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a b s t r a c t 

We present a semi-empirical determination of Mo II radiative parameters in a wide wavelength range 

1716–8789 Å. Our fitting procedure to experimental oscillator strengths available in the literature permits 

us to provide reliable values for a large number of Mo II lines, predicting previously unmeasured oscil- 

lator strengths of lines involving 4d 4 5p and 4d 3 5s5p odd-parity configurations. The extracted transition 

radial integral values are compared with ab-initio calculations: on average they are 0.88 times the values 

obtained with the basic pseudo-relativistic Hartree Fock method and they agree well when core polariza- 

tion effects are included. When making a survey of our present and previous studies and including also 

those given in the literature we observe as general trends a decreasing of transition radial integral values 

with filling nd shells of the same principal quantum numbers for n d k ( n + 1)s → n d k ( n + 1)p transitions. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Molybdenum is an element of the 4d-shell transition group.

There are 33 known isotopes of molybdenum (Mo) ranging in

atomic mass from 83 to 115, as well as 4 metastable nuclear iso-

mers. Seven isotopes occur naturally, with atomic masses of 92,

94, 95, 96, 97, 98, and 100. Historically, it is in 1926 that Meg-

gers and Kiess initiated the level structure analysis of singly ion-

ized molybdenum, establishing 27 levels [1] . Later on, Schauls and

Sawyer [2] extended this first study. It is in 1958 that a big ex-

tension of this study occurred, performed by Kiess alone this time,

giving furthermore 179 experimental Landé-factor values of levels

[3] . This good compilation had constituted in its day a masterpiece

of clarity and accuracy and showed the presence of strong intu-

ition. More recently, after a break of a half century nearly a full fine

structure (fs) study was published [4] : the spectrum of Mo II has

been recorded with Fourier transform spectrometers in the wave-

length interval 150 0–70 0 0 Å and 110 new levels were reported.

Furthermore an accurate theoretical analysis of 5 even-parity con-

figurations and 2 odd-parity configurations was performed. In our

recent analysis devoted mainly to Mo II hyperfine structure (hfs)

we have dealt beforehand with fine structure level study [5] to ob-
∗ Corresponding author. 
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ain level eigenvectors, in order to work in intermediate coupling;

e confirm the validity of the excellent huge work of H. Nilsson

nd J. C. Pickering [4] , since when we have recurred to the ex-

racted level eigenvectors from this work in order to compute hfs

ata, the latter give a satisfactory agreement with new and accu-

ate experimental hfs data of Rosner and Holt [6] . We have only

o point out that the two levels of ( 3 D)5p w 

2 D, at 72,039.362 cm 

−1 

nd 72,829.914 cm 

−1 should have their total angular momentum

 designations inverted [3,5] . In an extension of these Mo II elec-

ronic structure studies previously cited, relative experimental os-

illator strengths of 58 Mo II lines were determined by Schnehage

t al. [7] but their investigations covered only the region 2700–

700 Å; this limitation did not permit them to reach ranging in

avelength transitions involving the ground term levels. Histori-

ally, in the same year Hannaford and Lowe [8] measured lifetimes

f 15 Mo II levels. Eighteen years later Sikström et al. [9] reported

xperimental branching fraction values, ranging in the wavelength

rom 1970 to 4370 Å and radiative lifetime measurements for 10

evels. We have to mention also the complementary extensions on

he same subject, done by Lundberg et al. [10] and Jiang et al. [11] .

ecently a Spanish team has presented numerous new oscillator

trength measurements, arising mainly from highly excited levels

12,13] . Laser-induced plasma generated from a fused glass sample

as used to obtain radiative parameters via laser-induced break-

own spectroscopy. Theoretically, in [14] Quinet had calculated ra-

http://dx.doi.org/10.1016/j.jqsrt.2017.05.019
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Table 1 

Mo II Transition radial integral values. 

Transition HFR a HFR + CPOL b OSP c 

4d 4 5s–4d 3 5s5p 1.8848 1.5224 

4d 4 5s–4d 4 5p 3.4247 2.9597 2.8558 (0.0084) 

4d 5 –4d 4 5p 2.0962 1.7665 1.725 (0.010) 

4d 3 5s 2 –4d 3 5s5p 3.2856 2.7753 

a Relativistic Hartree Fock method 
b Relativistic Hartree Fock method including core-polarization 
c Oscillator strength parametrization method 
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[  
iative lifetimes and oscillator strengths within the framework of

he pseudo-relativistic Hartree Fock (HFR) method, including core

olarisation effects. Nilsson and Pickering [4] present HFR oscil-

ator strengths for all their classified lines. In turn in this study

e propose to perform Mo II oscillator strength data recurring to

emi-empirical oscillator strength parametrization (OSP) method

nd to compare our data with those given previously in the lit-

rature and to predict those which are missing with help of the

seudo-relativistic Hartree Fock (HFR) method, including core po-

arisation effects. 

. Oscillator strength calculation 

We open this paragraph by evoking the inescapable rela-

ions we have made use in this work: the oscillator strength

 ( γ γ ’) for the transition between two levels | γ J > and | γ ’J’ >

f an atom or molecule with statistical weights g = (2 J + 1) and

 ’ = (2 J ’ + 1) respectively, is a dimensionless physical quantity, ex-

ressing the probability of absorption or emission in this transition

etween these two levels and related to the transition probability

 ( γ γ ’) by [15] : 

 (γ γ ′ ) = 

2 ω 

2 e 2 

m c 3 

∣∣ f (γ γ ′ ∣∣ (1) 

here m and e are the electron mass and charge, c is the velocity

f light, γ describes the initial quantum state, ω = [ E ( γ ) −E ( γ ’)] / � ,

 ( γ ) is the energy of the initial state. The quantities with primes

efer to the final state. 

For the electric dipole transitions, the weighted oscillator

trength gf is related to the line strength S [15] : 

f = 8 π2 mca 2 0 

σ

3 h 

S = 303 . 76 × 10 

−8 σ S (2)

here a 0 is the Bohr radius, σ = | E ( γ ) −E ( γ ’)| / hc and h is the

lanck’s constant. 

The electric dipole line strength is defined by: 

 = 

∣∣〈γ J 
∥∥P 1 

∥∥γ ′ J ′ 
〉∣∣2 

(3) 

The tensorial operator P 

1 (in units of ea 0 ) in the reduced matrix

lement stands for the electric dipole moment. 

To obtain the gf value, we need to calculate initially S , or prefer-

bly its square root. For multiconfiguration system, the wavefunc-

ions | γ J > and | γ ’J’ > are expanded in terms of a set of basis func-

ions | φ S L J > and | φ’ S ’ L ’ J ’ > , respectively: 

 

γ J 〉 = 

∑ 

i 

c i | φSLJ 〉 and 

∣∣γ ′ J ′ 
〉
= 

∑ 

j 

c j 
′ ∣∣φ′ S ′ L ′ J ′ 

〉
(4) 

The square root of the line strength may be written in the fol-

owing form: 

 

1 / 2 
γ γ ′ = 

∑ 

i 

∑ 

j 

c i c j 
′ 〈φSLJ 

∥∥P 1 
∥∥φ′ S ′ L ′ J ′ 

〉
(5) 

The appropriate computer program [16] calculates the angular

art of the matrix element <φ S L J ||P 1 || φ’ S ’ L ’ J ’ > . From Eqs. (2) and

5) , we can express the gf -values as a linear combination: 

(g f ) 1 / 2 = 

∑ 

nl ,n ′ l ′ 
(303 . 76 × 10 

−8 σ ) 1 / 2 

×
∑ 

i 

∑ 

j 

c i c j 
′ 〈φSLJ 

∥∥P 1 
∥∥φ′ S ′ L ′ J ′ 

〉
(6) 

here σ is the wavenumber, given in cm 

−1 , and the sum extends

ver all possible transitions ( n s ↔ n ’p, n d ↔ n ’p, n d ↔ n ’f). 

The weighted transition probability is [15] : 

A = (2 J ′ + 1) A = 

64 π4 e 2 a 0 σ 3 S = 2 . 0261 × 10 

−6 σ 3 S (7)

3 h 
here σ is given, as previously, in cm 

−1 and S in atomic units of

 

2 a 2 
0 
. Substitution of Eq. (1) into (7) leads to: 

(2 J ′ + 1) A = 0 . 66702 σ 2 g f (8)

In the present study, our aim is to evaluate at first line

trengths using Eq. (5) . As in previous work devoted to oscillator

trength determination (see for instance [16] ), the angular coeffi-

ients of the transition matrix, obtained in pure SL coupling with

elp of Racah algebra is transformed into the actual intermediate

oupling recurring to our level eigenvector amplitudes previously

erived. Moreover the transition integrals 
 ∞ 

0 

P nl (r) r P n ′ l ′ (r) dr (9) 

re treated as free parameters in the least squares fit to experi-

ental gf values. Up to now only 4d 

5 –4d 

4 5p and 4d 

4 5s–4d 

4 5p Mo

I transition oscillator strengths have been measured. We have ini-

ially selected the strongest lines, not blended, whose experimental

f values were published very recently [12,13] , with the best accu-

acy and particularly those representing transitions between lev-

ls with a limited number of leading components as shown in [4] ;

hen, for these 4d 

4 5s–4d 

4 5p and 4d 

5 –4d 

4 5p transitions we have

xtracted semi-empirically, with very good accuracy, the radial in-

egral values, reported in Table 1 . In the same table, we also give

he results computed by means of the pseudo-relativistic Hartree

ock (HFR) method using the basic Cowan code [17] and includ-

ng core-polarization (HFR + CPOL), as described in [18,19] . As a re-

inder, in the latter approach, the radial dipole integrals given in

q. (9) are replaced by 

 ∞ 

0 

P nl (r) r 

[
1 − αd 

( r 2 + r 2 c ) 
3 / 2 

]
P n ′ l ′ (r) dr 

−αd 

r 3 c 

∫ r c 

0 

P nl (r) r P n ′ l ′ (r) dr (10) 

here a d is the dipole polarizability of the ionic core, for which

umerical values can be found in the literature (see e.g. [20] ), and

 c is the cut-off radius that is arbitrarily chosen as a measure of the

ize of the ionic core. In practice, this parameter is usually chosen

o be equal to the HFR mean value < r > for the outermost ionic

ore orbital. 

When looking at Table 1 , one can observe that ab initio HFR ra-

ial dipole integrals are about 20% larger than the values extracted

rom our oscillator strength parametrization (OSP) approach while

he difference is reduced to a few percent when considering the

FR + CPOL results obtained using a Mo IV ionic core, as reported in

10,11] . In the same Table, for further analysis, we have also added

FR and HFR + CPOL radial integral values for transitions involving

he 4d 

3 5s5p configuration. 

In Table 2 , we have gathered the radial integral values of

 d 

k ( n + 1)s –> n d 

k ( n + 1)p transitions, obtained semi-empirically

n our previous works, using the same code, for singly ionized

toms, such as V II [21] , Zr II [22] , Nb II [23] , Rh II [24] , Hf II [25] to

hich we have added those given by Ruczkowski et al. for Sc II

16] and Ti II [26] . It is easy to observe that these transition radial



68 S. Bouazza et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 199 (2017) 66–70 

Table 2 

ns → np transition radial integral values of some singly ionized atoms. 

ion Z Transition HFR a HFR + CPOL(III) b HFR + CPOL(IV) c OSP d OSP/HFR 

Sc II 20 3d4s 3d4p 3.6199 3.2827 3.4201 3.413 (0.018) [26] 0.94 

Ti II 22 3d 2 4s 3d 2 4p 3.4511 3.0921 3.2530 3.078 (0.015) [21] 0.89 

V II 23 3d 3 4s 3d 3 4p 3.3085 2.9334 3.1035 3.0346 (0.0094) [27] 0.92 

Zr II 40 4d 2 5s 4d 2 5p 3.7111 2.9731 3.3361 3.15 (0.02) [22] 0.85 

Nb II 41 4d 3 5s 4d 3 5p 3.5556 2.7842 3.1144 3.0605 (0.0059) [23] 0.86 

Mo II 42 4d 4 5s 4d 4 5p 3.4247 2.6478 2.9597 2.8558 (0.0084) 0.83 

Rh II 45 4d 7 5s 4d 7 5p 3.1238 2.3680 2.6374 2.7426 (0.0 0 07) [24] 0.88 

Hf II 72 5d 2 6s 5d 2 6p 3.4833 2.6500 3.0284 2.984 ∗ (0.013) [25] 0.86 

a Relativistic Hartree Fock method. 
b Relativistic Hartree Fock method including core-polarization with a 2 + ionic core. 
c Relativistic Hartree Fock method including core-polarization with a 3 + ionic core. 
d Oscillator strength parametrization method. 
∗ There is a typo in paper [25] from where we have taken this value. 
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integral values decrease with the filling of n d-shells for the same

principal quantum number; this behaviour is different for instance

from established general trends in the hyperfine structure analy-

ses: increasing (contrary to the transition radial integral which is

rather decreasing) of the most influential s-monoelectronic hfs pa-

rameter divided by g I = μI / I , a 10 
ns / g I versus atomic number Z [27] .

These remarks may serve, with resorting to any calculations, as

hints at the starting of oscillator strength fitting procedure since

we can use the deduced interval of our new investigated transition

radial integral values with the help of those known for other ions

and then we can conclude if our obtained data in the first stage are

encouraging or not to carry on with our fitting procedure. For in-

stance we propose intuitively < n d 

k ( n + 1)s| r 1 | n d 

k ( n + 1)p > = 3.00

(0.02), 2.82 (0.02) and 2.78(0.02) respectively for 3d 

4 4s–3d 

4 4p in

Cr II, 4d 

5 5s–4d 

5 5p in Tc II and 4d 

6 5s–4d 

6 5p in Ru II when hav-

ing recourse to Table 2 (the value between parentheses shows the

uncertainty). 

In the latter table, we also give the radial dipole integrals cal-

culated using the pseudo-relativistic Hartree Fock method without

and with core-polarization corrections. It is interesting to note that

the values deduced from our oscillator strength parametrization

approach are on average 12% smaller than ab initio HFR results.

It is also worthwhile to underline that the OSP data are gener-

ally very close to the HFR + CPOL values provided that an ionic core

of the type of triply ionized species (IV) is considered in the lat-

ter approach. This can be rather easily explained by the fact that

a  

Table 3 

Comparison between calculated and experimental osc

λ ( ̊A) a Lower level b Upper level b 

E (cm 

−1 ) J E (cm 

−1 ) J 

2079.985 15,331 7/2 63,393 5/2 

2080.473 15,447 11/2 63,498 9/2 

2081.680 0 5/2 48,023 3/2 

2111.248 15,691 5/2 63,042 5/2 

2113.819 15,199 5/2 62,492 7/2 

2119.710 15,331 7/2 62,492 7/2 

2122.698 15,331 7/2 62,426 5/2 

2170.614 15,691 5/2 61,747 3/2 

2187.622 17,344 5/2 63,042 5/2 

2341.592 15,199 5/2 57,892 7/2 

2467.337 22,980 11/2 63,498 9/2 

2515.080 22,980 11/2 62,729 11/2 

2538.457 13,461 9/2 52,843 9/2 

2542.672 12,901 7/2 52,218 7/2 

2551.021 23,854 7/2 63,042 5/2 

2588.779 23,935 5/2 62,551 3/2 

2596.420 24,509 7/2 63,013 9/2 

2602.800 11,784 1/2 50,192 3/2 

2618.465 24,372 1/2 62,551 3/2 
ore-polarization effects are partially included in OSP calculations

hen considering configurations of the type n d 

k-1 ( n + 1)s 2 and

 d 

k-1 ( n + 1)s( n + 1)p, which correspond, for singly charged atoms,

o a 3 + ionic core surrounded by 2 electrons. 

. Radiative data 

The oscillator strengths obtained in our work with the semi-

mpirical oscillator strength parametrization (OSP) method are

ompared with the available experimental values [9,12,13] in

able 3 for Mo II spectral lines in the region 20 0 0–40 0 0 Å They

re also compared with the values calculated using the HFR + CPOL

pproach. As the physical model considered in the latter method

as exactly the same as the one described in our recent study

f singly ionized molybdenum [10,11] , the details will not be re-

eated here. Let us just remind that, in these works, the configu-

ations 4d 

5 , 4d 

4 5s, 4d 

4 6s, 4d 

4 5d, 4d 

3 5s 2 , 4d 

3 5p 

2 , 4d 

3 5d 

2 , 4d 

3 5s5d

even parity) and 4d 

4 5p, 4d 

4 6p, 4d 

4 4f, 4d 

4 5f, 4d 

3 5s5p, 4d 

3 5p5d

odd parity) were included in the calculations with the dipole po-

arizability αd = 5.67 a 0 
3 [20] and the cut off radius r c = 1.73 a 0 as

ore-polarization parameters. This model was then combined with

 semi-empirical adjustment of the radial parameters using the ex-

erimental energy levels published by Nilsson and Pickering [4] , al-

owing us to optimize the average energies, the electrostatic inter-

ction integrals and the spin-orbit parameters of 4d 

5 , 4d 

4 5s, 4d 

4 6s,
illator strengths in Mo II. 

log gf 

EXP c 	gf (exp) OSP d HFR + CPOL d 

−0.78 0.034 −0.91 −0.85 

−0.26 0.017 −0.16 −0.45 

−0.86 0.059 −0.85 −1.15 

−1.04 0.045 −0.95 −2.06 

−1.15 0.011 −1.23 −1.75 

−0.76 0.043 −0.89 −0.94 

−1.07 0.120 −1.00 −1.74 

−1.65 0.024 −1.57 −1.75 

−1.07 0.012 −1.21 −1.57 

−0.61 0.110 −0.81 −0.58 

−0.66 0.150 −0.84 −1.00 

−0.45 0.005 −0.52 −0.86 

−0.38 0.19 −0.31 −0.37 

−0.58 0.082 −0.79 −0.84 

−1.81 0.012 −2.00 −1.99 

−0.86 0.028 −0.89 −0.59 

−1.36 0.004 −1.57 −1.51 

−0.60 0.170 −0.58 −0.69 

−1.14 0.105 −1.10 −3.30 

( continued on next page ) 
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Table 3 ( continued ) 

λ ( ̊A) a Lower level b Upper level b log gf 

E (cm 

−1 ) J E (cm 

−1 ) J EXP c 	gf (exp) OSP d HFR + CPOL d 

2619.344 11,784 1/2 49,950 1/2 −1.03 0.083 −0.96 −1.08 

2620.050 25,342 7/2 63,498 9/2 −0.88 0.010 −1.00 −1.03 

2638.761 12,418 5/2 50,303 7/2 −0.06 0.050 0.03 −0.07 

2646.486 12,418 5/2 50,192 3/2 −0.29 0.260 −0.27 −0.38 

2653.796 25,342 7/2 63,013 9/2 −0.76 0.010 −0.67 −0.87 

2672.843 12,901 7/2 50,303 7/2 0.05 0.029 0.06 −0.06 

2673.270 15,447 11/2 52,843 9/2 −0.12 0.054 −0.21 −0.29 

2683.232 11,784 1/2 49,041 3/2 −0.23 0.045 −0.22 −0.28 

2701.415 12,034 3/2 49,041 3/2 −0.34 0.058 −0.30 −0.33 

2701.868 26,041 7/2 63,042 5/2 −0.41 0.010 −0.39 −0.30 

2717.347 15,428 9/2 52,218 7/2 −0.41 0.009 −0.30 −0.37 

2729.683 12,418 5/2 49,041 3/2 −0.92 0.024 −1.03 −0.95 

2730.931 26,406 7/2 63,013 9/2 −1.06 0.023 −1.09 −0.90 

2732.880 12,901 7/2 4 9,4 81 7/2 −0.47 0.027 −0.56 −0.56 

2747.619 26,041 7/2 62,426 5/2 −0.41 0.029 −0.39 −1.29 

2763.616 15,199 5/2 51,373 3/2 −0.56 0.039 −0.55 −0.61 

2775.402 13,461 9/2 4 9,4 81 7/2 0.27 0.013 0.32 0.29 

2776.675 26,488 9/2 62,492 7/2 −0.58 0.013 −0.54 −0.69 

2788.825 23,833 9/2 59,680 9/2 −1.33 0.010 −1.23 −1.92 

2807.753 12,418 5/2 48,023 3/2 −0.38 0.057 −0.33 −0.43 

2816.157 13,461 9/2 48,960 11/2 0.51 0.024 0.55 0.54 

2842.148 12,034 3/2 47,209 1/2 −0.87 0.021 −0.85 −0.92 

2848.233 12,901 7/2 48,0 0 0 9/2 0.30 0.027 0.33 0.32 

2855.917 24,836 5/2 59,841 3/2 −1.11 0.010 −1.31 −2.53 

2866.540 15,428 9/2 50,303 7/2 −1.42 0.037 −1.61 −1.57 

2871.512 12,418 5/2 47,232 7/2 0.10 0.010 0.13 0.11 

2890.993 12,034 3/2 46,614 5/2 −0.08 0.010 −0.12 −0.14 

2894.451 13,461 9/2 48,0 0 0 9/2 −0.10 0.009 −0.15 −0.17 

2909.116 11,784 1/2 46,148 3/2 −0.50 0.120 −0.47 −0.49 

2911.917 12,901 7/2 47,232 7/2 −0.10 0.009 −0.06 −0.07 

2913.806 28,989 7/2 63,299 7/2 −0.37 0.016 −0.51 −0.38 

2923.391 12,418 5/2 46,614 5/2 −0.12 0.010 −0.08 −0.10 

2926.153 28,877 5/2 63,042 5/2 −0.55 0.019 −0.54 −0.75 

2930.502 12,034 3/2 46,148 3/2 −0.18 0.031 −0.19 −0.21 

2934.297 11,784 1/2 45,853 1/2 −0.40 0.120 −0.36 −0.37 

2935.776 28,989 7/2 63,042 5/2 −1.00 0.006 −0.97 −1.25 

2938.300 28,989 7/2 63,013 9/2 −0.38 0.008 −0.39 −0.26 

2956.056 12,034 3/2 45,853 1/2 −0.77 0.007 −0.91 −0.94 

2960.241 13,461 9/2 47,232 7/2 −1.30 0.003 −1.26 −1.28 

2963.797 12,418 5/2 46,148 3/2 −0.90 0.011 −0.87 −0.88 

2965.280 12,901 7/2 46,614 5/2 −0.96 0.011 −0.97 −0.98 

2975.404 29,699 5/2 63,299 7/2 −0.12 0.041 −0.15 −0.05 

3030.070 30,020 7/2 63,013 9/2 −1.32 0.009 −1.46 −1.66 

3052.322 26,740 11/2 59,492 13/2 −0.65 0.022 −0.69 −0.82 

3054.930 29,022 5/2 61,747 3/2 −1.06 0.009 −1.15 −0.82 

3078.633 30,020 7/2 62,492 7/2 −1.17 0.058 −1.18 −1.19 

3087.620 27,114 13/2 59,492 13/2 0.36 0.028 0.49 0.43 

3097.687 26,488 9/2 58,761 11/2 −0.73 0.009 −0.76 −0.81 

3111.636 26,069 9/2 58,197 9/2 −0.92 0.018 −1.03 −1.13 

3136.466 23,833 9/2 55,707 7/2 −0.55 0.065 −0.53 −0.46 

3144.625 26,406 7/2 58,197 9/2 −1.03 0.038 −1.13 −1.29 

3158.933 27,114 13/2 58,761 11/2 −1.05 0.006 −0.95 −1.03 

3175.051 26,406 7/2 57,892 7/2 −0.27 0.022 −0.16 −0.32 

3178.004 26,740 11/2 58,197 9/2 −0.98 0.006 −0.84 −0.94 

3183.405 26,488 9/2 57,892 7/2 −0.94 0.022 −0.89 −1.04 

3258.677 17,344 5/2 48,023 3/2 −1.47 0.011 −1.48 −1.40 

3267.633 25,113 5/2 55,707 7/2 −1.00 0.040 −1.11 −0.81 

3292.313 25,342 7/2 55,707 7/2 0.05 0.006 −0.01 0.18 

3347.266 24,372 1/2 54,239 1/2 −0.81 0.012 −1.02 −0.70 

3367.959 33,046 9/2 62,729 11/2 −0.11 0.011 −0.02 0.14 

3374.833 32,124 1/2 61,747 3/2 −1.26 0.030 −1.34 −1.40 

3379.755 24,660 3/2 54,239 1/2 −0.81 0.002 −0.91 −0.68 

3435.376 30,392 11/2 59,492 13/2 −0.34 0.041 −0.31 −0.44 

3445.500 28,877 5/2 57,892 7/2 −0.41 0.013 −0.51 −0.63 

3545.989 29,699 5/2 57,892 7/2 −1.03 0.065 −0.96 −1.00 

3547.942 30,020 7/2 58,197 9/2 −1.08 0.040 −0.95 −1.00 

3618.359 35,100 13/2 62,729 11/2 −1.34 0.021 −1.33 −1.39 

3658.959 35,406 11/2 62,729 11/2 −0.76 0.017 −0.77 −0.69 

3857.196 24,660 3/2 50,578 5/2 −0.99 0.052 −0.97 −1.41 

a The wavelengths, given in vacuum (air) below (above) 20 0 0 Å are deduced from the experimental 

energy level values. 
b Experimental energy levels taken from [4] . 
c Experimental values deduced from [9,12,13] . 
d Values obtained in the present work using the oscillator strength parametrization (OSP) and core- 

polarization-corrected relativistic Hartree Fock (HFR + CPOL) methods. 
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4d 

4 5d and 4d 

4 5p, 4d 

3 5s5p configurations in the even and odd par-

ities, respectively. 

As seen from Table 3 , the OSP results are in very good agree-

ment with the experimental oscillator strengths, the average ratio

gf OSP / gf EXP being equal to 0.98 ± 0.20, where the uncertainty cor-

responds to the standard deviation to the mean. A similar ratio,

i.e. 0.94 ± 0.30, is found when considering the comparison between

HFR + CPOL and experimental results, provided that the computed

gf -values corresponding to transitions affected by strong cancella-

tion effects are rejected from the mean, namely those appearing

at λ= 2111.248, 2113.819, 2122.698, 2187.622, 2515.080, 2618.465,

2747.619, 2855.917, and 3857.196 Å. For these lines, it was indeed

observed that the cancellation factor, CF , as defined by Cowan

[17] took very small values ( CF < 0.05) in our HFR + CPOL calcula-

tions, indicating that the corresponding oscillator strengths could

not be reliable. 

Finally, in a Supplementary file, we give the oscillator strengths

and transition probabilities computed in the present work using

the HFR + CPOL method for about 1800 Mo II spectral lines involv-

ing available experimental energy levels with calculated log- gf val-

ues greater than −2. This table covers a wide range of wavelengths,

from 1750 to 8700 Å and includes many new radiative parameters,

not only for 4d 

5 –4d 

4 5p and 4d 

4 5s–4d 

4 5p transitions, but also for

4d 

4 5s–4d 

3 5s5p and 4d 

3 5s 2 –4d 

3 5s5p transitions. 

4. Conclusion 

A new investigation of radiative decay rates for transitions in

Mo II using the semi-empirical oscillator strength parametriza-

tion approach and the relativistic Hartree Fock method includ-

ing core-polarization effects is reported in the present work.

It is shown that both methods give a similar good agreement

when compared to available experimental gf -values. It is also

observed that the 4d 

4 5s 4d 

4 5p radial dipole integral deduced

from our oscillator strength parametrization approach has a sim-

ilar value to the one obtained with the HFR + CPOL method. The

trend is confirmed when we compare the OSP and HFR + CPOL

n d 

k ( n + 1)s → n d 

k ( n + 1)p transition radial integrals in the case of

other singly ionized atoms, such as Sc II, Ti II, V II, Zr II, Nb II, Rh

II and Hf II. 
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