^4 4n^3 D^{-2}F$	7 47	$3d^4 4n^3G^{2F}$	1.143	
	/00/0.555	79328	99.85	$3d^3 4s 4n$	0.03	$3d^3 4s 4n^4 F^{-3} P^{+4} F$	1 143	
		75520	55.65	⁴ F. ³ P; ⁶ G	0.05	50 15 Ip 1. I, I	1.115	
	81432.227	81376	69.36	3d ⁴ 4p ¹ D; ² F	18.39	3d ⁴ 4p ¹ D; ² F	1.143	
	81978.047	82032	76.16	$3d^3 4s 4p$	21.26	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	1.547	
				⁴ F. ³ P; ⁶ D		1,		
	82142.711	82126	78.30	3d ³ 4s 4p	20.54	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	1.438	
				⁴ F. ³ P; ⁶ F				
	84677.117	84456	87.25	3d ⁴ 4p ¹ F; ² F	3.21	3d ⁴ 4p ³ D; ² F	1.141	
	85573.125	85562	94.02	3d ⁴ 4p ¹ F; ² G	1.26	3d ⁴ 4p ¹ G; ² G	0.892	
	86078.820	85981	89.48	3d ³ 4s 4p	4.67	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.430	
				⁴ F. ³ P; ⁴ D				
	86797.242	86901	93.55	3d ³ 4s 4p	3.79	3d ³ 4s 4p ² G. ³ P; ⁴ G	0.985	
				⁴ F. ³ P; ⁴ G				
	87916.672	88239	74.86	$3d^3$ 4s 4p	18.84	3d ⁴ 4p ³ F; ⁴ F	1.238	
				⁴ F. ³ P; ⁴ F				
	90218.406	90078	56.38	3d ⁴ 4p ³ F; ⁴ F	19.63	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	1.255	
	90489.844	90388	32.67	3d ⁴ 4p ³ P; ⁴ D	23.42	3d ⁴ 4p ³ F; ⁴ D	1.406	
	90830.844	91122	43.29	3d ⁴ 4p ³ F; ² F	16.63	3d ⁴ 4p ³ F; ⁴ G	1.108	
	91122.859	91306	55.09	3d ⁴ 4p ³ F; ⁴ G	18.26	3d ⁴ 4p ³ F; ⁴ G	1.024	
		91658	89.81	3d ³ 4s 4p	4.61	3d ⁴ 4p ³ F; ² G	0.892	
				⁴ F. ³ P; ² G				
	92653.172	92738	68.21	3d ³ 4s 4p	31.12	3d ⁴ 5p ⁵ D; ⁶ P	1.715	
				⁴ P. ³ P; ⁶ P				
	93276.853	93312	97.94	3d ⁴ 5p ⁵ D; ⁶ F	0.85	3d ⁴ 5p ⁵ D; ⁴ F	1.397	
		93458	66.06	3d ³ 4s 4p	8.33	3d ⁴ 4p ³ F; ² F	1.191	
				⁴ F. ³ P; ² F				
	93531.695	93602	38.12	3d ⁴ 4p ³ F; ⁴ D	16.18	3d ⁴ 4p ³ P; ⁴ D	1.380	
	93801.523	93833	72.90	3d ⁴ 5p ⁵ D; ⁶ D	22.47	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	1.582	
	93966.430	94116	65.37	3d ⁴ 5p ⁵ D; ⁶ P	30.80	3d ³ 4s 4p ⁴ P. ³ P; ⁶ P	1.705	
	94218.672	94236	73.12	3d ³ 4s 4p	21.19	3d ⁴ 5p ⁵ D; ⁶ D	1.574	
				⁴ P. ³ P; ⁶ D				
	94452.672	94356	71.43	3d ⁴ 4p ³ F; ² G	20.30	3d ⁴ 4p ³ F; ² G	0.889	
	94522.305	94518	87.33	3d ⁴ 5p ⁵ D; ⁴ F	4.85	3d ⁴ 5p ⁵ D; ⁶ D	1.271	
	95250.680	95137	84.67	3d ⁴ 5p ⁵ D; ⁴ D	4.36	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.429	
		96229	83.29	3d ³ 4s 4p	15.04	3d ³ 4s 4p ² H.	0.670	
				² G. ³ P; ⁴ H		³ P; ⁴ H		
	97187.102	97262	49.60	3d ⁴ 4p ¹ G; ² G	27.94	3d ⁴ 4p ¹ G; ² G	0.898	
	97728.227	97450	77.85	3d ³ 4s 4p	6.77	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ G	0.975	
				² G. ³ P; ⁴ G				
	98719.328	98578	46.29	3d ⁴ 4p ¹ G; ² F	20.34	3d ⁴ 4p ¹ G; ² F	1.145	
	99069.273	98959	76.87	3d ³ 4s 4p	8.89	3d ³ 4s 4p ² D. ³ P; ⁴ F	1.231	
				² G. ³ P; ⁴ F				
	101514.195	101244	44.52	3d ³ 4s 4p	31.10	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.398	
				² P. ³ P; ⁴ D				

Lyaluo	, F .	F.	Largest eigen	value component	Next largest	and a component	Calc a	Obc. a.
J-value	(cm^{-1})	(cm^{-1})	Laigest eigen	(%)	Next largest e	(%)	Calc. gj	ODS. gj
	[8,27]							[5]
	101170.469	101298	54.81	3d ³ 4s 4p	24.28	3d ³ 4s 4p ² G. ³ P; ² G	0.764	
	101864.180	102024	32.46	3d ³ 4s 4p	28.50	3d ³ 4s 4p ² G. ³ P; ² G	0.951	
	102121.992	102264	33.30	G. P, F 3d ³ 4s 4p	26.94	3d ³ 4s 4p ² G. ³ P; ² G	1.045	
	102492.539	102519	37.84	⁻ G. ⁻ P; ⁻ F 3d ³ 4s 4p ² D 3D: 45	11.96	3d ³ 4s 4p ² G. ³ P; ⁴ F	1.233	
	102831.602	102909	42.89	$^{2}D.^{2}P.^{3}F$ $^{3}d^{3}4s4p$ $^{2}D^{3}P.^{4}D$	41.14	3d ³ 4s 4p ⁴ P. ³ P; ⁴ D	1.404	
		103097	74.74	P. P; D 3d ³ 4s 4p 4F 1p; 4C	7.91	3d ³ 4s 4p ² G. ³ P; ⁴ G	0.986	
	104680.789	104455	58.26	r, r, G 3d ³ 4s 4p ² D ³ P: 4D	15.94	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ D	1.427	
		105005	40.42	$3d^{3} 4s 4p$ $4E^{1}P^{4} 4p$	18.89	3d ³ 4s 4p ² D. ³ P; ⁴ D	1.411	
	105173406	105172	49.84	3d ⁴ 4f ⁵ D ⁶ P	21 34	3d ⁴ 4f ⁵ D ^{, 6} D	1 469	
	105197312	105186	59.61	3d ⁴ 4f ⁵ D: ⁶ H	13.65	3d ⁴ 4f ⁵ D; ⁴ H	0.991	
	105206719	105267	68.35	3d ⁴ 4f ⁵ D: ⁴ H	12.05	3d ⁴ 4f ⁵ D; ⁶ H	0.351	
	105200.715	105207	41.10	244 450, 45	12.22	$2d^{3} 4a 4a^{4}E^{-1}D^{4}E^{-1}$	1 1 0 0	
	105282.625	105302	41.16	30 · 41°D; ·F	18.76	3d ³ 45 4p 'F. 'P; 'F	1.188	
		105402	41.15	3d ⁴ 4f ³ D; ^o F	19.66	$3d^4 4f^3D; {}^{6}P$	1.419	
	105419.961	105573	50.15	3d ⁴ 4f ⁵ D; ⁶ G	29.98	3d ⁴ 4f ⁵ D; ⁶ D	1.330	
	105507.531	105627	71.19	3d ⁴ 4f ⁵ D; ⁴ D	7.85	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	1.431	
		105769	52.33	3d ⁴ 4f ⁵ D; ⁶ F	22.48	3d ³ 4s 4p ⁵ D; ⁶ D	1.388	
	105724.656	105821	72.65	3d ⁴ 4f ⁵ D; ⁴ G	11.42	$3d^3 4s 4p^2H$.	1.002	
						³ P; ⁴ G		
	105985.555	106114	60.85	3d³ 4s 4p ² H.³P; ⁴ G	11.82	3d4 4f ⁵ D; 4F	1.052	
	106779.250	106269	31.23	3d ⁴ 4f ⁵ D; ⁴ F	27.67	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	1.166	
	107153.039	107281	65.84	3d ³ 4s 4p ² D. ³ P; ² F	20.30	3d ³ 4s 4p ² D. ³ P; ² F	1.143	
	107918.547	107604	83.07	3d ³ 4s 4p ² H. ³ P; ² G	9.91	3d ³ 4s 4p ² F. ³ P; ² G	0.893	
		109048	88.75	3d4 5p ³ H; ⁴ H	8.13	3d ⁴ 5p ³ H; ² G	0.688	
		109745	80.70	3d ⁴ 5p ³ H; ² G	9.01	3d ⁴ 5p ³ H; ⁴ H	0.875	
	109812.039	109796	94.66	3d ⁴ 5p ⁵ D; ⁶ F	2.62	3d ⁴ 6p ⁵ D: ⁴ F	1.395	
	110097 094	110034	89.90	$3d^{4} 5p^{5}D^{6}P$	7 77	$3d^4 6p^5 D^{-6} D$	1 700	
	110272 117	110134	83.10	$3d^4 5n^5D^{+6}D$	7.02	3d ⁴ 6n ⁵ D; ⁶ P	1568	
	110272.117	110104	81.00	$3d^4 5p^3 U \cdot 4C$	1.02	$3d^4 5p^3 U^2 C$	0.000	
	110471 201	110506	01.50	244 5=50.45	7.57	244 cm ⁵ Dr ⁶ D	1.365	
	1104/1.281	111205	80.88	30 50 D; F	7.52	30 6p D; D	1.205	
	111269.164	111265	35.91	3d ⁺ 5p ⁻ P; ⁺ D	24.20	3d= 5p = P; =D	1.426	
		111323	70.12	3d ⁴ 5p ³ D; ⁴ D	8.89	3d ⁴ 5p ³ F; ⁴ D	1.429	
		111490	66.61	3d ⁴ 5p ³ F; ⁴ G	20.00	3d ⁴ 5p ³ F; ⁴ G	0.991	
		111999	39.93	3d ⁴ 5p ³ F; ⁴ F	10.72	3d ⁴ 5p ³ F; ⁴ F	1.256	
		112107	29.55	3d ⁴ 5p ³ F; ² G	15.72	3d ⁴ 5p ³ F; ² F	1.073	
		112228	33.16	3d ⁴ 5p ³ F; ² G	23.71	3d ⁴ 5p ³ F; ⁴ F	1.087	
		112404	36.64	3d ⁴ 5p ³ F; ² F	27.34	$3d^4 5p^3F$; ⁴ D	1.269	
		113366	60.04	$3d^4 4p {}^1D {}^2F$	17.00	$3d^4 4p {}^1D \cdot {}^2F$	1 143	
		113643	93.24	$3d^4 5n^3C^{+4}H$	2 29	$3d^4 5n^3C^{-2}C$	0.680	
		11/056	20.22	$3d^4 5p^3 C t^4 F$	2072	$3d^4 5p^3C; {}^4C$	1 152	
		114030	50.25	$3d^4 5p^3C^{+4}C$	16.66	$2d^3 4c 4p 2E^{-3}D 4E$	1.155	
		114273	J9.02	$3d^{4} = 3c^{2}c^{2}$	10.00	3 43 49 F. F. F.	1.050	
		114542	74.80	30° 50°G; °G	6.72	3d ⁵ 4S 4p ⁻² F. ³ P; ³ F	0.926	
		114765	/0.27	3d ⁴ 5p ³ G; ² F	7.20	3d ⁴ 4p ¹ D; ² F	1.125	
		115149	42.79	3d ³ 4s 4p ² F. ³ P; ⁴ F	34.90	3d4 5p 3G; 4F	1.233	
	115249.250	115255	37.15	3d ⁴ 5f ⁵ D; ⁶ P	27.08	3d ⁴ 5f ⁵ D; ⁶ D	1.415	
	115309.094	115287	48.60	3d ⁴ 5f ⁵ D; ⁶ H	14.72	3d ⁴ 5f ⁵ D; ⁴ H	1.018	
	115398.391	115342	69.96	3d ⁴ 5f ⁵ D: ⁴ H	15.21	3d ⁴ 5f ⁵ D: ⁶ H	0.757	
	115447 578	115419	30.10	3d ⁴ 5f ⁵ D ^{• 4} D	24.36	3d ⁴ 5f ⁵ D [•] ⁶ F	1.336	
		115474	20.10	3d ⁴ 5f ⁵ D· ⁴ D	16.25	3d ⁴ 5f ⁵ D· ⁶ D	1 3 2 8	
	115501 149	1154/4	44.20	2d4 EF5D.6C	10.23	244 E 45 D. 6 D	1.320	
	115591,148	115599	44.2U	วน มาบ; G	22.80	24 55 45	1.349	
	115627.719	115649	55.05	30" 51°D; "G	20.48	30" 51"D; "D	1.140	
	115797.203	115789	44.59	3d⁴ 5f°D; °F	35.91	3d ⁴ 5f ⁵ D; ⁶ D	1.453	
	115882.164	115889	55.63	3d ⁴ 5f ⁵ D; ⁴ F	24.87	3d ⁴ 5f ⁵ D; ⁴ G	1.189	
		116735	93.40	3d ³ 4s 4p ² F. ³ P; ⁴ G	3.71	3d ³ 4s 4p ² H. ³ P; ⁴ G	0.987	
		117045	64.44	3d ³ 4s 4p ² F. ³ P: ⁴ D	22.29	3d ³ 4s 4p ⁴ P. ¹ P; ⁴ D	1.428	
		117526	41.94	3d ³ 4s 4p ² G. ¹ P: ² G	26.01	3d ⁴ 5p ¹ G; ² G	0.896	
		117964	43.43	3d ⁴ 5p ¹ G; ² F	24.57	3d ⁴ 5p ¹ G; ² F	1.136	

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest e	eigenvalue component	Calc. g _j	Obs. g _j
	(cm^{-1}) [8,27]	(cm^{-1})		(%)		(%)		[5]
	118753.672	118835	59.56	3d ³ 4s 4p	27.64	3d ³ 4s 4p ² F. ³ P; ⁴ D	1.429	
		119280	32.73	$^{1}P, ^{2}P, ^{3}D$ $^{3}d^{3}4s4p$ $^{2}C ^{1}P, ^{2}F$	28.87	3d ⁴ 5p ³ D; ² F	1.119	
		119677	29 50	$3d^4 5n^1C^2C$	26 52	$3d^3 4s 4n^2 C^{-1} P \cdot {}^2 C$	0.916	
		120439	71.90	$3d^4 5p^3 D; {}^4F$	20.32	$3d^4 5n^3D^{*4}D$	1 277	
		120433	66 55	$3d^4 5n^3D^{-4}D$	23.42	$3d^4 5n^3D$; ⁴ F	1 381	
		120795	82.87	$3d^4 \Lambda f^3 H^{-4} H$	6.21	$3d^4 Af^3H^4C$	0.712	
		120750	62.67	$3d^3 4s 4n$	8.60	$3d^3 4s 4n^2H$	0.893	
		120017	02101	² F. ³ P: ² G	0.00	³ P: ² G	0.000	
		120869	34.65	3d ⁴ 4f ³ H; ⁴ G	34.04	3d ⁴ 4f ³ H; ² G	0.974	
		120948	41.92	3d ⁴ 4f ³ H; ⁴ G	24.76	3d ⁴ 4f ³ H; ² F	0.979	
4.5								
	47464.559	47374	99.55	3d ⁴ 4p ⁵ D; ⁶ F	0.24	$3d^4 5p^5D; {}^6F$	1.435	
	49838.379	49822	98.82	3d ⁴ 4p ⁵ D; ⁶ D	0.81	3d ⁴ 4p ⁵ D; ⁴ F	1.555	
	51942.664	52116	95.05	3d ⁴ 4p ⁵ D; ⁴ F	1.75	3d ⁴ 4p ³ F; ⁴ F	1.336	
	63706.250	63740	81.82	3d ⁴ 4p ³ H; ⁴ H	15.69	3d ⁴ 4p ³ G; ⁴ H	0.969	
	65217.507	65183	94.74	3d ⁴ 4p ³ H; ⁴ I	1.27	3d ⁴ 4p ³ H; ² G	0.742	
	65383.906	65388	33.21	3d ⁴ 4p ³ F; ⁴ G	19.11	$3d^4 4p^3H;^2G$	1.150	
	65680.016	65651	35.75	3d ⁴ 4p ³ H; ² G	18.21	3d ⁴ 4p ³ F; ² G	1.120	
	67353 266	67339	71.14	$3d^4 4p^3H^{\cdot 4}G$	19.32	$3d^4 4p^3F^{4}G$	1.172	
	67448 539	67441	78.72	$3d^4 4n^3F^{+4}F$	15.02	$3d^4 4n^3F^{4}F$	1 3 3 0	
	68476 875	68335	80.59	$3d^4 4n^3H^{2}H$	10.05	$3d^4 4n^1C^{2}H$	0.912	
	68002 244	60073	00.55	$3d^4 4p^{-3}C^{+}4U$	10.27	$2d^4 4p^3 U 4U$	0.071	
	60409 211	60600	02.02	$3d^{4} 4p^{3}C^{4} 4F$	9.44	За 4р п, п 2d4 4р 3р, 4Е	1 202	
	09496.211	69009	74.20	30 4p G, r	0.44	$3d^{4} 4p^{-}D$, r	1.502	
	70107.625	69979	33.56	$3d^{2} 4p^{3}F;^{2}G$	24.20	$30^{\circ} 4p^{\circ} H; ^{\circ} G$	1.132	
	70394.148	70376	65.03	3d ⁻ 4p ⁻³ G; ⁻ G	12.07	3d ⁻ 4p ⁻ H; ⁻ G	1.160	
	70679.094	70844	74.48	3d ⁴ 4p ³ G; ² H	9.71	3d ⁴ 4p 1; ² H	0.930	
	72716.719	72847	75.57	3d ⁴ 4p ³ G; ² G	11.84	3d ⁴ 4p ³ H; ² G	1,111	
	74455.805	74501	88.13	3d ⁴ 4p ³ D; ⁴ F	10.55	3d ⁴ 4p ³ G; ⁴ F	1.334	
	74504.102	74584	49.98	3d ⁴ 4p ¹ G; ² H	27.86	3d ⁴ 4p ¹ G; ² H	0.911	
	75809.984	75997	45.64	3d ⁴ 4p ¹ G; ² G	27.99	3d ⁴ 4p ¹ G; ² G	1.110	
	77270.219	77010	86.10	3d ⁴ 4p ¹ I; ² H	11.31	3d ⁴ 4p ³ G; ² H	0.910	
		79600	99.89	3d ³ 4s 4p 4F ³ P· ⁶ C	0.03	3d ⁴ 4f ⁵ D; ⁶ G	1.273	
	82192.180	82292	73.58	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	24.01	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	1.527	
	82361.977	82359	75.56	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	23.45	3d ³ 4s 4p ⁴ F. ³ P; ⁶ D	1.464	
	85939.023	85898	95.51	3d ⁴ 4p ¹ F; ² G	1.28	3d ⁴ 4p ¹ G; ² G	1.112	
	87092.562	87198	93.45	3d ³ 4s 4p ⁴ F. ³ P; ⁴ G	3.78	3d ³ 4s 4p ² G. ³ P; ⁴ G	1.172	
	88073.438	88467	69.41	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	23.75	3d ⁴ 4p ³ F; ⁴ F	1.333	
	90588.555	90201	58.77	3d ⁴ 4p ³ F; ⁴ F	26.55	3d ³ 4s 4p ⁴ F. ³ P; ⁴ F	1.332	
	91189.477	91343	71.99	3d ⁴ 4p ³ F; ⁴ G	23.61	$3d^4 4p {}^3F; {}^4G$	1.172	
	92144.164	92057	88.00	3d ³ 4s 4p ⁴ F. ³ P; ² G	6.71	3d ⁴ 4p ³ F; ² G	1.113	
	93444.000	93531	98.15	3d ⁴ 5p ⁵ D; ⁶ F	0.90	3d ⁴ 4p ⁵ D; ⁴ F	1.435	
	93641.531	94032	78.33	3d ⁴ 5p ⁵ D; ⁶ D	13.45	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	1.542	
	94177.102	94214	70.29	$3d^4 4p {}^3F: {}^2G$	19.79	3d ⁴ 4p ³ F: ² G	1.112	
	94656.219	94493	76.50	3d ³ 4s 4p ⁴ P. ³ P; ⁶ D	14.25	3d ⁴ 5p ⁵ D; ⁴ F	1.524	
	94749.234	94708	77.01	3d ⁴ 5p ⁵ D; ⁴ F	13.53	3d ⁴ 5p ⁵ D; ⁶ D	1.381	
		96421	81.79	3d ³ 4s 4p ² G. ³ P: ⁴ H	15.27	3d ³ 4s 4p ² H. ³ P: ⁴ H	0.974	
	97333.133	97120	36.34	3d ⁴ 4p ¹ G: ² H	19.98	3d ⁴ 4p ¹ G: ² G	0.985	
	97480 148	97438	30 50	$3d^4 4n^1G^{2}G$	19.83	$3d^4 4n {}^1G {}^2H$	1.047	
	97904.352	97613	75.47	$3d^{3} 4s 4p$ ${}^{2}G.{}^{3}P; {}^{4}G$	6.12	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ G	1.156	
	98812.539	99023	83.83	3d ³ 4s 4p ² G. ³ P; ⁴ F	7.59	3d ³ 4s 4p ² D. ³ P; ⁴ F	1.331	
	101296.547	101415	51.39	3d ³ 4s 4p ² H. ³ P; ⁴ H	27.84	3d ³ 4s 4p ² G. ³ P; ² G	1.017	
	101696.148	101834	39.57	3d ³ 4s 4p ² G. ³ P; ² H	20.47	3d ³ 4s 4p ² H. ³ P; ⁴ H	0.944	
	101938.070	102070	40.67	3d ³ 4s 4p ² G. ³ P; ² G	22.91	3d ³ 4s 4p ² G. ³ P; ² H	1.006	
	102725.547	102756	55.51	3d ³ 4s 4p ² D. ³ P; ⁴ F	14.70	3d ³ 4s 4p ² D. ³ P; ⁴ F	1.332	

Lyaluo	E.	E.	Largost oigon	value component	Novt largest e	igenvalue component	Calcin	Obc. a.
J-value	(cm^{-1})	(cm^{-1})	Laigest eigen		Next largest e		calc. gj	ODS. gj
	[8,27]	(em)		(,0)		(70)		[5]
	103199.812	103055	84.89	3d ³ 4s 4p	10.96	$3d^3 4s 4p^2G.$	0.755	
	105203.461	103361	74.19	² H. ³ P; ⁴ I 3d ³ 4s 4p	8.85	³ P; ² H 3d ⁴ 4f ⁵ D; ⁴ G	1.171	
	105262 /29	105227	7472	7. P; G	14.41	244 465 D 4U	1 092	
	105205.456	105257	74.75 46.10	3d ⁴ 4f ⁵ D ^{, 6} D	22 39	3d ⁴ 4f ⁵ D ^{, 6} F	1.085	
	105356.150	105385	78 57	3d ⁴ 4f ⁵ D, ⁴ H	954	3d ⁴ 4f ⁵ D ⁶ H	1,452	
	105400.050	105303	51.45	$3d^4 4f^5 D^{-4}F$	16.65	$3d^{3} 4s 4n^{4}F^{-1}P^{+4}F$	1 3 3 0	
	105623 547	105590	44 45	3d ⁴ 4f ⁵ D ⁶ G	34.15	3d ⁴ 4f ⁵ D ⁶ D	1.379	
		105777	80.76	3d ³ 4s 4p ² H ³ P ² H	13.69	3d ⁴ 4f ² G. ³ P; ² H	0.914	
	105789.961	105809	51.78	3d ⁴ 4f ⁵ D; ⁶ F	36.60	3d ⁴ 4f ⁵ D; ⁶ G	1.383	
	106045.469	105925	60.91	3d ⁴ 4f ⁵ D; ⁴ G	24.66	3d ³ 4s 4p ² H. ³ P; ⁴ G	1.175	
	106165.352	106159	57.52	3d ³ 4s 4p ² H. ³ P; ⁴ G	17.91	3d ⁴ 4f ⁵ D; ⁴ G	1.183	
	106791.977	106452	47.99	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ F	28.49	3d ⁴ 4f ⁵ D; ⁴ F	1.318	
	107739.234	107403	82.87	3d ³ 4s 4p ² H. ³ P; ² G	9.12	3d ³ 4s 4p ² F. ³ P; ² G	1.111	
		109021	69.74	3d ⁴ 5p ³ H; ⁴ I	25.45	3d ⁴ 5p ³ H; ⁴ H	0.798	
		109227	68.61	3d ⁴ 5p ³ H; ⁴ H	24.53	3d ⁴ 5p ³ H; ⁴ I	0.915	
		109843	51.57	3d ⁴ 5p ³ H; ² G	27.54	3d ⁴ 5p ³ H; ² H	1.046	
		110007	92.77	3d ⁴ 6p ⁵ D; ⁶ F	3.67	3d ⁴ 6p ⁵ D; ⁴ F	1.433	
		110083	61.32	3d ⁴ 5p ³ H; ² H	30.38	3d ⁴ 5p ³ H; ² G	0.974	
		110278	78.11	3d ⁴ 6p ⁵ D; ⁶ D	15.04	3d ⁴ 6p ⁵ D; ⁴ F	1.513	
		110451	78.93	3d ⁴ 5p ³ H; ⁴ G	7.71	3d ⁴ 5p ³ H; ² G	1.162	
	110665.477	110676	74.28	3d ⁴ 6p ⁵ D; ⁴ F	18.78	3d ⁴ 6p ⁵ D; ⁶ D	1.376	
		111628	61.25	3d ⁴ 5p ³ F; ⁴ G	18.06	3d ⁴ 5p ³ F; ⁴ G	1.176	
		112055	33.75	3d ⁴ 5p ³ F; ⁴ F	24.58	3d ⁴ 5p ³ F; ² G	1.222	
		112309	37.97	3d ⁴ 5p ³ F; ² G	34.08	$3d^4 5p^3F; {}^4F$	1.211	
		113807	92.60	3d ⁴ 5p ³ G; ⁴ H	1.42	3d ⁴ 5p ³ G; ⁴ G	0.977	
		114120	47.57	3d ⁴ 5p ³ G; ⁴ F	27.81	$3d^3 4s 4p^2F. {}^{3}P; {}^{4}F$	1.297	
		114334	57.88	3d ⁴ 5p ³ G; ⁴ G	16.71	3d ⁴ 5p ³ G; ² H	1.142	
		114540	75.05	3d ⁴ 5p ³ G; ² H	16.87	3d ⁴ 5p ³ G; ⁴ G	0.970	
		114726	77.87	3d⁴ 5p 3G; 4G	10.62	$3d^3 4s 4p^2 F. ^3P; ^4F$	1.131	
		115191	44.38	3d ³ 4s 4p ² F. ³ P; ⁴ F	36.02	3d* 5p ³ G; *F	1.318	
	115288.750	115314	56.30	3d ⁴ 5f ³ D; ⁶ H	17.06	3d ⁴ 5f ³ D; ⁶ G	1.134	
	115393.398	115414	41.43	3d ⁺ 5f ⁵ D; ⁶ D	31.93	3d ⁻ 5f ⁻ D; ^o F	1.402	
	115430.406	115452	/ 1.62	30 ⁺ 5f ² D; ⁺ H	13.82	30 ⁴ 51°D; °H	1.020	
	115592.359	115597	46.25	30° 51°D; °G	36.21	30 ⁻ 51°D; °D 244 550, 45	1.365	
	115072.797	115095	40.75	244 565 D, 65	40.59	30° 31° D; °F 244 56 D; 6C	1.234	
	115024.450	115022	JJ.75 47.46	2d ⁴ 5f ⁵ D · ⁴ E	20.02	$3d^{4} 5f^{5} D f^{4} C$	1.402	
	115927.520	116500	47.40	3d ⁴ 5n ¹ l ² H	45.56	$3d^{3} 4s 4p^{2}C$	0.010	
		116809	93.62	$3d^3 4s 4p$	3.66	$^{1}P; {}^{2}H$	1 174	
		117636	39.66	${}^{2}F.{}^{3}P;{}^{4}G$ 3d ³ 4s 4p	29.94	$^{3}P; {}^{4}G$ $^{3}d^{4} 5n {}^{1}C; {}^{2}C$	1.174	
		118207	57 30	${}^{2}G.{}^{1}P;{}^{2}G$ ${}^{3}d^{4}5p{}^{1}C;{}^{2}H$	31 36	$3d^4 5p^{-1}Ct^{-2}H$	0.013	
		119484	44.61	$3d^{3} 4s 4p$ $^{2}C^{1}P^{2}H$	32.14	3d ⁴ 5p ⁻¹ I; ² H	0.913	
		119848	29.56	$3d^3 4s 4p$ $^2C^{1}P^{2}C$	27.72	3d ⁴ 5p ¹ G; ² G	1.092	
		120614	98.24	3d ⁴ 5p ³ D: ⁴ F	0.35	3d ⁴ 5n ³ G: ⁴ F	1.332	
		120642	67.19	3d ⁴ 4f ³ H; ² H	10.50	3d ³ 4s 4p ² H. ¹ P: ² H	0.923	
		120750	80.84	3d ⁴ 4f ³ H; ⁴ I	15.19	3d ⁴ 4f ³ H; ⁴ H	0.775	
		120865	69.06	3d ⁴ 4f ³ H; ⁴ H	13.76	3d ⁴ 4f ³ H; ⁴ I	0.961	
		120953	43.13	3d ⁴ 4f ³ H; ⁴ G	21.79	3d ⁴ 4f ³ H; ² G	1.143	
5.5								
	47751.602	47627	99.62	3d ⁴ 4p ⁵ D; ⁶ F	0.24	3d ⁴ 5p ⁵ D; ⁶ F	1.456	
	63848.699	63870	82.32	3d ⁴ 4p ³ H; ⁴ H	14.99	3d ⁴ 4p ³ G; ⁴ H	1.131	
	65419.516	65362	97.57	3d ⁴ 4p ³ H; ⁴ I	1.72	3d ⁴ 4p ³ H; ⁴ H	0.968	
	65709.445	65744	45.69	3d ⁴ 4p ³ F; ⁴ G	18.79	3d ⁴ 4p ³ F; ⁴ G	1.271	
	67369.070	67356	67.97	3d ⁴ 4p ³ H; ⁴ G	22.85	3d ⁴ 4p ³ F; ⁴ G	1.271	
	67506.086	67689	91.76	3d ⁴ 4p ³ H; ² I	6.03	3d ⁴ 4p ¹ I; ² I	0.927	
	68737.773	68566	83.15	3d ⁴ 4p ³ H; ² H	8.79	3d ⁴ 4p ¹ G; ² H	1.092	
	69170.352	69237	83.41	3d ⁴ 4p ³ G; ⁴ H	14.46	3d ⁴ 4p ³ H; ⁴ H	1.133	

317

J-value	Eobs	Ecalc	Largest eiger	value component	Next largest	eigenvalue component	Calc. g _J	Obs.
	(cm^{-1})	(cm^{-1})		(%)		(%)	-	
	[8,27]							[5]
	70398.805	70399	70.07	3d ⁴ 4p ³ G; ² H	10.52	3d ⁴ 4p ¹ I; ² H	1.114	
	70879.727	71024	67.98	3d ⁴ 4p ³ G; ⁴ G	11.94	3d ⁴ 4p ³ H; ⁴ G	1.249	
	74421.727	74286	86.40	3d ⁴ 4p ¹ I; ² I	5.25	3d ⁴ 4p ³ H; ² I	0.937	
	74707.391	74793	47.53	$3d^{4} 4p^{-1}G;^{-2}H$	25.38	3d ⁴ 4p ¹ G; ² H	1.079	
	77078.859	76811	84.75	3d ⁴ 4p ¹ I; ² H	11.95	3d ⁴ 4p ³ G; ² H	1.090	
		79929	99.90	3d ³ 4s 4p ⁴ F. ³ P; ⁶ G	0.03	3d⁴ 4f ³ D; °G	1.343	
	82612.570	82613	99.43	3d ³ 4s 4p ⁴ F. ³ P; ⁶ F	0.21	3d ³ 4s 4p ⁴ F. ³ P; ⁴ G	1.455	
	87450.438	87560	93.29	3d ³ 4s 4p ⁴ F. ³ P; ⁴ G	3.74	3d ³ 4s 4p ² G. ³ P; ⁴ G	1.274	
	91291.969	91433	73.43	3d ⁴ 4p ³ F; ⁴ G	23.63	3d ⁴ 4p ³ F; ⁴ G	1.273	
	93643.380	93799	99.46	3d ⁴ 5p ⁵ D; ⁶ F	0.24	3d ⁴ 4p ⁵ D; ⁶ F	1.456	
		96676	81.34	3d ³ 4s 4p ² G. ³ P; ⁴ H	15.55	3d ³ 4s 4p ² H. ³ P; ⁴ H	1.136	
	97493.523	97499	56.25	3d ⁴ 4p ¹ G; ² H	28.87	3d ⁴ 4p ¹ G; ² H	1.096	
	97899.367	97781	81.44	3d ³ 4s 4p ² G. ³ P; ⁴ G	5.98	3d ³ 4s 4p ⁴ F. ¹ P; ⁴ G	1.264	
	101782.969	101718	83.17	3d ³ 4s 4p ² H ³ P· ⁴ H	15.33	3d ³ 4s 4p ² G. ³ P ⁴ H	1.134	
	101932.234	102124	69.60	3d ³ 4s 4p ² с ³ р. ² н	13.48	3d ³ 4s 4p ² H. ³ р. ² н	1.084	
		103155	93.20	3d ³ 4s 4p	4.64	$3d^3 4s 4p {}^2G.$	0.974	
	103513.555	103668	73.77	3d ³ 4s 4p	10.12	3d ⁴ 4f ⁵ D; ⁴ G	1.273	
	105267.044	105330	70.00	"F.'P; "G	10.04	244 455 411	1 3 1 1	
	105367.844	105330	79.22	3d ⁴ 4f ⁵ D; ⁶ H	10.64	3d ⁴ 4f ⁵ D; ⁴ H	1.211	
	105559.523	105526	84.63	30 ⁴ 41°D; ⁴ H	12.22	30 ⁴ 41°D; °H	1.146	
	105639.180	105595	58.42	3d ⁴ 4f ⁵ D; ^o F	32.94	3d ⁺ 4f ⁵ D; ⁶ G	1.396	
		105762	/5.29	³ d ³ 4s 4p ² H. ³ P; ² H	14.19	³ d ⁵ 4s 4p ⁻² G. ³ P; ² H	1.104	
		105834	57.74	3d ⁴ 4f ⁵ D; ⁶ G	39.32	3d ⁴ 4f ⁵ D; ⁶ F	1.383	
	106032.141	106015	48.97	3d ⁴ 4f ⁵ D; ⁴ G	38.24	3d ³ 4s 4p ² H. ³ P; ⁴ G	1.262	
		106271	44.46	3d ³ 4s 4p ² H. ³ P; ⁴ G	36.02	3d ⁴ 4f ⁵ D; ⁴ G	1.270	
	107850.148	107629	98.85	3d ³ 4s 4p ² H. ³ P: ² I	0.43	3d ³ 4s 4p ² H. ³ P: ² H	0.924	
		109142	55.22	3d ⁴ 5p ³ H; ⁴ I	39.76	3d ⁴ 5p ³ H; ⁴ H	1.035	
		109402	56.81	3d ⁴ 5p ³ H; ⁴ H	40.97	3d ⁴ 5p ³ H; ⁴ I	1.064	
		109909	89.48	3d ⁴ 5p ³ H; ² I	5.39	3d ⁴ 5p ³ H; ² H	0.939	
		110070	67.82	3d ⁴ 5p ³ H; ² H	17.91	3d ⁴ 5p ³ H; ⁴ G	1.116	
		110279	99.79	3d ⁴ 6p ⁵ D; ⁶ F	0.10	3d ⁴ 5p ⁵ D; ⁶ F	1.456	
		110500	68.83	3d ⁴ 5p ³ H; ⁴ G	20.96	3d ⁴ 5p ³ H; ² H	1.232	
		111889	75.21	3d ⁴ 5p ³ F; ⁴ G	21.82	3d ⁴ 5p ³ F; ⁴ G	1.271	
		113992	90.82	3d ⁴ 5p ³ G; ⁴ H	3.71	3d ⁴ 5p ³ G; ² H	1.137	
		114387	65.95	3d ⁴ 5p ³ G; ⁴ G	24.49	3d ⁴ 5p ³ G; ² H	1.218	
		114713	68.47	3d ⁴ 5p ³ G; ² H	27.18	3d ⁴ 5p ³ G; ⁴ G	1.144	
	115396.773	115409	65.73	3d ⁴ 5f ⁵ D; ⁶ H	17.89	3d ⁴ 4f ⁵ D; ⁶ G	1.231	
	115585.117	115590	28.82	3d ⁴ 5f ⁵ D; ⁶ H	26.38	3d ³ 4s 4p ⁵ D; ⁴ H	1.269	
	115598.883	115604	54.03	3d ⁴ 5f ⁵ D; ⁴ H	26.72	3d ⁴ 4p ⁵ D; ⁶ F	1.259	
	115840.391	115826	53.66	3d ⁴ 5f ⁵ D; ⁶ G	41.58	3d ⁴ 4p ⁵ D; ⁶ F	1.383	
	115916.148	115925	87.43	3d ⁴ 5f ⁵ D; ⁴ G	7.93	$3d^{3} 4s 4p^{5}D; {}^{4}H$	1.266	
		116516	59.53	3d ⁴ 5p ¹ I; ² H	29.10	3d ³ 4s 4p ² G. ¹ P; ² H	1.087	
		116889	94.76	3d ³ 4s 4p ² F. ³ P; ⁴ G	3.63	3d ³ 4s 4p ² H. ³ P; ⁴ G	1.273	
		117240	93.51	3d ⁴ 5p ¹ I; ² I	2.43	3d ³ 4s 4p ² H. ¹ P; ² I	0.928	
		118451	56.37	3d ⁴ 5p ¹ G; ² H	30.71	3d ⁴ 5p ¹ G; ² H	1.091	
		119621	49.41	3d ³ 4s 4p ² G. ¹ P; ² H	26.97	3d ⁴ 5p ¹ I; ² H	1.089	
		120664	56.15	3d ⁴ 4f ³ H; ² I	23.09	3d ⁴ 4f ³ H; ² H	0.968	
		120727	79.31	3d ⁴ 4f ³ H; ⁴ K	15.79	3d ⁴ 4f ³ H; ⁴ I	0.813	
		120793	39.81	3d ⁴ 4f ³ H; ⁴ I	36.30	3d ⁴ 4f ³ H; ² H	1.011	
		120857	28.30	3d ⁴ 4f ³ H; ² I	23.95	3d ⁴ 4f ³ H; ⁴ I	1.006	
6.5		120951	60.81	3d ⁴ 4f ³ H; ⁴ H	17.40	3d ⁴ 4f ³ H; ⁴ I	1.103	
5.5	64030.504	64035	84.09	3d ⁴ 4p ³ H: ⁴ H	13.90	3d ⁴ 4n ³ G: ⁴ H	1,229	
	65617.945	65546	98.19	3d ⁴ 4p ³ H; ⁴ I	1.47	3d ⁴ 4p ³ H; ⁴ H	1.110	
	67588.875	67773	92.21	3d ⁴ 4p ³ H; ² I	5.69	3d ⁴ 4p ¹ I; ² I	1.079	
	69388.148	69436	84.00	3d ⁴ 4p ³ G; ⁴ H	13.97	3d ⁴ 4p ³ H; ⁴ H	1.229	
				· · · · · · · · · ·		г, г		

-value	Eobs	Ecalc	Largest eigenvalue component		Next largest e	Next largest eigenvalue component		Obs. g
	(cm ⁻¹) [8,27]	(cm^{-1})		(%)		(%)		[5]
	74424.156	74291	79.99	3d ⁴ 4p ¹ I; ² K	19.28	3d ⁴ 4p ¹ I; ² I	0.962	
	74743.180	74613	74.62	3d ⁴ 4p ¹ I; ² I	19.73	$3d^4 4p^{-1}I;^{-2}K$	1.049	
		80313	99.89	$3d^3 4s 4p$	0.06	$3d^3 4s 4p^2G$.	1.385	
				⁴ F. ³ P; ⁶ G		³ P; ⁴ H		
		97013	83.57	3d ³ 4s 4p	15.78	$3d^3 4s 4p^2H$.	1.231	
				² G. ³ P; ⁴ H		³ P; ⁴ H		
	101900.578	101843	83.30	3d ³ 4s 4p	15.67	$3d^3 4s 4p^2G$.	1.231	
				² H. ³ P; ⁴ H		³ P; ⁴ H		
		103317	99.50	3d ³ 4s 4p	0.20	3d ³ 4s 4p ² G.	1.108	
				² H. ³ P; ⁴ I		³ P; ⁴ H		
		105455	87.40	3d ⁴ 4f ⁵ D; ⁶ H	6.50	3d ⁴ 4f ⁵ D; ⁶ G	1.286	
	105742.453	105691	91.40	3d ⁴ 4f ⁵ D; ⁴ H	7.65	3d ⁴ 4f ⁵ D; ⁶ H	1.236	
	105895.461	105832	92.58	3d ⁴ 4f ⁵ D; ⁶ G	4.91	3d ⁴ 4f ⁵ D; ⁶ H	1.377	
		107785	99.12	3d ³ 4s 4p	0.25	3d ⁴ 5p ¹ I; ² I	1.077	
				² H. ³ P; ² I		-		
		109289	55.45	3d ⁴ 5p ³ H; ⁴ H	37.27	3d ⁴ 5p ³ H; ⁴ I	1.176	
		109554	61.14	3d ⁴ 5p ³ H; ⁴ I	37.80	3d ⁴ 5p ³ H; ⁴ H	1.155	
		110023	92.75	3d ⁴ 5p ³ H; ² I	5.24	3d ⁴ 5p ³ H; ⁴ H	1.086	
		114228	98.81	3d ⁴ 5p ³ G; ⁴ H	0.46	3d ⁴ 5p ³ H; ⁴ H	1.231	
	115546.523	115543	80.16	3d ⁴ 5f ⁵ D; ⁶ H	13.05	3d ⁴ 5f ⁵ D; ⁶ G	1.293	
	115782.797	115774	82.52	3d ⁴ 5f ⁵ D; ⁴ H	12.47	3d ⁴ 5f ⁵ D; ⁶ H	1.245	
	115836.531	115822	81.99	3d ⁴ 5f ⁵ D; ⁶ G	10.60	3d ⁴ 5f ⁵ D; ⁴ H	1.362	
		117121	53.81	3d ⁴ 5p ¹ I; ² I	44.33	3d ⁴ 5p ¹ I; ² K	1.013	
		117468	55.38	3d ⁴ 5p ¹ I: ² K	43.16	3d ⁴ 5p ¹ I: ² I	0.997	
		120759	59.95	$3d^4 4f^3H$: $4K$	21.11	3d ⁴ 4f ³ H: ² K	0.982	
		120811	60.58	3d ⁴ 4f ³ H; ⁴ L	16.27	$3d^4 4f^{3}H;^{2}I$	0.890	
		120835	34.32	3d ⁴ 4f ³ H; ² I	31.32	3d ⁴ 4f ³ H: ⁴ L	0.984	
		120895	51.96	3d ⁴ 4f ³ H: ² K	32.33	$3d^4 4f^3H^{14}$	0.997	
		120957	38.03	3d ⁴ 4f ³ H; ² I	27.49	3d ⁴ 4f ³ H: ⁴ I	1.044	
7.5								
	65812.648	65731	99.72	3d ⁴ 4p ³ H; ⁴ I	0.14	3d ⁴ 5p ³ H: ⁴ I	1.200	
	74958.859	74838	99.80	3d ⁴ 4p ¹ I; ² K	0.09	$3d^4 5p^{-1}I$: ² K	1.067	
		103567	99.75	$3d^3$ 4s 4p	0.16	$3d^4 5p^3H$; ⁴ I	1.200	
				${}^{2}\text{H}.{}^{3}\text{P}:{}^{4}\text{I}$, i i i		
		105614	99.95	3d ⁴ 4f ⁵ D; ⁶ H	0.03	3d ⁴ 4f ³ F; ⁴ I	1.334	
		109668	99.53	3d ⁴ 5p ³ H; ⁴ I	0.16	3d ³ 4s 4p ² H. ³ P; ⁴ I	1.200	
	115734.766	115715	99.95	3d ⁴ 5f ⁵ D; ⁶ H	0.03	3d ⁴ 5f ³ F; ⁴ I	1.334	
		117607	99.73	3d ⁴ 5p ¹ I: ² K	0.11	3d ⁴ 5p ³ H; ⁴ I	1.067	
		120819	36.33	$3d^4 4f^3H^{2}L$	31.20	$3d^4 4f^3H^{4}L$	0.998	
		120867	53.55	3d ⁴ 4f ³ H: ⁴ K	18.92	3d ⁴ 4f ³ H; ² L	1.053	
		120941	51.51	3d ⁴ 4f ³ H: ⁴ L	40.91	3d ⁴ 4f ³ H; ² L	0.964	
		120986	86.16	3d ⁴ 4f ³ H: ⁴ I	11.87	3d ⁴ 4f ³ H: ⁴ K	1.183	
8.5				, •		,		
		120930	54.30	3d ⁴ 4f ³ H: ⁴ L	27.93	3d ⁴ 4f ³ H: ⁴ K	1.102	
		120982	71.89	$3d^4 4f^3H; {}^4K$	21.72	$3d^4 4f^3H$; ⁴ L	1.148	
		121076	76.13	3d ⁴ 4f ³ H; ² J	23.73	$3d^4 4f^3H$; ⁴ L	1.063	
9.5		1210/0	,	54 ii ii, 2	200	54 i ii, b	1.005	
		121062	99,89	$3d^4 4f^3 H^{-4}L$	0.11	3d ⁴ 4f ¹ I ^{· 2} M	1,158	
		128722	99,89	3d ⁴ 4f ¹ I: ² M	0.11	$3d^4 4f^3H$: ⁴ L	1.053	
		121001	00.80	2d4 5f ³ U·4I	0.11	2d4 Ef 11, 2M	1 150	

 Table 6

 Values of the intra-configuration fine structure parameters for Cr II odd configurations.

3d ⁴ 4p E _s 74271(0) P ⁴ (33.30) 69474(54) P ⁴ (33.30) 9556(83) P ⁴ (34.4p) 10838(88) G ⁴ (34.4p) 10837(8) G ⁴ (34.4p) 10237(74) G ⁴ 254(19) a 54(1) G ⁴ -242(10) G ⁴ -242(10) G ⁴ -242(10) G ⁴ -243(33) F ² (34.30) 75457(53) T -227(38) Statistic -237(38) G ⁴ (34.5p) 218 ⁴ 7 G ⁴ (34.5p) 113 ⁴ 7 G ⁴ 0 ⁴ 7 G ⁴ (34.30) 611111(500) P ⁴ (34.30) 611111(500) P ⁴ (34.30) 611111(500) P ⁴ (34.30) 611411(500) P ⁴ (34.30) 611411(500) P ⁴ (34.6p) 677847	Configuration	Parameter	Value (cm ⁻¹)
$\begin{array}{ccccc} & \Gamma^{+}(3,4,6) & 10338(38) \\ \Gamma^{+}(3,4,6) & 5081(38) \\ G^{+}(3,4,6) & 10338(38) \\ G^{+}(3,4,6) & 1281(3) \\ G_{46} & 2181(3) \\ G_{46} & 2181(3) \\ G_{46} & -140(14) \\ T_1 & 422(2) \\ T_2 & -237(38) \\ F^{+}(3,3,4) & 5759(518) \\ F^{+}(3,3,4) & 5759(518) \\ F^{+}(3,3,4) & 5759(518) \\ F^{+}(3,3,4) & 5759(518) \\ F^{+}(3,3,5) & 7579 \\ G^{+}(3,5,5) &$	3d ⁴ 4p	E_{av} $F^2(3d,3d)$	74271(10) 60474(54)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F^{*}(3d,3d)$	35556(83)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F^{-}(30,4p)$	10838(88) 5081(28)
$3d^4sqp = \begin{bmatrix} c_{14} & 23(13) \\ c_{24} & 25(13) \\ c_{4} & 25(13) \\ c_{4} & -140(12) \\ c_{1} & -237(38) \\ \hline P_1 & -237(38) \\ \hline P$		$C^{3}(3d 4n)$	1023(74)
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $		(Ju,+p)	218(13)
$3d^4sp = \begin{bmatrix} a & a & a & a & a & a & a & a & a & a$		Can	254(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		α	54(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	-140(14)
$\begin{array}{c cccc} & \Gamma_2 & & -237(38) \\ F_2 & & 1187(30) \\ F_1^{2}(31,34) & & 57855(18) \\ F_1^{2}(31,34) & & 57855(18) \\ F_1^{2}(31,32) & & 9406 \\ F_1^{2}(31,34) & & 57855(18) \\ F_1^{2}(31,32) & & 9406 \\ F_2 & & & 218' \\ G_1 & & & 0' \\ f_1 & & 0' \\ f_1 & & 0' \\ T_2 & & & 0' \\ F_1^{2}(31,34) & & 51815(39) \\ F_1^{2}(31,34) & & 51815(39) \\ F_1^{2}(31,34) & & 51816(353) \\ F_1^{2}(31,34) & & 51816(105) \\ G_1^{2}(31,44) & &$		T ₁	42(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T ₂	-237(38)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3d ⁴ 5p	E_{av}	11874(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F (30,30) F ⁴ (2d,2d)	27850(518)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F^{2}(3d,5d)$	27839(318) 2610 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ (50,5 p) $C^{1}(2d,5p)$	2019 1173 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{3}(3d,5p)$	9406 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		G (50,5P)	218 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 3a Y =	218 81 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		səp a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ß	O ^f
$\begin{array}{c c} \mathbf{T}_2 & 0' \\ \\ 3 \mathbf{d}^4 6 \mathbf{p} & \begin{array}{c} E_{av} & \mathbf{134515(39)} \\ \mathbf{F}^2 (34, 34) & \mathbf{38164(355)} \\ \mathbf{F}^2 (34, 6 \mathbf{p}) & 6477 \\ \mathbf{G}^2 (34, 6 \mathbf{p}) & 6477 \\ \mathbf{G}^2 (34, 6 \mathbf{p}) & 6477 \\ \mathbf{G}^2 (34, 6 \mathbf{p}) & 6407 \\ \mathbf{G}^3 (34, \mathbf{q}) & \mathbf{67324(127)} \\ \mathbf{G}^4 (34, \mathbf{q}) & \mathbf{67324(127)} \\ \mathbf{G}^4 (34, \mathbf{q}) & \mathbf{6166(110)} \\ \mathbf{G}^2 (34, \mathbf{q}) & \mathbf{6166(110)} \\ \mathbf{G}^2 (34, \mathbf{q}) & \mathbf{6166(110)} \\ \mathbf{G}^4 (34, \mathbf{q}) & \mathbf{6166(110)} \\ \mathbf{G}^2 (34, \mathbf{q}) & \mathbf{6166(110)} \\ \mathbf{G}^4 (34, \mathbf{q}) & \mathbf{616(10)} \\ $		Γ_1	0 ^f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T ₂	0 ^{<i>f</i>}
$\begin{array}{ccccc} & {\rm F}^2(3{\rm d}{3}{\rm d}) & {\rm f}^4({\rm d}{3}{\rm d}{\rm d}) & {\rm f}^4({\rm d}{3}{\rm d}{\rm d}) & {\rm f}^4({\rm f}{\rm d}{\rm d}{\rm d}) & {\rm f}^4({\rm d}{$	3d ⁴ 6p	E_{av}	134515(39)
$\begin{array}{ccccc} & {\rm F}^2(3{\rm d},{\rm fp}) & {\rm if} 148^{\rm d} \\ {\rm F}^2(3{\rm d},{\rm fp}) & {\rm of} 47^{\rm d} \\ {\rm G}^2(3{\rm d},{\rm fp}) & {\rm of} 47^{\rm d} \\ {\rm G}^2(3{\rm d},{\rm fp}) & {\rm of} 47^{\rm d} \\ {\rm G}^2(3{\rm d},{\rm fp}) & {\rm of} 400^{\rm d} \\ {\rm f}_3 & {\rm of} 100^{\rm d} \\ {\rm f}_5 & {\rm of} 100^{\rm d} \\ {\rm f}_6 & {\rm of} 100^{\rm d} \\ {\rm f}_1 & {\rm of} 100^{\rm d} \\ {\rm f}_2 & {\rm of} 1$		F ² (3d,3d)	64111(650)
$\begin{array}{ccccc} \mathbb{F}^2(3d,6p) & = 1148^d\\ \mathbb{G}^1(3d,6p) & = 647^d\\ \mathbb{G}^2(3d,6p) & = 400^d\\ \mathbb{G}^3(3d,6p) & = 00^d\\ \mathbb{G}^3(3d,4p) & = 00^d\\ \mathbb{G}^2(3d,4p) & = 0^d\\ \mathbb{G}^2(3d,4p) &$		F ⁴ (3d,3d)	38164(635)
$\begin{array}{ccccc} G^1(3d,6p) & 647^a \\ G^3(3d,6p) & 400^d \\ G^3(3d,6p) & 38^d \\ \alpha & 0^f \\ \beta & 0^f \\ \gamma & 0^f \\ 1 &$		$F^2(3d,6p)$	1148 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		G ¹ (3d,6p)	647 ^{<i>a</i>}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		G ³ (3d,6p)	400 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ζ _{3d}	218 ^u
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ζ_{6p} α	36 ⁴ 0 ^f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	0 ^f
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		T ₁ T2	O^f O^f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2d34c4p	F	107441/14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5u 4s4p	E_{av} $F^2(3d 3d)$	107441(14) 67824(127)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F^{4}(3d, 3d)$	40200(146)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F^{2}(3d, 4n)$	14457(177)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{1}(4s 4n)$	27810(105)
$\begin{array}{ccccc} G^{1}(3d,4p) & 6166(110) \\ G^{3}(3d,4p) & 1576(287) \\ \xi_{3d} & 293(17) \\ \xi_{4p} & 382(57) \\ \alpha & 53(1) \\ \beta & -180(27) \\ T_{s} & 174(33) \\ T_{1} & 199(43) \\ T_{2} & -207(41) \\ \end{array}$		$G^{2}(3d,4s)$	6507(191)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{1}(3d,4p)$	6166(110)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{3}(3d,4p)$	1576(287)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53d	293(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ζ_{4p}	382(57)
$\begin{array}{ccccc} \beta & & & & & -180(27) \\ T_s & & & & & 174(33) \\ T_1 & & & & 199(43) \\ T_2 & & & & -207(41) \end{array} \\ \\ 3d^44f & & E_{av} & & & 129606(27) \\ F^2(3d,3d) & & & 63513^d \\ F^4(3d,3d) & & & 37545^d \\ F^2(3d,4f) & & & & 1000^d \\ F^4(3d,4f) & & & & 200^d \\ G^1(3d,4f) & & & & 130^d \\ G^3(3d,4f) & & & & & 77^d \\ G^5(3d,4f) & & & & & 0^f \\ \alpha & & & & & & 0^f \\ \alpha & & & & & & & 0^f \\ \alpha & & & & & & & 0^f \\ R^\beta & & & & & & & 0^f \\ T_1 & & & & & & & 0^f \\ T_2 & & & & & & & 0^f \end{array}$		α	53(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	-180(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ts	174(33)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I ₁ T ₂	-207(41)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	-207(41)
$\begin{array}{cccc} F^{(33,34)} & 5^{53} I^{5} \\ F^{4}(33,34) & 3^{75} 4^{54} \\ F^{2}(34,4f) & \mathbf{1000^{d}} \\ F^{4}(34,4f) & \mathbf{200^{d}} \\ G^{1}(3d,4f) & \mathbf{130^{d}} \\ G^{3}(3d,4f) & \mathbf{77^{d}} \\ G^{5}(3d,4f) & \mathbf{0^{f}} \\ \boldsymbol{\zeta}_{3d} & \mathbf{220^{d}} \\ \boldsymbol{\zeta}_{4f} & \mathbf{0^{f}} \\ \boldsymbol{\zeta}_{3d} & \mathbf{0^{f}} \\ \boldsymbol{\zeta}_{71} & \mathbf{0^{f}} \\ \boldsymbol{\beta} & \mathbf{0^{f}} \\ T_{1} & \mathbf{0^{f}} \\ T_{2} & \mathbf{0^{f}} \end{array}$	3d*4f	E_{av}	129606(27)
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $		r (30,30) F ⁴ (3d 3d)	03013" 27515d
$\begin{array}{cccc} F^{4}(3d,4f) & 200^{d} \\ G^{1}(3d,4f) & 130^{d} \\ G^{3}(3d,4f) & 77^{d} \\ G^{5}(3d,4f) & 0^{f} \\ \zeta_{3d} & 220^{d} \\ \zeta_{4f} & 0^{f} \\ \alpha & 0^{f} \\ \beta & 0^{f} \\ T_{1} & 0^{f} \\ T_{2} & 0^{f} \end{array}$		F (30,30) F ² (3d Af)	27.343" 1000 ^d
$\begin{array}{cccc} G^{1}(3d,4f) & 130^{d} \\ G^{3}(3d,4f) & 77^{d} \\ G^{5}(3d,4f) & 0^{f} \\ \zeta_{3d} & 220^{d} \\ \zeta_{4f} & 0^{f} \\ \alpha & 0^{f} \\ \beta & 0^{f} \\ T_{1} & 0^{f} \\ T_{2} & 0^{f} \end{array}$		$F^4(3d,4f)$	200 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{1}(3d,4f)$	130 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{3}(3d 4f)$	77 ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$G^{5}(3d.4f)$	0 ^f
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- (,) (23d	220 ^d
$ \begin{array}{cccc} \alpha & & & & 0^{f} \\ \beta & & & 0^{f} \\ T_{1} & & & 0^{f} \\ T_{2} & & & 0^{f} \end{array} $		54f	O ^f
$ \begin{array}{c} \beta & 0^f \\ T_1 & 0^f \\ T_2 & 0^f \end{array} $		α	O ^f
$\begin{array}{ccc} T_1 & O^f \\ T_2 & O^f \end{array}$		β	O ^f
T ₂ 0 ^f		T ₁	0 ^f
		T ₂	0 ^f

Configuration	Parameter	Value (cm ⁻¹)
3d ⁴ 5f	E _{av}	139660(23)
	$F^{2}(3d, 3d)$	63492 ^d
	$F^{4}(3d, 3d)$	37554 ^d
	F ² (3d,5f)	510 ^d
	F ⁴ (3d,5f)	120 ^d
	$G^{1}(3d,5f)$	100^{d}
	G ³ (3d,5f)	55 ^d
	$G^{5}(3d,5f)$	0^f
	ζ _{3d}	220 ^d
	ζ5f	0^{f}
	α	0^{f}
	β	0^{f}
	T ₁	0^{f}
	T_2	0^{f}

 $\overline{{}^{f}}$ Frozen to zero. ^{*d*} Deduced from *ab initio* or fs calculations.

Table 7Values of odd configuration interaction parameters.

Configurations	Parameter ^a	Value (cm ⁻¹)
3d ⁴ 4p-3d ³ 4s4p	$egin{array}{c} R^2 \ D^2 \ E^1 \end{array}$	-5507(215) -4813(253) -4813 ^d
3d ⁴ 4p-3d ⁴ 5p	E ¹ E ³	2389(224) 1620(530)
3d ³ 4s4p-3d ⁴ 5p	$D^2 E^1$	-3225(278) -3443(165)

^{*a*} For meaning of R², D², E¹ and E³ see Cowan's book [28]. ^{*d*} Deduced from *ab initio* or fs calculations.