Children with Developmental Language Disorders (DLD) have difficulties in word learning (Kan & Windsor, 2010).

Processes of categorization and generalization are required to make lexical acquisition efficient.

Bayesian theories of cognition offer an interesting approach to study this phenomenon (Xu & Tenenbaum, 2007). These theories:

- suppose that learning is the result of a strong mechanism of inductive inference, combining prior knowledge with environmental data;
- can account for fast and abstract acquisitions (Tenenbaum, Griffiths, & Kemp, 2006), which are hierarchically organized.

Our aim is twofold:

- Determining if children with DLD can use prior knowledge as efficiently as their typically developing peers when they learn new categories;
- Determining if children with DLD can make inferences (generalize) at two levels of abstraction.

Participants:

- \(n = 23 \)
- Functional impact: Special schools
- Severe language disorders
- Non Verbal IQ in the normal range

Control groups:

- Age-matched children
- (Language-matched children)

Methods:

- Procedure:
 - Word/Category Learning Task
 - 1st order inference
 - Bias acquisition
 - 20 items from 2 categories
 - Stop after 5 RC
 - Generalization Task
 - 2nd order inference
 - Generalization of the bias: extension to other members of the superordinate category
 - Learning association Task
 - How do children use their prior knowledge?
 - Physical characteristics associated with environment

Predictions:

- In line with the hypothesis of a deficit of Bayesian inference, we expect that children with DLD:
 - would need more presentations before acquiring the two categories of the first task;
 - would not be able to extend the bias to other members of the category, or would perform worst than their peers;
 - would less efficiently refer to their prior knowledge, thus would have poorer results at the 3rd task.